
c©

Special effects: Fog

Fog: Similar effect like attenuation.

Atmospheric attenuation: Light is absorbed (for instance
by dust in the air).

Fog: Diffuse reflection occurs on tiny drops of water in
the air.

Objects in the distance are less visible with fog
and attenuation.

In contrast to atmospheric attenuation, fog also
causes a white or grey background colour.

The colour of an object is blended with the colour
of the fog.

Attenuation corresponds to black fog.
Computer Graphics: Special effects and virtual reality – p.1/65



c©

Fog

Computer Graphics: Special effects and virtual reality – p.2/65



c©

Special effects: Fog

Blending of the fog colour and the object’s colour:

b(d) · Ifog + (1 − b(d)) · Iobject.

• Ifog: (Colour) intensity of the fog.

• Iobject: (Colour) intensity of the object.

• d: Distance of the object to the viewer.

• b : IR+
0 → [0, 1] increasing blending function with

b(0) = 0 and lim
d→∞

b(d) = 1.

Computer Graphics: Special effects and virtual reality – p.3/65



c©

Special effects: Fog

Linear fog: No blending with the fog up to distance
d = d0, 100% fog starting at distance d = d1, linear
blending in between:

b(d) =

⎧⎪⎪⎨
⎪⎪⎩

0 if d ≤ d0,

d−d0

d1−d0
if d0 < d < d1,

1 if d1 ≤ d.

Exponential fog: Exponential increase of the effect of
fog controlled by the (density) factor α > 0:

b(d) = 1 − e−α·d

Computer Graphics: Special effects and virtual reality – p.4/65



c©

Java 3D: Fog

Linear fog in Java 3D:

LinearFog fog =
new LinearFog(colour,d_0,d_1);

fog.setInfluencingBounds(bounds);

theScene.addChild(fog);

Analogously for exponential fog:

ExponentialFog fog =
new ExponentialFog(colour,alpha);

Computer Graphics: Special effects and virtual reality – p.5/65



c©

Java 3D: Fog

It is recommended to adjust the background colour to
the colour of the fog.

A background image will not be blended with fog.

(see ExponentialFog and LinFogExample.java)

Computer Graphics: Special effects and virtual reality – p.6/65



c©

Java 3D: Links

The class Link is used in the programm
FogExample.java in order to use an object or a part
of a scene more than once in the same scene.

Example: A room with a number of doors of identical
type.

Let tgDoor be the transformation group containing
the generic model of the door.

Definition of a SharedGroup:

SharedGroup sgDoor = new SharedGroup();
sgDoor.addChild(tgDoor);

Computer Graphics: Special effects and virtual reality – p.7/65



c©

Java 3D: Links

Then the door can be used in the scene in different
places as a Link, for instance:

tgDoor1.addChild(new Link(sgDoor));

tgDoor2.addChild(new Link(sgDoor));

...

tgDoor1 and tgDoor2 are transformation groups
placing the door in different positions.

Computer Graphics: Special effects and virtual reality – p.8/65



c©

Particle systems

Examples for particle systems: Wafts of fog,
explosions, fire, fountains.

• Many small particles that are not controlled
individually, but by a few parameters.

• A random mechanisms is involved determining the
parameters for the single particles.

• Basic behaviour pattern for all particles: random
life span, random direction of movement, random
splitting,. . .

Computer Graphics: Special effects and virtual reality – p.9/65



c©

Particle systems

Computer Graphics: Special effects and virtual reality – p.10/65



c©

Control parameters of particle
systems

• Position where a particle is generated.
• Initial velocity of a particle.
• Direction in which the particle is moving.
• Life span of a particle.
• Intensity with which particles are emitted or

generated.
• How a particle should look like.

often: particle = set of small elements,
e.g. particle = square with a suitable texture.

Computer Graphics: Special effects and virtual reality – p.11/65



c©

Simple particle system in Java

• Transformation group tgParticleSystem to
which the particle system is assigned.

tgParticleSystem.setCapability(
TransformGroup.ALLOW_TRANSFORM_WRITE);

tgParticleSystem.setCapability(
TransformGroup.ALLOW_CHILDREN_EXTEND);

Computer Graphics: Special effects and virtual reality – p.12/65



c©

Simple particle system in Java

• Waiting time specified in milliseconds in the form
of a long-value, defining when the particle system
should start to emit particles.

• Duration in milliseconds in the form of a
long-value how long the particle system should
run.

• Particle generator (Interface
ISimpleParticleCreator)
Method getNextParticle

• Waiting time betweeen the creation of two
succeeding particles (Interface ILongCreator
Method getNextLong

Computer Graphics: Special effects and virtual reality – p.13/65



c©

Simple particle system in Java

• Live span of a particle (Interface ILongCreator)
Method getNextLong

• Velocity of a particle (Interface IFloatCreator)
Method getNextFloat

• Initial position of a particle (Interface
IVector3fCreator)
Method getNextVector3f

• Direction of movement of a particle (Interface
IDirectionCreator)
Methods: getNextZRotation,
getNextZRotation

Computer Graphics: Special effects and virtual reality – p.14/65



c©

Simple particle system in Java

• activateParticleSystem starts the Thread
SimpleParticleSystemRunner.

• In this class: Creation of a BranchGroup
bgParticleSystem to which the single particles
are assigned.

The child nodes of this BranchGroup are changed
dynamically during runtime.

Computer Graphics: Special effects and virtual reality – p.15/65



c©

Dynamic change of the scenegraph

bgParticleSystem.setCapability(
BranchGroup.ALLOW_DETACH);

bgParticleSystem.setCapability(
BranchGroup.ALLOW_CHILDREN_WRITE);

bgParticleSystem.setCapability(
BranchGroup.ALLOW_CHILDREN_EXTEND);

bgParticleSystem.setCapability(
BranchGroup.ALLOW_CHILDREN_READ);

Remove a node from the scenegraphen:
removeChild

Computer Graphics: Special effects and virtual reality – p.16/65



c©

Dynamic surfaces

Nonrigid objects: Skin, cloth,. . .

Modelling with skeletons and skinning.

Computer Graphics: Special effects and virtual reality – p.17/65



c©

Dynamic surfaces

• A few inner skeleton points si to which
transformations Ti are applied.

• The vertex points p at the surface are assigned to
the skeleton points using weights w

(p)
i .

• The transformation applied to the vertex point p is
then given by

Tp =
∑

i

w
(p)
i · Ti.

The weights w
(p)
i must be normalised, so that Tp is

a convex combination of the Ti.

Computer Graphics: Special effects and virtual reality – p.18/65



c©

Dynamic surfaces

Computer Graphics: Special effects and virtual reality – p.19/65



c©

Dynamic surfaces

alternative model:

Interpolation between surfaces that are modelled by
corresponding triangles.

Implementation example in
DynamicSurfaceExample: Interpolation between
two GeometryArrays defined by functions in two
variables.

Computer Graphics: Special effects and virtual reality – p.20/65



c©

Dynamic surfaces

Use of a Morph object:

Node ina scenegraph to which an array of
GeometryArray objects and an array of weights for
the interpolation is assigned.

dynamic change of the weights by a Behavior.

Computer Graphics: Special effects and virtual reality – p.21/65



c©

Dynamic surfaces

public class SimpleMorphBehaviour extends Behavior

{

private Morph theMorph;

private Alpha theAlpha;

private double[] weights;

private WakeupCondition trigger =

new WakeupOnElapsedFrames(0);

public SimpleMorphBehaviour(Morph targetMorph, Alpha alpha)

{

theMorph = targetMorph;

theAlpha = alpha;

weights = new double[2];

}

Computer Graphics: Special effects and virtual reality – p.22/65



c©

Dynamic surfaces

public void initialize()

{

wakeupOn(trigger);

}

public void processStimulus(Enumeration criteria)

{

weights[0] = 1 - theAlpha.value();

weights[1] = 1 - weights[0];

theMorph.setWeights(weights);

wakeupOn(trigger);

}

}

Computer Graphics: Special effects and virtual reality – p.23/65



c©

Interaction: Picking objects

The PickMouseBehavior enables the user to select
objects with the mouse and to initiate actions.

First step: Definition of a new class extending
PickMouseBehavior.

The actions to be carried out when objects are picked
are defined inside this extended class.

Computer Graphics: Special effects and virtual reality – p.24/65



c©

Interaction: Picking objects

MyPickingBehaviour extends
PickMouseBehavior

public MyPickingBehaviour(Canvas3D
pCanvas,

BranchGroup root,
Bounds pBounds,
...)

{
super(pCanvas,root,pBounds);
setSchedulingBounds(pBounds);
...

}

Computer Graphics: Special effects and virtual reality – p.25/65



c©

Interaction: Picking objects

pCanvas must be the Canvas3D on which the scene
is displayed.

root should be the BranchGroup theScene.

pBounds defines the bounding region in which it is
possible to pick the objects.

Further parameters might be needed to control the
actions to be initiated when an object is picked.

Computer Graphics: Special effects and virtual reality – p.26/65



c©

Interaction: Picking objects

Inside the class MyPickingBehaviour, the method

public void updateScene(int xpos,
int ypos)

must be overwritten. Inside this method: Determine
which object has been picked:

pickCanvas.setShapeLocation(xpos,ypos);

PickResult pResult =
pickCanvas.pickClosest();

Computer Graphics: Special effects and virtual reality – p.27/65



c©

Interaction: Picking objects

Since clicking on the two-dimensional projection might
not always refer to a unique object in 3D, the method
pickClosest() is used here.

The method pickAll() is also available, returning an
array containing all objects projected to the point
which is clicked.

Computer Graphics: Special effects and virtual reality – p.28/65



c©

Interaction: Picking objects

The chosen objects should either be elementary
objects of the class Primitive or an instance of the
class Shape3D.

It is also possible to define a pickable region by
defining a completely transparent sphere, which is not
visible, but pickable.

In order to identify which object has been picked in the
scenegraph, the method setUserData(...) (for
example setUserData("’nodeName"’)) allows to
assign an arbitrary Java object (here, a string) to a
node of the scenegraph.

Computer Graphics: Special effects and virtual reality – p.29/65



c©

Interaction: Picking objects

The PickResult must be casted into an object of the
type Primitive or Shape3D, for instance

Primitive pickedShape = (Primitive)
pResult.getNode(PickResult.PRIMITIVE);

Then it is possible, to identify the picked object by
calling the method pickedShape.getUserData().

Computer Graphics: Special effects and virtual reality – p.30/65



c©

Interaction: Picking objects

The instance of the class MyPickingBehaviour
must be added to the scene by addChild(...).

When interpolators should be started after objects
have been picked, the corresponding Alphas should
be passed to MyPickingBehaviour. The
StartTime should initially set to “infinity” and inside
the method updateScene to “now”.

(see InteractionTest.java/PickingTest.java
and
PickingExample.java/InteractionExample.java)

Computer Graphics: Special effects and virtual reality – p.31/65



c©

Interaction: Collision detection

Collision detection refers to the problem of determining
whether moving objects collide, i.e. whether the
corresponding shapes intersect..

Without collision detection objects can penetrate each
other.

Computer Graphics: Special effects and virtual reality – p.32/65



c©

Interaction: Collision detection

Possible strategies:

• Objects are enclosed in bounding volumes (boxes
or spheres).
Collision is checked only on the level of the
bounding volumes.

• Advantage: Simple computations for collision
detection.

• Disadvantage: For objects with complex shapes
a collision might be indicated although the
actual objects are not touching each other.

Computer Graphics: Special effects and virtual reality – p.33/65



c©

Interaction: Collision detection

• Collision detection based on surface polygons

• Advantage: Collision corresponds (almost)
exactly to touching objects.

• Disadvantage: High computational costs.

Mixed strategy: First apply collision detection
based on bounding volumes and in case of a
collision of the bounding volumes, check collision
on the level of polygons.

Computer Graphics: Special effects and virtual reality – p.34/65



c©

Interaction: Collision detection

Simple bounding volumes:

• Axes-parallel boxes:

• Smallest bounding volume is easy to compute.
• Collision detection becomes more complicated

when the objects move and the bounding
volumes are no longer axes-parallel.

• Spheres:

• Smallest bounding volume not easy to compute.
• Collision detection is very simple. Test for

Radius_1 + Radius_2 ≥ distance of the midpoints

Computer Graphics: Special effects and virtual reality – p.35/65



c©

Interaction: Collision detection

Bounding box and bounding sphere for an object

Computer Graphics: Special effects and virtual reality – p.36/65



c©

Java 3D: Collision detection

Definition of a class CollisionBehaviour,
extending the class Behaviour.

public class CollisionBehaviour extends
Behavior

{
private WakeupOn...;
...

}

Different collision criteria can be defined for initiating a
change:

Computer Graphics: Special effects and virtual reality – p.37/65



c©

Java 3D: Collision detection
• WakeupOnCollisionEntry: At the beginning of

a collision.
• WakeupOnCollisionExit: After a collision has

been resolved.
• WakeupOnCollisionMovement: During the

collision (during a movement).
• WakeupOr: A combination of the previous criteria.

Further attributes might be needed in the class
CollisionBehaviour for parameters to control the
actions to be initiated in case of a collision (similar to
MyPickingBehaviour).

Computer Graphics: Special effects and virtual reality – p.38/65



c©

Java 3D: Collision detection

First, the method initialize() must be overwritten,
for example:

public void initialize()
{
hit = new WakeupOnCollisionEntry(node);
wakeupOn(hit);
}
when an action should be initiated at the beginning of
a collision with an object of the node node in the
scenegraph.

hit must be defined as a corresponding attribute in
the class SimpleCollision.

Computer Graphics: Special effects and virtual reality – p.39/65



c©

Java 3D: Collision detection

When an action should be initiated after a collision is
resolved, use
public void initialize()
{

criteria = new WakeupCriterion[2];

criteria[0] = new
WakeupOnCollisionEntry(node);

criteria[1] = new
WakeupOnCollisionExit(node);

oredCriteria = new WakeupOr(criteria);
wakeupOn(oredCriteria);

}
Computer Graphics: Special effects and virtual reality – p.40/65



c©

Java 3D: Collision detection

public void processStimulus(
Enumeration enum)

{
while (enum.hasMoreElements())
{
WakeupCriterion criterion =
(WakeupCriterion) enum.nextElement();
if (criterion instanceof

WakeupOnCollisionEntry)
{

...
}
wakeupOn(hit);

}
}

Computer Graphics: Special effects and virtual reality – p.41/65



c©

Java 3D: Collision detection

In ... the corresponding action is initiated that should
be carried out when the collision occurs.

An instance of the corresponding class must be
generated and added to the scene:

CollisionBehaviour cb =
new CollisionBehaviour(...);

theScene.addChild(cb);

(see CollisionExample.java)

Computer Graphics: Special effects and virtual reality – p.42/65



c©

Java 3D: PickTranslateBehavior

Java 3D provides a class for moving objects with
mouse, pressing the right mouse button.

PickTranslateBehavior pickTrans =
new PickTranslateBehavior(theScene,

myCanvas3D,
bs);

theScene.addChild(pickTrans);

bs is a BoundingRegion.

Computer Graphics: Special effects and virtual reality – p.43/65



c©

Java 3D: PickTranslateBehavior

Certain attributes must be set for the corresponding
transformation groups:

tg.setCapability(
TransformGroup.ALLOW_TRANSFORM_WRITE);

tg.setCapability(
TransformGroup.ALLOW_TRANSFORM_READ);

tg.setCapability(
TransformGroup.ENABLE_PICK_REPORTING);

Computer Graphics: Special effects and virtual reality – p.44/65



c©

Java 3D: Switches
A Switch is a node in the scenegraph with a number
of child from which one (or a subset) can be selected
for display in the scene.

In this way, one object can be changed into another
one.

Switch sw = new Switch();

sw.setCapability(
Switch.ALLOW_SWITCH_WRITE);

sw.addChild(tg0);

sw.addChild(tg1);
...

Computer Graphics: Special effects and virtual reality – p.45/65



c©

Java 3D: Switches

The method setWhichChild(childNumber) allows
to choose which of the child nodes should be included
in the scene.

Using the class BitSet (in java.util) is possible to
define a bitmask bm.

The methods bm.set(childNumber) and
bm.clear(childNumber) and then
sw.setChildMask(bm) allow the choice of an
arbitrary subset of the child nodes of the Switch to be
included in the scene.

Computer Graphics: Special effects and virtual reality – p.46/65



c©

Java 3D: Keyboard navigation

• Definition of a transformation group tgAll.
• The objects in the scene are not assigned directly

to theScene, but to tgAll.
• tgAll is assigned to theScene.

TransformGroup tgAll =
new TransformGroup();

tgAll.setCapability(
TransformGroup.ALLOW_TRANSFORM_READ);

tgAll.setCapability(
TransformGroup.ALLOW_TRANSFORM_WRITE);

...

Computer Graphics: Special effects and virtual reality – p.47/65



c©

Java 3D: Keyboard navigation

theScene.addChild(tgAll);

KeyNavigatorBehavior knb =
new KeyNavigatorBehavior(tgAll);

knb.setSchedulingBounds(bounds);

tgAll.addChild(knb);

tgAll.addChild(...);

Computer Graphics: Special effects and virtual reality – p.48/65



c©

Java 3D: Acoustic effects

• BackgroundSound: Sound equivalent of ambient
light.

• PointSound: Sound equivalent of a point light
source.

• ConeSound: Sound equivalent of a spotlight.

A Sound can be assigned to a transformation group or
directly to the scene.

Computer Graphics: Special effects and virtual reality – p.49/65



c©

Java 3D: Acoustic effects

Loading a sound file:

MediaContainer medCon;
try
{

FileInputStream is =
new FileInputStream("mysound.wav");

medCon = new MediaContainer(is);
theSound.setSoundData(medCon);

}
catch(Exception e){...}

Computer Graphics: Special effects and virtual reality – p.50/65



c©

Java 3D: Acoustic effects

Setting the necessary parameters:

theSound.setEnable(true);
theSound.setLoop(Sound.INFINITE_LOOPS);
theSound.setInitialGain(0.9f);
theSound.setSchedulingBounds(bs);

(see SoundExample.java)

Computer Graphics: Special effects and virtual reality – p.51/65



c©

3D viewing

3D information is obtained from a number of sources.

Distinction between monocular (with one eye) and
binocular (combination of both eyes) factors.

Computer Graphics: Special effects and virtual reality – p.52/65



c©

Monocular factors

The focus (accommodation) : When the eye views an
object, the lens has to be adjusted by muscle
contractions in the eye so that the object is in
focus. Objects in the far background get out of
focus. This provides a certain information about
distances.

Parallax of movements : Parallax of movements can be
observed when objects move relative to each
other. The position and the size of the objects are
crucial for this information. Moving objects change
their distance to the viewer.

Computer Graphics: Special effects and virtual reality – p.53/65



c©

Monocular factors

Masking : When one object is hidden partly from sight
by another object it can be concluded that the
completely visible object must be closer to the
viewer than the other object.

Light and shadows : From the location, the direction, the
shape and the size of the shadow cast by an
object, conclusions can be drawn about the
location of the object itself and about the shape of
the object on which the shadow is cast.

Computer Graphics: Special effects and virtual reality – p.54/65



c©

Monocular factors

Size : From the size of an object in an image
compared to the size of other objects and the
known size of the object, the distance of the object
to the viewer can be estimated. Closer objects are
larger. This means if an object that is known to be
large occurs small, it must be far away from the
viewer.

Attenuation : The effects of atmospheric attenuation
increase with the distance. Objects in the far
distance appear less contrasted than closer ones.

Head movements : Moving the head generates different
images (over time) from which 3D information can
be extracted.

Computer Graphics: Special effects and virtual reality – p.55/65



c©

Binocular factors

Difference of the images : Since the two eyes view the
same scene from two slightly different positions,
3D information can be retrieved from a comparison
of the two images.

Convergence : The eyes can modify the direction of
view by turning the eyeballs slightly. The closer an
object is, the more the eyeballs are turned inside.
Based on this slight turn, the distance of an object
in focus can also be roughly estimated.

Pulfrich effect : A bright stimulus is processed faster by
the brain than a dark one. Wearing glasses with
one darkened side, this effect can be used to
generate 3D impressions for special image
sequences.

Computer Graphics: Special effects and virtual reality – p.56/65



c©

Generating stereoscopic images

Anaglyph images are a very old approach to
stereoscopic viewing. The two images are drawn
with different colours, in most cases one in red and
the other one in green. To view the two overlaid
images special glasses must be worn with different
colour filters for the two eyes. A disadvantage of
anaglyph images is the loss of colour information.

Computer Graphics: Special effects and virtual reality – p.57/65



c©

Generating stereoscopic images

Polarised light is a better alternative. Light waves
oscillate around the axis of the direction in which
they spread. Polarised light oscillates only in one
plane. The images for the two eyes are projected
to a screen with different polarisations. The viewer
must wear glasses with the corresponding
polarisations for the two eyes.

Computer Graphics: Special effects and virtual reality – p.58/65



c©

Generating stereoscopic images

Liquid crystal shutter glasses: The images for the two
eyes are presented alternatingly on the computer
screen. The user must wear liquid crystal shutter
glasses which are synchronised with the monitor
by an infrared signal.

Since the image frequency for each eye is reduced
by half in this way, it is recommended to use a
special monitor with a higher frequency of at least
100 Hz. The frequency is also limited by the
phosphorescence effect of monitors.

Computer Graphics: Special effects and virtual reality – p.59/65



c©

Generating stereoscopic images

Head-mounted display: Usually a small helmet with two
LCD displays with magnifying lenses, one for each
eye. Head tracking is required when the viewer
can move around in the scene wearing the helmet.
Headphones can also be integrated into the
helmet for sound effects.

The disadvantage is that wearing a helmet is not
as comfortable as wearing glasses.

Computer Graphics: Special effects and virtual reality – p.60/65



c©

Generating stereoscopic images

Specific displays that do not need specific glasses for
the separation of the images for the two eyes.
Some techniques use a specific mask of lenses or
prisms in front of the display so that each eye can
only see one half of the pixels.

3D effect is visible only in a small range.

Holographic techniques sometimes based on rotating
projection surfaces.

Computer Graphics: Special effects and virtual reality – p.61/65



c©

Parallax

negative parallax: The object is located in front of the
screen (projection plane).

no parallax: The object is located in the projection
plane.

positive parallax: The object is located behind of the
projection plane.

divergent parallax: Contradictory position showing an
object left of the left eye and right of the right eye
which is impossible in reality.

Computer Graphics: Special effects and virtual reality – p.62/65



c©

Parallax

� � � � � � �

� � � � 	 � 	 
 
 	 �

�


� � � � � � � � � � 	 � 	 
 
 	 �� � � 	 � � � � � � 	 � 	 
 
 	 �

Computer Graphics: Special effects and virtual reality – p.63/65



c©

Parallax

	 � � � � � � � 	 � � � � � � � � � � � � � � � 	 � � � � � � � 	 � � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � 	 � � �

Computer Graphics: Special effects and virtual reality – p.64/65



c©

Undesired effects

• Positive parallax: Seeing the object through a
window (the monitor).

• Negative parallax: Objects are simply cut off at the
edge of the monitor.

• Very strong parallax: Crosstalk.
• Ghosting effects for slower monitors.
• Avoid divergent parallaxes.

Computer Graphics: Special effects and virtual reality – p.65/65


	Special effects: Fog
	Fog
	Special effects: Fog
	Special effects: Fog
	Java 3D: Fog
	Java 3D: Fog
	Java 3D: Links
	Java 3D: Links
	Particle systems
	Particle systems
	Control parameters of particle systems
	Simple particle system in Java
	Simple particle system in Java
	Simple particle system in Java
	Simple particle system in Java
	Dynamic change of the scenegraph
	Dynamic surfaces
	Dynamic surfaces
	Dynamic surfaces
	Dynamic surfaces
	Dynamic surfaces
	Dynamic surfaces
	Dynamic surfaces
	Interaction: Picking objects
	Interaction: Picking objects
	Interaction: Picking objects
	Interaction: Picking objects
	Interaction: Picking objects
	Interaction: Picking objects
	Interaction: Picking objects
	Interaction: Picking objects
	Interaction: Collision detection
	Interaction: Collision detection
	Interaction: Collision detection
	Interaction: Collision detection
	Interaction: Collision detection
	Java 3D: Collision detection
	Java 3D: Collision detection
	Java 3D: Collision detection
	Java 3D: Collision detection
	Java 3D: Collision detection
	Java 3D: Collision detection
	Java 3D: PickTranslateBehavior
	Java 3D: PickTranslateBehavior
	Java 3D: Switches
	Java 3D: Switches
	Java 3D: Keyboard navigation
	Java 3D: Keyboard navigation
	Java 3D: Acoustic effects
	Java 3D: Acoustic effects
	Java 3D: Acoustic effects
	3D viewing
	Monocular factors
	Monocular factors
	Monocular factors
	Binocular factors
	Generating stereoscopic images
	Generating stereoscopic images
	Generating stereoscopic images
	Generating stereoscopic images
	Generating stereoscopic images
	Parallax
	Parallax
	Parallax
	Undesired effects

