
1

POLARMAP - Efficent Visualization of High
Dimensional Data

Frank Rehm, Frank Klawonn, and Rudolf Kruse

Abstract— Mulidimensional scaling provides low-dimensional
visualization of high-dimensional feature vectors. This is a very
important step in data preprocessing because it helps the user
to appraise which methods to use for further data analysis. But
a well known problem with conventional MDS is the quadratic
need of space and time. Beside this, a transformation of MDS
must be completely recomputed if additional feature vectors have
to be considered. The POLARMAP algorithm, presented in this
paper, learns a function, similar to NeuroScale, but with lower
computational costs, that maps high-dimensional feature vectors
to a 2-dimensional feature space. With the obtained function even
new feature vectors can be mapped to the target space.

I. INTRODUCTION

Visualization is an important step as a part of data pre-
processing, since the amount of data and their dimensionality
is growing fast. A visual assessment of a high dimensional
feature space is not possible without the help of appropriate
methods. Many such techniques have been published so far.
Some of these methods provide dimension reduction, the
use of icons or rearrangement of the dimensions. Principal
component analysis (PCA) is a very efficient method for
dimension reduction that unfortunately is not appropriate for
manifolds. Multidimensional scaling (MDS) [1], [5] is very
powerful, mapping data to a low-dimensional feature space.
Many modifications of MDS are published so far, but high
computational costs prevent their application to large datasets
[3], [9]. In recent years some research has been done in this
regard [2], [7], [10].

In this paper we present a new approach for dimen-
sion reduction. Our approach is a modification of published
MDSpolar. Instead of trying to preserve the distances between
feature vectors as for MDS, our algorithm transforms high-
dimensional feature vectors into 2-dimensional feature vectors
under the constraint that the length of each vector is preserved
and the angles between vectors approximate the corresponding
angles in the original space as good as possible. As an
improvement of MDSpolar, we will present an algorithm that
learns a function, that enables the user to map even new
feature vectors to the target space. Finally, we will describe a
technique to learn such mappings from data with O(n · logn)
space- and time-complexity.

This paper is organised as follows: in section II, we recall
the conventional MDS method. In section III, we will briefly
describe MDSpolar, which is the base algorithm for our
method, that we will present in section IV. In section V we
will discuss some experimental results. Finally, we conclude
with section VI.

II. MULTIDIMENSIONAL SCALING

Multidimensional scaling (MDS) is a method that estimates
the coordinates of a set of objects Y = {y1, . . . , yn} in a
feature space of specified (low) dimensionality that come from
data X = {x1, . . . , xn} ⊂ <p trying to preserve the distances
between pairs of objects. Different ways of computing dis-
tances and various functions relating the distances to the actual
data are commonly used. These distances are usually stored
in a distance matrix

Dx =
(

dx
ij

)

, dx
ij = ‖xi − xj‖ , i, j = 1, . . . , n.

The estimation of the coordinates will be carried out under
the constraint, that the error between the distance matrix Dx

of the dataset and the distance matrix Dy =
(

dy
ij

)

, dy
ij =

‖yi − yj‖ , i, j = 1, . . . , n of the corresponding transformed
dataset will be minimised.

Thus, different error measures to be minimised were pro-
posed, i.e. the absolute error, the relative error or a combina-
tion of both. A commonly used error measure, the so-called
Sammon’s mapping

E =
1

n
∑

i=1

n
∑

j=i+1

dx
ij

n
∑

i=1

n
∑

j=i+1

(

dy
ij − dx

ij

)2

dx
ij

describes the absolute and the relative quadratic error. To
determine the transformed dataset Y by means of minimising
error E a gradient descent method can be used. By means of
this iterative method, the parameters yk to be optimised, will
be updated during each step proportional to the gradient of the
error function E. Calculating the gradient of the error function
leads to

∂E

∂yk

=
2

n
∑

i=1

n
∑

j=i+1

dx
ij

∑

j 6=k

dy
kj − dx

kj

dx
kj

yk − yj

dy
kj

.

After random initialization for each projected feature vector yk

a gradient descent is carried out and the distances dy
ij as well

as the gradients
∂d

y

ij

∂yk
will be recalculated again. The algorithm

terminates when E becomes smaller than a certain threshold.
The complexity of MDS is O(c · n2), where c is the

(unknown) number of iterations needed for convergence of the
gradient descent scheme. Thus, MDS is usually not applicable
to larger datasets. Another problem of MDS is that it does not
construct an explicit mapping from the high dimensional space
to the lower dimensional space, but just tries to position the
lower dimensional feature vectors in a suitable way. Therefore,
when new data have to be considered, they cannot be mapped
directly to the lower dimensional space, but the whole MDS

2

procedure has to be repeated. NeuroScale [6] is a scheme that
tries to construct an explicit mapping for MDS in the form of
a neural network. However, it does not reduce the complexity
of MDS. In [3] a more efficient, but still iterative approach
was proposed making use of a step-by-step reduction by one
dimension based on determining the best projection in each
step.

In [8], a different algorithm is proposed, not needing any
iterative scheme and whose complexity can be reduced to O(n·
logn).

III. MDSpolar - MULTIDIMENSIONAL SCALING WITH

POLAR COORDINATES

Multidimensional scaling suffers from several problems.
Besides the quadratic need of memory, MDS, as described
above is solved by an iterative method, expensive with respect
to computation time. Furthermore, a completely new solution
must be recalculated, if a new object is added to the dataset.

For a p-dimensional dataset X MDSpolar determines
a 2-dimensional representation in polar coordinates Y =
{(l1, ϕ1), . . . , (ln, ϕn)}, where the length lk of the original
vector xk is preserved and only the angle ϕk has to be
optimised. This solution is defined to be optimal, if all angles
between pairs of data objects in the projected dataset Y
coincide as good as possible with the angles in the original
feature space X .

The use of polar coordinates in the space Y preserving
the length of each feature vector has various advantages. On
the one hand, the number of parameters to be optimised is
reduced, while the length presevervation already guarantees a
roughly correct placement of the feature vectors in the lower
dimensional space. On the other hand, this property will enable
us to reduce the complexity of the algorithm based on the
following idea. It is important to map feature vectors that are
close to each other in the original space X to close vectors Y ,
whereas feature vectors with a large distance between them
should also be mapped far away from each other. However,
for vectors with a large distance, it is not important that we
match the original distance exactly, but it is sufficient to make
sure that they will not be mapped close to each other. When
the length of two vectors differs significantly, we already
guarantee a certain distance between the projected vectors,
even if the angle between them is not matched at all. Using this
property it will not be necessary to consider the angles between
all vectors. For those vectors with a significant difference in
length, we can neglect the angle.

A straight forward definition of an objective function to be
minimised for this problem, taking all angles into account for
the moment, would be

E =

n
∑

k=2

k−1
∑

i=1

(|ϕi − ϕk| − ψik)2 (1)

where ϕk is the angle of yk, ψik is the positive angle between
xi and xk, 0 ≤ ψik ≤ π. E is minimal, if the difference
of the angle of each pair of vectors of dataset X and the
corresponding two vectors in dataset Y is zero. The absolute
value is chosen in equation (1) because the order of the

minuends can have an influence on the sign of the resulting
angle. As discussed in [8] equation (1) is not suitable for
finding an analytical solution or a gradient descent technique,
since functional E is not differentiable.

In the mentioned paper it is proposed to minimise the
following functional instead

E =

n
∑

k=2

k−1
∑

i=1

(ϕi − ϕk − ψik)2. (2)

The problem, that arises with equation (2) is, that a simple
minimization would not lead to acceptable results. This is the
case because an angle between yi and yk, that might perfectly
match the angle ψik, ϕi − ϕk can either be ψik or −ψik.
Therefore, when minimising functional (2) in order to actually
minimise functional (1), one can take the freedom to choose
whether we want the term ϕi − ϕk or the term ϕk − ϕi to
appear in (2).

When we are free to choose between ϕi −ϕk and ϕk −ϕi

in equation (2), we take the following into account

(ϕk −ϕi−ψik)2 = (−(ϕk −ϕi−ψik))2 = (ϕi−ϕk +ψik)2.

Therefore, instead of exchanging the order of ϕi and ϕk, one
can choose the sign of ψik, leading to

E =

n
∑

k=2

k−1
∑

i=1

(ϕi − ϕk − aikψik)2 (3)

with aik = {−1, 1}. In order to solve this modified optimiza-
tion problem of equation (3) we take the partial derivatives of
E, yielding

∂E

∂ϕk

= −2

k−1
∑

i=1

(ϕi − ϕk − aikψik). (4)

To fulfil the necessary condition for a minimum one sets
equation (4) equal to zero and solves it for the ϕk-values,
which leads to

ϕk =

∑k−1

i=1
ϕi −

∑k−1

i=1
aikψik

k − 1
. (5)

Thus, on the one hand, neglecting that we still have to choose
aik, our solution is described by a system of linear equations
which means its solution can be calculated directly without
the need of any iteration procedure. On the other hand, as
described above, one has to handle the problem of determining
the sign of the ψik in the form of the aik-values. A greedy
strategy with O(n · logn) for this is also proposed in [8].

IV. POLARMAP

As an extension of MDSpolar we propose in this work
a method that learns a function f that provides for any p-
dimensional feature vector xk the corresponding angle ϕk that
is needed to map the feature vector to a 2-dimensional feature
space. As for MDSpolar the length of vector xk is preserved.
With the obtained function also angles for new feature vectors
can be computed. A 2-dimensional scatter plot might be not
suitable, when visualising mappings for large datasets. With

3

the computed function it is simple to produce information
murals, which allow more comprehensive visualizations [4].

Analogous to functional (1) we define our objective function
E as follows:

E =

n−1
∑

i=1

n
∑

j=i+1

(|f(xi)− f(xj)| − ψij)
2
. (6)

E is minimal, if, for each pair of feature vectors, the
difference of the two angles, which are computed by the
respective function f is equal to the measured angle of the
two vectors in the original space. Since functional (6) is
not differentiable, we propose analogous to the procedure for
MDSpolar to minimise the following differentiable objective
function

Ẽ =
n−1
∑

i=1

n
∑

j=i+1

(f(xi)− f(xj)− ψij)
2 . (7)

Since according to our definition ψij ≥ 0, it is obvious
that Emin ≤ Ẽmin. Thus, a minimum of Ẽ might not be the
minimum of E, but it can be used as a conservative estimation.
Albeit, f might be any function, we discuss in this work the
following function style

f(x) = aT · x̃, (8)

where a is vector whose components are the parameters to be
optimised and x̃ is feature vector x itself or a modification of
x. In the simplest case we use

x̃ = x (9)

a = (a1, a2, . . . , ap)
T

where f describes in fact the linear combination of x.
Assuming that a certain component of x affects the transfor-

mation not linearly but quadratically or exponentially, it may
be useful to compute some additional components from x with
the objective to gain more coefficients, which could improve
the transformation.

An example for quadratic components derived from x is
described by the following choice:

x̃ = (x1, . . . , xp, x1x1, . . . , x1xp,

x2x2, . . . , x2xp, . . . , xpxp)
T (10)

a = (a1, . . . , ap, a11, . . . , a1p,

a22, . . . , a2p, . . . , app)
T . (11)

Replacing term f by the respective function we obtain

Ẽ =

n−1
∑

i=1

n
∑

j=i+1

(

aT x̃i − aT x̃j − ψij

)2
(12)

=

n−1
∑

i=1

n
∑

j=i+1

(

aT (x̃i − x̃j)− ψij

)2
. (13)

For a better readability we replace x̃i − x̃j by x̃ij and obtain

Ẽ =

n−1
∑

i=1

n
∑

j=i+1

(

aT x̃ij − ψij

)2
. (14)

Algorithm 1 Greedy POLARMAP
X̃ = {x̃1, x̃2, . . . , x̃n}
let Ψn×n be a matrix with the pairwise angles ψij between all (xi, xj)
let Θn×n be a matrix where θij = 0, ∀i, j

a← solve

(

∑n−1

i=1

∑n

j=i+1

(

aT x̃ij − ψij

)

x̃ij = 0

)

compute Ẽ
repeat
Ẽ′ ← Ẽ
for i = 1 to n− 1 do

for j = i+ 1 to n do
if θija

T x̃ij < 0 then
θij ← 1− θij

end if
end for

end for
a← solve

(

∑n−1

i=1

∑n

j=i+1

(

θija
T x̃ij − ψij

)

x̃ij = 0

)

compute Ẽ
until Ẽ′ ≤ Ẽ

The derivative of Ẽ w.r.t. a can by easily obtained

∂Ẽ

∂a
= 2

n−1
∑

i=1

n
∑

j=i+1

(

aT x̃ij − ψij

)

x̃ij . (15)

Setting equation (15) equal to zero to fulfil the necessary
condition for a minimum we end up with

0 =

n−1
∑

i=1

n
∑

j=i+1

(

aT x̃ij − ψij

)

x̃ij (16)

which results in a system of linear equations in a =
(a1, a2, . . . , ap)

T .
As mentioned already, angles computed by f(xi)− f(xj),

might be positive or negative, while ψij is always positive
by definition. Thus, in the case where aT x̃ij < 0 holds, Ẽ
might be minimal, but our original objective function E might
not be minimal. Hence, replacing x̃ij by −x̃ij in this case
might lower the error. Consequently, finding the appropriate
sign for x̃ij is a crucial step when minimising Ẽ. For common
datasets determining the exact solution for this problem is too
expensive regarding computation time. In the following section
we describe a greedy strategy that approximates a relaxation
of this problem.

A. A Greedy Algorithm for the Approximation of POLARMAP

Determining the sign for each x̃ij requires exponential need
of computation time in the number of feature vectors. For real-
world datasets this is unacceptable. When relaxing the problem
in favour to an approximation of the exact solution one can
reduce the time complexity down to O(n·log n). In this section
we begin with a very fast greedy algorithm that finds rather
poor approximations of the exact solution, which are suitable
for initialization purposes for more complex approximation
schemes.

In the following, we use a n × n-matrix Θ with θij = 0
when the sign for x̃ij is positive and θij = 1 when the
sign for x̃ij is negative. As algorithm (1) shows, this greedy
algorithm changes first these signs for the respective x̃ij

when θija
T x̃ij < 0 is satisfied and computes afterwards the

updated components of a by solving the revised system of

4

Algorithm 2 Greedy POLARMAP
X̃ = {x̃1, x̃2, . . . , x̃n}
let Ψn×n be a matrix with the pairwise angles ψij between all (xi, xj)
let Θn×n be a matrix where θij = 0, ∀i, j

a← solve

(

∑n−1

i=1

∑n

j=i+1

(

aT x̃ij − ψij

)

x̃ij = 0

)

compute Ẽ
repeat
Ẽ′ ← Ẽ
for i = 1 to n− 1 do

for j = i+ 1 to n do
if θija

T x̃ij < 0 then
θij ← 1− θij

a← solve

(

∑n−1

i=1

∑n

j=i+1

(

θija
T x̃ij − ψij

)

x̃ij = 0

)

compute Ẽ
GOTO: check

end if
end for

end for
LABEL: check

until Ẽ′ ≤ Ẽ

linear equations. Usually, this algorithm converges after a few
iterations. This approach is very efficient and simple at the
same time.

Algorithm (2) shows another greedy algorithm. Always,
when θij changes, a will be recomputed immediately and the
next iteration starts. Θ changes during one iteration at most in
one point – namely θij , otherwise the algorithm ends without
changing any θ. Thus, the algorithm greedily changes the first
θij , when condition θija

T x̃ij < 0 is satisfied. From this it
follows that the algorithm only finds a local minimum of Ẽ,
which is the reason why we speak about a relaxation of the
problem.

It is advisable to initialise Θ with algorithm (1). Otherwise,
lots of iterations will be needed until convergence. With
algorithm (2) very accurate transformations will be found –
indeed computational costs are fairly high. In the following
subsection, we describe a technique that reduces the compu-
tation cost drastically.

B. Generalization of POLARMAP

Although the above greedy algorithm is efficient, for large
datasets too many iterations will be needed until convergence.
Its time and space complexity are also quadratic in the number
of data, so that it is not applicable to larger datasets. In
order to evaluate the objective function, all x̃ij - and all ψij -
values must be computed in advance, causing already the
quadratic complexity. The greedy algorithm must also compute
many (again quadratic in the number of data) scalar products
aT x̃ij that contribute not or only little to the quality of the
transformation. Thus, if we had a measure to decide whether
an adaptation of θij might be target-oriented or not, we
could save computation time by skipping the computation of
nonessential scalar products.

As a matter of fact, the computation of the error Ẽ accounts
for the greatest part of the computation resources. In the fol-
lowing we will discuss the problem how to reduce computation
time due to dropping hopefully dispensable terms.

As for MDSpolar we provide for POLARMAP a general-
ization by introducing weights wij for our objective function
Ẽ, that results in

Ẽ =

n−1
∑

i=1

n
∑

j=i+1

wij

(

aT x̃ij − ψij

)2
. (17)

Again, we obtain the following system of linear equations after
taking partial derivatives of Ẽ

∂Ẽ

∂a
= 2

n−1
∑

i=1

n
∑

j=i+1

wij

(

aT x̃ij − ψij

)

x̃ij (18)

and setting equation (18) to zero to fulfil the necessary
condition for a minimum which leads to

0 =

n−1
∑

i=1

n
∑

j=i+1

wij

(

aT x̃ij − ψij

)

x̃ij . (19)

The introduction of weights opens new ways to define
and handle the objective function. We cannot only assign
a weight to individual errors, controlling in this way how
much influence single errors have on the final result. We can
also consider relative instead of absolute errors. For example,
choosing wij = 1/ψ2

ij corresponds to relative MDSpolar.
The difference between the angle in the original space and
the corresponding angle in the target space, will not account
directly to the computation of a but weighted with ψij .

Weights can be chosen in such a way, that only feature
vectors, which are similar to a certain degree will be taken
into account, when computing θij .

Since our transformation preserves the length of each data
vector, it is guaranteed that vectors with a large difference in
length will not be mapped to close points in the plane, even
though their angle might not be matched at all. Therefore,
we propose to use a small or even zero-weight for pairs of
data vectors that differ significantly in their length. The weight
could be defined as a function of the difference between the
length values li and lj of two data vectors:

wij = w(li, lj) = w(z). (20)

We can use the absolute difference for z, i.e.

z = za = |li − lj | .

This might be useful if certain information about the structure
of the data is known in advance. The argument zr for relative
weighting functions

z = zr = min

{

li
lj
,
lj
li

}

might be useful if a certain threshold can be provided. To
decrease the computational complexity, weights should be
chosen in such a way, that for feature vectors with a certain
(large) distance the respective weights become zero. The
following function describes a simple weighting function that
behaves as just mentioned:

w(zr) =







√

(

zr−ϑ
1−ϑ

)

, if zr ≥ ϑ

0 , otherwise
(21)

where ϑ ∈ [0, 1].

5

Algorithm 3 Greedy POLARMAP
X̃ = {x̃1, x̃2, . . . , x̃n}
sort X
set maxbinsize
initialise ni

let Ψn×n be a matrix with the pairwise angles ψij between all (xi, xj)
let Θn×n be a matrix where θij = 0, ∀i, j

a← solve

(

∑n−1

i=1

∑ni

j=i+1
wij

(

aT x̃ij − ψij

)

x̃ij = 0

)

compute Ẽ
repeat
Ẽ′ ← Ẽ
for i = 1 to n− 1 do

for j = i+ 1 to ni do
wij ← w(li, lj)
if wij > c then
ni ← j − 1
GOTO: check1

end if
if θija

T x̃ij < 0 then
θij ← 1− θij

a← solve

(

∑n−1

i=1

∑ni

j=i+1
wij

(

θija
T x̃ij − ψij

)

x̃ij = 0

)

compute Ẽ
GOTO: check

end if
end for
LABEL: check1

end for
LABEL: check

until Ẽ′ ≤ Ẽ

With the threshold ϑ one can control indirectly the fraction
of the data, that will be used to affect a. Thus, small values
for ϑ lead to many non-zero weights, which comes along
with high computational complexity. Values near 1 for ϑ
lead to a quickly decreasing weighting function and to low
computational complexity, respectively. Any other function
can be used as weighting function.

For reasons of an easy implementation and low computa-
tional complexity a decreasing function which leads to a more
or less large fraction of zero weights should be used. For an
efficient implementation it is useful to sort the feature vectors
by means of their length. Note that this can be achieved with
O(n · logn) time complexity.

It is obvious, when the feature vectors are sorted in that
way, weights for a given i are decreasing while incrementing
j because the length of x̃ij is increasing. Therefore, the
inner for-loop in algorithm (2) can be interrupted if w(z)
becomes zero for the first time. Since the weighting function
is decreasing, a further iteration would lead to zero, too. In
cases where clusters with a large amount of data are expected
in a dataset, it might be rather useful to limit the maximum
number of pairs to consider for the calculation of a and θ, than
setting a larger threshold. It might also be useful to reduce ϑ
locally, when only few vectors satisfy the condition in equation
(21).

With a limitation of the number of weights w > 0 and
a moderate ϑ at the same time, it can be achieved that the
number of weights considered for the calculation of ϕk does
not differ too much for different ϕk and limited computation
time can be guaranteed.

Algorithm (3) is a modification of the previous algorithm
regarding the mentioned aspects. Beneath sorting X , the inner

(a) Cube Dataset

(b) Coil Dataset

Fig. 1. Synthetic Datasets

for-loop now contains the condition to break the loop if the
weighting function indicates, that for the given i no further
x̃ij has to be considered.

Note, that we reduce computation time drastically, if we
choose an appropriate weighting function. Instead of O(c ·n2)
with c as number of iterations, we obtain O(c · n ·m) where
m is the maximum bin size. The bin size for a feature vector
xi refers to the number of non-zero weights wij . With this
bin-strategy we do not only reduce the number of pairs x̃ij

to be considered, much more important is the effect on the
computation of a and Ẽ. With algorithm (3) we introduced
the array ni, i = 1 . . . n, that is initialised with ni = min(i+
maxbinsize, n), ∀i. When computing a and Ẽ, it is no longer
necessary to sum up the difference between the target angle
and ψij for vectors which are out of the bin, since it will be
weigthed with wij which is zero.

Of course, if the bin size is only limited by a weighting
function that leads only to few weights wij = 0, the gain of
computation time tends to zero.

V. RESULTS

In this section, we discuss the results of POLARMAP on
two synthetic 3-dimensional datasets. Figure 1 shows these

6

(a) Algorithm 1 (x̃ = x) (b) Algorithm 1 (x̃ according to eq.(10))

(c) Algorithm 2 (x̃ = x) (d) Algorithm 3 (x̃ = x)

Fig. 2. Results on Cube Dataset

datasets. The cube dataset (a) is about a dataset, where
data points scatter around the corners of an imaginary 3-
dimensional cube. Thus, the cube dataset contains eight
well separated clusters. The coil dataset (b) contains a 1-
dimensional manifold comparable to a serpentine. Further-
more, we apply POLARMAP on the well known iris dataset.
A Sammon mapping of the 4-dimensional iris dataset is shown
in figure 4 (a). We split this dataset into a training dataset and
a test dataset to demonstrate the capability POLARMAP to
generalise. The wine dataset results from a chemical analysis
of wines grown in the same region in Italy but derived from
three different cultivars. The analysis determined the quantities
of 13 constituents found in each of the three types of wines.
A Sammon mapping of the 13-dimensional wine dataset is
shown in figure 4 (c).

Our tests have shown, that algorithm (1) is a good initial-
ization for algorithm (2) and (3). Since algorithm (2) and (3)
compute the actual coefficients immediately after changing one
sign, without initialization, many iterations would be needed
for large datasets until convergence. For that reason it is
advisable to initialise algorithm (2) and (3) with algorithm (1).
Note that algorithm (1) does not have quadratic complexity,
when we introduce corresponding weights leading to moderate

bin sizes. The following transformations result from this
procedure.

Figure 2 shows some results on the cube dataset. The greedy
algorithm (1) converges already after three iterations when
using x̃ according to equation (9) (subfigure (a)). Similarly,
greedy algorithm (1) converges after five iterations, when using
x̃ according to equation (10) (subfigure (b)). For the relatively
simple cube dataset it is not of much importance, to generate
additional components for x̃ and additional components a
respectively. Subfigure (c) and (d) result from applying algo-
rithm (2) and algorithm (3) respectively. These transformations
are based on the x̃ = x cube dataset. Obviously, a linear
function with three coefficients a is sufficient to map the cube
dataset to a 2-dimensional feature space. The eight clusters
are clearly separated in the target space, too. Using weights
according to algorithm (3) and the following weighting func-
tion

w(za) =

{

1 if za < c
0 otherwise

with c = 35 leads to the transformation shown in subfigure
(d). The results with algorithm (2) and algorithm (3) are quite
similar for the cube dataset, even though algorithm (3) needs
less computation time.

7

(a) Coil Dataset, Greedy 1 (b) Coil Dataset, Greedy 1, eq. (10)

(c) Coil Dataset, Bins, absolute (d) Coil Dataset, Bins, relative

Fig. 3. Results on Coil Dataset

The results for the coil dataset are shown in figure 3.
Again, subfigure (a) results from algorithm (1) with x̃ = x
and subfigure (b) results from x̃ according to equation (10).
The results for both representations of the dataset are similar
regarding a majority of the characteristics. Algorithm (1)
converges after few iterations for both datasets. Subfigure (c)
and (d) show the results of algorithm (3) on the dataset (x̃ = x)
without initialising Θ other than zero. Subfigure (c) results
from using a bin size of 10. Subfigure (d) results from using
wij = 1/ψ2

ij for all wij inside the bin of size 10. Chosing
maximum bin size 10 leads to the fact, that no sign will
be changed and thus the algorithm stops after one iteration.
Designing the weighting function such that a larger bin size
has to be taken into account, one can observe that already
after only three signs have changed, the transformation gets
the major characteristics as the one in subfigure (a). Even
if this transformation is very simple, some requirements, i.e.
preserving distances between feature vectors, are fulfilled.

Since a function is learned by POLARMAP it becomes
possible to map new vectors in the target space. To demon-
strate the power of POLARMAP, we applied it on the well

known iris dataset. Figure 4 (a) shows the Sammon mapping
of the iris dataset. The different classes are represented by
different symbols. Subfigure (b) shows the transformation with
POLARMAP. For this example, the iris dataset is split into a
training dataset and a test dataset. The training dataset consists
of 80% of each class. This part of the data is used to learn
the desired coefficients. The test dataset, that contains the
remaining 20% of the data, is mapped to the target space by
means of the learned function. The mapping of the training
dataset is plotted with the different symbols again, each for
the corresponding class. The mapped feature vectors of the
test dataset are additionally marked with a circle around
the corresponding symbol. As the figure shows, the learned
function maps the feature vectors in the right way.

Figure 4 (c) shows the Sammon mapping of the wine
dataset. The three classes are marked with different symbols
again (class 1: +, class 2: 2, class 3: 3!). Based on the
Sammon mapping, the three classes cannot be separated lin-
early. Notably class 2 and class 3 cannot be distinguished.
The transformation of the wine dataset with POLARMAP
is shown in figure 4 (d). Both transformations are similar

8

(a) Iris Dataset, Sammon Mapping (b) Iris Dataset, Bins

(c) Wine Dataset, Sammon Mapping (d) Wine Dataset, Bins

Fig. 4. Results on Iris Dataset and Wine Dataset

regarding the scattering of the different classes. The mapping
of the new feature vectors (marked with a circle around the
respective symbol) meets the expectations from the mapping
of the training dataset.

Figure 5 shows the effect of the bin size on the trans-
formation accuracy according to the POLARMAP criterion
(solid line) and the Sammon criterion (dashed line) on the
wine dataset. Both measures indicate a better mapping with
increasing bin size at the beginning. This is what we expect
indeed. For larger bin sizes the error is increasing slightly
again. The probability to get stuck in a local minimum seems
to increase with larger bin sizes. As the figure reveals as
well, the error is not decreasing linearly. Thus, using the
bin technique, the user has to make the compromise between
transformation quality and computation/space complexity. In
many cases it may be sufficient to use a small bin size to get an
overall view of the data. As for the wine dataset, the error can
be reduced drastically, investing resources in the consideration
of a higher bin size.

VI. CONCLUSION

In this paper we have presented a powerful data visual-
ization method. Under the constraint to preserve the length
of feature vectors, it was our aim to find a mapping that
projects feature vectors from a high-dimensional to the plane
in such a way that we minimise the errors in the angles
between the mapped feature vectors. The solution is described
by a system of linear equations. To overcome the problem
in high-dimensional feature spaces, that no differentiation
between positive and negative angles can be made as for a
2-dimensional feature space, three algorithms are provided to
obtain the desired signs for the angles. With the bin-algorithm,
we presented an algorithm, that lowers the computation com-
plexity down to O(n · logn).

With the function, learned by means of POLARMAP it is
possible to map even new feature vectors to the target space
without any extra costs. Experimental results demonstrate
the power of the approach. For very large datasets, it is
also possible to construct a mapping from a sample of a
reasonable size with acceptable computation time and then
project the whole datasets using the constructed mapping. For

9

Fig. 5. The Effect of the Bin Size

large datasets it is also recommended, not to display them as
a scatter plot with a dot or symbol for each feature vectors,
but to use density-based scatter plots [4] that our method also
supports.

REFERENCES

[1] Borg, I., Groenen, P.: Modern Multidimensional Scaling : Theory and
Applications. Springer, Berlin (1997).

[2] Chalmers, M.: A Linear Iteration Time Layout Algorithm for Visualising
High-Dimensional Data. Proceedings of IEEE Visualization 1996, San
Francisco, CA (1996), 127–132.

[3] Faloutsos, C., Lin, K.: Fastmap: A Fast Algorithm for Indexing, Data-
Mining and Visualization of Traditional and Multimedia Datasets. Pro-
ceedings of ACM SIGMOD International Conference on Management of
Data, San Jose, CA (1995), 163–174.

[4] Jerding, D.F., Stasko, J.T.: The information mural: a technique for
displaying and navigating large information spaces. Proceedings of the
1995 IEEE Symposium on Information Visualization, (1995), 43–50.

[5] Kruskal, J.B., Wish, M.: Multidimensional Scaling. SAGE Publications,
Beverly Hills (1978).

[6] Lowe, D., Tipping, M.E.: Feed-Forward Neural Networks Topographic
Mapping for Exploratory Data Analysis. Neural Computing and Appli-
cations, 4, (1996), 83–95.

[7] Morrison, A., Ross, G., Chalmers, M.: Fast Multidimensional Scaling
through Sampling, Springs and Interpolation. Information Visualization
(2003) 2, 68–77.

[8] Rehm, F., Klawonn, F., Kruse, R., MDSpolar - A New Approach for Di-
mension Reduction to Visualize High Dimensional Data. In: Advances in
Intelligent Data Analysis VI: 6th International Symposium on Intelligent
Data Analysis, IDA 2005, Springer, (2005), 316–327.

[9] Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Frame-
work for Nonlinear Dimensionality Reduction. Science, 290, (2000),
2319–2323.

[10] Williams, M., Munzner, T.: Steerable, Progressive Multidimensional
Scaling. 10th IEEE Symposium on Information Visualization, Austin, TX
(2004), 57–64.

