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3D object modelling

Limitation to proper 3D structures:

• no isolated points, edges and faces,
• no dangling or extra edges and faces.
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Polygons as surface elements

Modelling surfaces of 3D objects: flexible shapes for
representing round and bent shapes.

Displaying surfaces: Approximation by polygons,
usually triangles (apply triangulation if necessary).
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Polygons as surface elements

Orientation of polygons: Vertices listed in
anticlockwise order to indicate the outside of the
surface.
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• 0,1,2: Visible for the viewer.
• 0,2,1: Invisible for the viewer (seeing the polygon

from the back)
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Example: Tetrahedron

Faces of the tetrahedron:

• P0,P3,P1,
• P0,P2,P3,
• P0,P1,P2

• P1,P3,P2
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Topological notions

Let M ⊂ IRp.

• A subset U ⊂ R
p is called a neighbourhood of the

point x0 ∈ R
p if there exists ε > 0 such that

{x ∈ R
P | ‖ x − x0 ‖< ε} ⊆ U.

• A point x ∈ M is called an inner point of M if there is
a neighbourhood U of x such that U ⊆ M holds.

• The set

in(M) = {x ∈ M | x is an inner point of M}
of all inner points of M is called the interior or kernel
of M .
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Topological notions

• A point x is called a boundary point of M if every
neighbourhood of x has nonempty intersections
with M as well as with the complement of M .

• The set

bound(M) = {x ∈ M | x is a boundary point of M}
of all boundary points of M is called the boundary
of M .

• in(M) = M\bound(M).

• M is called an open set if M coincides with its
interior, i.e., if in(M) = M holds.
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Topological notions

• The union of a set M with its boundary

cl(M) = M ∪ bound(M)

is the closure of M .
• M is called closed if the closure of M is M itself,

i.e., if cl(M) = M holds.
• The regularisation reg(M) = cl(in(M)) of a set M

will cut off isolated as well as dangling edges and
faces.

• M is called regular if reg(M) = M holds, i.e., if the
set coincides with its regularisation.
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3D object modelling
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Regularisation will cut off isolated as well as dangling
edges and faces.
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Voxel model

• Partitioning the three-dimensional space into a
grid of of small, equisized cubes, called voxels.

• A three-dimensional object is defined by those
voxels that are located inside the object.
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Voxel model

• A voxel belongs to a 3D object if its centre lies
inside the 3D object.

• The quality of approximation of a 3D object by
voxels depends on the size of the voxels.

• Small voxels → Good approximation, but high
computational and memory costs.

• Larger voxels → Rough approximation, but low
computational and memory costs.

• Store the 3D object as
• a 3D binary matrix or
• list of voxels.
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Octrees

• Fit the 3D object into a sufficiently large cube or
box.

• Partition the cube into eight smaller cubes.
• Smaller cubes that lie completely inside or

completely outside the object are marked with in
and off, respectively. No need for further
refinement.

• The other cubes are marked with on, indicating that
the cube intersects the surface of the object. The
cubes are further refined in the same way.
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Octrees

2D counterpart: Quadtrees.
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Octrees

Corresponding quadtree up to level 4:
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CSG scheme

CSG: Constructive solid geometry

Similar to the use of the class Area in Java 2D:

• Collection of elementary geometric objects.(like
box, sphere, cylinder, cone,. . .).

• Transformations and regularised set-theoretic
operations can be applied to these objects to
construct more complex objects.
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CSG scheme
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Sweep representation

A three-dimensional object is generated from a
two-dimensional shape that is moved along a
trajectory.
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Approximation by polygons
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Approximation by polygons

Representation of a sphere with different tesselations
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Tesselation in Java 3D

Displaying objects as wire frame models in Java 3D:

PolygonAttributes polygAttr =
new PolygonAttributes();

polygAttr.setPolygonMode(
PolygonAttributes.POLYGON_LINE);

myApp.setPolygonAttributes(polygAttr);
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Tesselation in Java 3D

Specifying the resolution for elementary geometric
objects:

Sphere s = new Sphere(r,
Sphere.GENERATE_NORMALS,
res,sphereApp);

Approximation of the sphere’s surface by res triangles
at the circumference.
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Tesselation in Java 3D

Cylinder c = new Cylinder(r,h,
Cylinder.GENERATE_NORMALS,
xres,yres,app);

Cone c = new Cone(r,h,
Cone.GENERATE_NORMALS,
xres,yres,app);

For the approximation of the surfaces, xres triangles
are used around the circumference and yres triangles
along the height.
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Java 3D: GeometryArrays

A GeometryArray defines a 3D object (i.e. its
surface) and mainly consists of

• points (vertices),
• faces (or polygons, usually triangles or

quadrangles) defined via the specified vertices,
• information about colour or texture,
• normal vector containing information about the

true structure of the surface.
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Java 3D: GeometryArrays

A simple way to generate a GeometryArray:

• Partition the surface to be modelled into triangles.
• Define an array containing the vertices of the

triangles.

Point3f[] vertices =
{
new Point3f(...),
...
new Point3f(...)

};
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Java 3D: GeometryArrays

• Definition of the triangles.

int triangles[] = {
0,2,1,
1,4,7,
...

};

The surface consists of the triangles given by the
points (elements)
• 0, 2 and 1,
• 1, 4 and 7 in the vertices array.
• . . .
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Java 3D: GeometryArrays

• First generate a GeometryInfo object:

GeometryInfo gi = new GeometryInfo(
GeometryInfo.TRIANGLE_ARRAY);

gi.setCoordinates(vertices);

gi.setCoordinateIndices(triangles);

NormalGenerator ng =
new NormalGenerator();

ng.generateNormals(gi);
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Java 3D: GeometryArrays

• Generate an GeometryArray from the
GeometryInfo object and turn this into a
Shape3D.

GeometryArray ge = gi.getGeometryArray();

Shape3D inducedShape =
new Shape3D(ge,desiredAppearance);

• This Shape3D object can be assigned to
transformation groups in the same way as
elementary geometric objects.

(see GeomArrayExample.java)
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Loading a scene

Java 3D allows to import scenes in various graphics
formats.

Example: Wavefront Object format ( .obj )

This file format contains similar information as
GeometryArrays.

Apart from importing some required packages, a
scene can be loaded in the following way.
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Loading a scene

ObjectFile f = new ObjectFile(
ObjectFile.RESIZE);

Scene s = null;

try
{

s = f.load("file.obj");
}
catch (Exception e)
{

System.out.println("Error ...");
}

BranchGroup theScene = s.getSceneGroup();
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Loading a scene

The names of the objects contained in this scene are
obtained in the following way.

Hashtable sObs = s.getNamedObjects();

Enumeration enum = sObs.keys();

String name;

while (enum.hasMoreElements())
{

name = (String) enum.nextElement()
System.out.println("Name: "+name);

}
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Loading a scene

An object in a scene can be accessed by its name and
its colour can be changed.

Shape3D sceneObject =
(Shape3D) sObs.get("objName");

sceneObject.setAppearance(
desiredAppearance);
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Loading a scene

Using only a part of a loaded scene.

Shape3D part = (Shape3D)
namedObjects.get("partName");

Shape3D extractedPart = (Shape3D)
part.cloneTree();

extractedPart.setAppearance(app);
tg.addChild(extractedPart);

(see Load3DExample.java and
Extract3DExample.java)
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Surfaces as functions

another way to define a surface: function in two
variables in implicit form:

F (x, y, z) = 0

Disadvantages:

• Difficult to find an equation that models the desired
surface.

• The equation needs to be solved for rendering
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Surfaces as functions

simpler solution: Description of a surface as a function
in explicit form

z = f(x, y).

Disadvantage: Closed surfaces must be defined
piecewise.
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Surfaces as functions

z = f(x, y) = x sin(7x) cos(4y) (−1 ≤ x, y ≤ 1)
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Surfaces as functions

Determining the triangles for the representation of the
function:
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Surfaces as functions

Choosing the resolution (tesselation) for the triangles:

• high resolution: good approximation of the
function, but high computational costs.

• low resolution: bad approximation of the function,
but low computational costs.
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Surfaces as functions

possible solution:

variable resolution

In each square the approximation error is computed.
Each square is recursively divided into smaller
squares until the approximation error is small enough
or a minimum size of the squares is reached.
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Surfaces as functions

Landscapes consist of height and texture information.

The height information corresponds to sampling a
function z = f(x, y) where z is the height of the
landscape at the point (x, y).

Problem: Ein narrow grid with height information leads
to a large number of triangles to be rendered, even for
those parts of the landscape that are far away from the
viewer.
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Level of Detail (LOD)

Resolution depending on the distance of the viewer:

� x�
�

�
�

�
�

�
�

�
�

���
y

�� �� �� �� �� �� �� ��				
				

				
				

				
				

				
				�

�
�

�
�

�

�
�

�

�
�

�

								

								

								

								�
�

�
�

�
�

�
�

�
�

�
�

								

								

								

								

Computer Graphics: Modelling 3D objects – p.39/89



c©

Text

Classes for text in 3D: Text2D and Text3D
Creating a Shape object (similar to Text2D):

Font3D f3d = new Font3D(f,
new FontExtrusion());

Text3D t3d = new Text3D(f3d,s,p);
Shape3D textShape = new Shape3D(t3d,app);
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Billboard Behaviour

For text as legend it is important that the text is always
oriented to the viewer. This is called Billboard Behaviour.

Billboard bb = new Billboard(tgBBGroup,
Billboard.ROTATE_ABOUT_POINT,

p);
bb.setSchedulingBounds(bounds);
tgBBGroup.addChild(bb);
tgBBGroup.setCapability(

TransformGroup.ALLOW_TRANSFORM_WRITE);
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Surface modelling

• Round or bent surfaces are usually approximated
by a sufficiently large number of small triangles.

• For modelling surfaces, it is more common to use
freeform surfaces, especially for CAD applications.

• From a freeform surface model, different
approximations by triangles can be generated,
depending on the desired precision or on the
distance of the viewer to the object (LOD: level of
detail).
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Surface modelling

• Normal vectors to surfaces are needed for shading
effects (and also for elimination of invisible
surfaces).

• The normal vectors for the triangles are taken as
the normal vectors to the planar polygons that the
triangles represent, but as normal vectors to the
original bent surface.

• Methods for computing normal vectors will be
introduced later on.
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Parametric curves and surfaces

Parametric curves can be considered as a part of
parametric surfaces.
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Parametric curves

Parametric surfaces are defined on the basis of
parametric curves (similar to QuadCurve2D or
CubicCurve2D in Java 2D).

Parametric curves are defined via points (in 3D
space), so-called control points.

Interpolation refers to curves that pass through all
control points.

Approximation only requires that the curve gets close
to the control points, but it does not have to pass
through them.
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Modelling curves

When curves (or also surfaces) are defined via a set
of parameters (f.e. points in 3D space), the following
properties will make modelling and adjusting such
curves easier.

Controllability: The influence of the parameters on the
shape of the curve can be understood in an
intuitive way. When the shape of a curve has to be
changed, it should be clear for the user which
parameters he should modify in which way in order
to achieve the desired change.
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Modelling curves

Locality principle: It must be possible to carry out local
changes on the curve. Modifying one control point
should only change the curve in the
neighbourhood of this control point and not alter
the curve completely.

Smoothness: The curve should satisfy certain
smoothness properties. It should not only be
continuous without jumps, it should have no sharp
bends. The latter property requires the curve to be
differentiable. In some cases it is even necessary
that higher derivatives exist. It also desirable that
the curve is of bounded variation. This means it
should stay somehow close to its control points.
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Interpolation with polynomials

Given (n + 1) control points, there is always an
interpolation polynomial of degree n or less that
passes exactly through the control points.

Disadvantages:

• For a larger number of points, the polynomial will
have a high degree leading to high computational
costs.

• Interpolation polynomials do not satisfy the locality
principle.
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Interpolation with polynomials

Disadvantages:

• Clipping for such polynomials is also not easy,
since a polynomial interpolating a given set of
control points can deviate arbitrarily from the
region around the control points.

• Polynomials of high degree tend to oscillate
between the control points.
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Interpolation with polynomials
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Interpolation polynomial of degree 5 passing through
the control points (0,0), (1,0), (2,0), (3,0), (4,1), (5,0):

f(x) =
1

24
· (−x5 + 11x4 − 41x3 + 61x2 + 30x

)
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Interpolation with polynomials
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The interpolation polynomial does not stay within the
convex hull of the control points.
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Bézier curves

i-th Bernstein polynomial of degree n (i ∈ {0, . . . , n}):

B
(n)
i (t) =

(
n

i

)
· (1 − t)n−i · ti (t ∈ [0, 1])

Properties:

B
(n)
i (t) ∈ [0, 1] for all t ∈ [0, 1],

n∑
i=0

B
(n)
i (t) = 1 for all t ∈ [0, 1].
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Bézier curves

Given (n + 1) control points b0, . . . ,bn ∈ IRp to define a
curve in IRp (for computer graphics p = 2 or p = 3):

x(t) =
n∑

i=0

bi · B(n)
i (t) (t ∈ [0, 1])

is called Bézier curve of degree n.

b0, . . . ,bn are called Bézier or control points.
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Bézier curves
• x(0) = b0 and x(1) = bn always hold.

The Bézier curve interpolates the first and the last
point.

In general, the curve does not pass through the
other control points.

• Furthermore:

ẋ(0) = n · (b1 − b0)

ẋ(1) = n · (bn − bn−1)

The tangent vector in the first point b0 points in the
direction of the point b1 and the tangent vector in
the last point bn points in the direction of the point
bn−1.
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Bézier curves

• Due to the properties of the Bernstein polynomials,
the Bézier curve is everywhere a convex
combination of the control points.

The Bézier curve stays within the convex hull of
the control points.

• Bézier curves are invariant under affine
transformations.

When an affine transformation is applied to the
control points, the resulting Bézier curve with
respect to the new control points coincides with
the transformed Bézier curve.
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Bézier curves
• Bézier curves are symmetric w.r.t. the control

points, i.e. the control points b0, . . . ,bn and
bn, . . . ,b0 lead to the same curve. The curve is
only passed through in the reverse direction.

• Using a convex combination of control points of
two sets of control points, the resulting Bézier
curve is the convex combination of the two
corresponding Bézier curves.

• b̃0, . . . , b̃n defines the Bézier curve x̃(t).
• b̂0, . . . , b̂n defines the Bézier curve x̂(t).
• αb̃0 + βb̂0, . . . , αb̃n + βb̂n defines the Bézier

curve x(t) = αx̃(t) + βx̂(t), given α + β = 1,
α, β ≥ 0.
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Bézier curves

• When all control points lie on a line or a parabola,
then the resulting Bézier curve will be the
corresponding line or parabola.

• Bézier curves also preserve certain geometrical
shape properties like monotonicity or convexity of
the control points.

Despite the nice properties of Bézier curves, they are
not suited for larger sets of control points since this
would lead to polynomials of high degree.
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B-splines

B-splines are composed of a number of Bézier curves
of lower polynomial degree – usually degree three or
four.

• For a sequence of n control points (for instance
n = 4) a Bézier curve is computed.

• The last control point of the sequence is used as
the starting point of the next sequence for the next
Bézier curve.
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B-splines

B-splines interpolate those control points where the
single Bézier curves are glued together.

• These junctions are also called knots.

• The other control points are called inner Bézier
points.
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B-splines

P P

P P
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5

B-spline with knots P1, P4, P7 and inner Bézier points
P2, P3, P5, P6

In order to avoid sharp bends at junctions between the
Bézier curves, each knot and its two neighbouring
inner Bézier points should be collinear.
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B-splines

By choosing the inner Bézier points properly, a
B-spline of degree n can be differentiated (n− 1) times.

Cubic B-splines are based on polynomials of degree
three and can therefore be twice differential when the
inner Bézier points are chosen correctly.
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B-splines
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B-splines

B-splines

• stay within the convex hull of the control points,
• are invariant under affine transformations,
• interpolate the first and last control point,
• are symmetric in the control points and
• satisfy the locality principle.
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B-splines

Perspective projection of a parametric curve in
homogeneous coordinates:
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B-splines

In Cartesian coordinates:

⎛
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Px(t)
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Result: Rational function in t.
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NURBS

Perspective projection of polynomials results in
rational functions.

B-splines are not invariant under arbitrary projections.

NURBS (non-uniform rational B-splines) are
generalisations of B-splines based on extensions of
Bézier curves to rational functions in the following
form.

x(t) =

∑n
i=0 wi · bi · B(n)

i (t)∑n
i=0 wi · B(n)

i (t)
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Efficient polynomial evaluation

In order to draw a parametric curve (or surface),
polynomials, usually of degree 3, have to be
evaluated.

For drawing a cubic curve, the parametric curve is
evaluated at equidistant values of the parameter t.

The corresponding points are computed and
connected by line segments.
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Efficient polynomial evaluation

Scheme of forward differences δ > 0:

∆f(t) = f(t + δ) − f(t)

i.e.
f(t + δ) = f(t) + ∆f(t)

or
fn+1 = fn + ∆fn

For f(t) = at3 + bt2 + ct + d, this leads to

∆f(t) = 3at2δ + t(3aδ2 + 2bδ) + aδ3 + bδ2 + cδ.
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Efficient polynomial evaluation

Applying a similar scheme of forward differences to
the computation of ∆f(t) yields

∆2f(t) = ∆(∆f(t)) = ∆f(t + δ) − ∆f(t)

= 6aδ2t + 6aδ3 + 2bδ2

∆fn = ∆fn−1 + ∆2fn−1
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Efficient polynomial evaluation

Applying a similar scheme of forward differences to
the computation of ∆2f(t) yields

∆3f(t) = ∆2f(t + δ) − ∆2f(t) = 6aδ3

Initialisation: Set t0 = 0.

f0 = d

∆f0 = aδ3 + bδ2 + cδ

∆2f0 = 6aδ3 + 2bδ2

∆3f0 = 6aδ3
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Efficient polynomial evaluation

t0 = 0 t0 + δ t0 + 2δ t0 + 3δ . . .

f0 → + → + → + . . .

∆f0
↗
→ + ↗

→ + ↗
→ + . . .

∆2f0
↗
→ + ↗

→ + ↗
→ + . . .

∆3f0
↗
→ ∆3f0

↗
→ ∆3f0

↗
→ ∆3f0 . . .

Scheme of forward differences for a polynomial of
degree 3

Computer Graphics: Modelling 3D objects – p.71/89



c©

Efficient polynomial evaluation

t = 0 t = 1 t = 2 t = 3 t = 4 . . .

3 → 6 → 15 → 36 → 75 . . .

3 ↗
→ 9 ↗

→ 21 ↗
→ 39 ↗

→ 63 . . .

6 ↗
→ 12 ↗

→ 18 ↗
→ 24 ↗

→ 30 . . .

6 ↗
→ 6 ↗

→ 6 ↗
→ 6 ↗

→ 6 . . .

Scheme of forward differences for the polynomial
f(t) = t3 + 2t + 3 with step width δ = 1.
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Freeform surfaces

s

t

P  (t)

P  (t)t=0

t=0.2

t=0.4

t=0.6

t=0.8

t=1

1

2

Freeform surfaces as parametric curves in two
parameters.
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Freeform surfaces

Use of Bézier surfaces instead of Bézier curves.

x(s, t) =
n∑

i=0

m∑
j=0

bij · B(n)
i (s) · B(m)

j (t)

• with s, t ∈ [0, 1] and
• (m + 1) × (n + 1) specified control points bij.
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Freeform surfaces
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Freeform surfaces

• The four outer points b00,b0m,bn0,bnm lie on the
surface, the other points generally not.

• The surface stays within the convex hull of the
control points.

• The curves with constant value s = s0 are Bézier
curves w.r.t. the control points

bj =
n∑

i=0

bij · B(n)
j (s0).

Analogously for curves with constant value t = t0.
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Freeform surfaces

Tesselations, as they are required in computer
graphics, approximate surfaces with triangles.

Bézier surfaces of degree n = 3 defined over a grid of
triangles:

x(t1, t2, t3) =
∑

i,j,k≥0:i+j+k=n

bijk · B(n)
ijk (t1, t2, t3)
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Freeform surfaces

with the Bernstein polynomials

B
(n)
ijk (t1, t2, t3) =

n!

i!j!k!
· ti1 · tj2 · tk3

where t1 + t2 + t3 = 1, t1, t2, t3 ≥ 0 and

i + j + k = n, i, j, k ∈ IN.
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Triangular grid
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Normal vectors for triangles

Equation of the plane E induced by a triangle:

Ax + By + Cz + D = 0.

The vector (A,B,C) is the (nonnormalised) normal
vector to the plane:

Let n = (nx, ny, nz)
� (nonnormalised) normal vector.

Let v = (vx, vy, vz)
� be a point in the plane E.
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Normal vectors for triangles

(x, y, z)� ∈ E ⇔ The vector connecting v and (x, y, z)�
lies in the plane, i.e. this vector is also orthogonal to
the normal vector.

0 = n� ·
(
(x, y, z)� − v

)
= nx · x + ny · y + nz · z − n� · v

Define A = nx, B = ny, C = nz and D = n� · v.
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Normal vectors for triangles

Given at least three (noncollinear) points P1,P2,P3 in
a plane, the normal vector can be calculated by the
cross product by

n = (P2 − P1) × (P3 − P1)

⎛
⎜⎝ x1

y1

z1

⎞
⎟⎠×

⎛
⎜⎝ x2

y2

z2

⎞
⎟⎠ =

⎛
⎜⎝ y1 · z2 − y2 · z1

z1 · x2 − z2 · x1

x1 · y2 − x2 · y1

⎞
⎟⎠

The value D is obtained by inserting one of the points
of the triangle: D = n� · P1
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Normal vectors for surfaces

s-tangent vector:

(
∂

∂s
x(s, t0)

)
s=s0

=

⎛
⎝ ∂

∂s

n∑
i=0

m∑
j=0

bij · B(n)
i (s) · B(m)

j (t0)

⎞
⎠

s=s0

=

m∑
j=0

B
(m)
j (t0) ·

n∑
i=0

bij ·
(

∂B
(n)
i (s)

∂s

)
s=s0
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Normal vectors for surfaces

t-tangent vector:

(
∂

∂t
x(s0, t)

)
t=t0

=

⎛
⎝ ∂

∂t

n∑
i=0

m∑
j=0

bij · B(n)
i (s0) · B(m)

j (t)

⎞
⎠

t=t0

=
n∑

i=0

B
(n)
i (s0) ·

m∑
j=0

bij ·
⎛
⎝∂B

(m)
j (t)

∂t

⎞
⎠

t=t0
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Normal vectors for surfaces

The two tangent vectors are parallel to the surface in
the point (s0, t0) and induce the tangent plane in this
point.

Normal vector to the surface at the point x(s0, t0):

∂

∂s
x(s, t) × ∂

∂t
x(s, t).
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Varying normal vectors for triangles

The normal vectors for the three vertices of a triangle
should be computed and stored as the normal vectors
to the original surface in the corresponding points.
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Normal vectors for surfaces

When modelling a surface in Java 3D with a
GeometryInfo object, the normal vectors will be
computed w.r.t. to the planar triangles.

By setting the crease angle, interpolation of normal
vectors of triangles can be enforced.

NormalGenerator ng =
new NormalGenerator();

ng.setCreaseAngle(alpha);
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Normal vectors for surfaces

The angle alpha specifies how much neighbouring
triangles may deviate from the ideal same plane in
order to apply interpolation of normal vectors.

The default value for alpha is zero (no interpolation).

(see NormalsForGeomArrays.java)
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Normal vectors for surfaces

Interpolated and noninterpolated normal vectors
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