
MDSpolar: A New Approach for Dimension

Reduction to Visualize High Dimensional Data

Frank Rehm1, Frank Klawonn2, and Rudolf Kruse3

1 German Aerospace Center, Braunschweig, Germany
2 University of Applied Sciences, Braunschweig/Wolfenbuettel, Germany

3 Otto-von-Guericke-University of Magdeburg, Germany

Abstract. Many applications in science and business such as signal
analysis or costumer segmentation deal with large amounts of data which
are usually high dimensional in the feature space. As a part of prepro-
cessing and exploratory data analysis, visualization of the data helps to
decide which kind of method probably leads to good results. Since the
visual assessment of a feature space that has more than three dimensions
is not possible, it becomes necessary to find an appropriate visualization
scheme for such datasets. In this paper we present a new approach for
dimension reduction to visualize high dimensional data. Our algorithm
transforms high dimensional feature vectors into two-dimensional feature
vectors under the constraints that the length of each vector is preserved
and that the angles between vectors approximate the corresponding an-
gles in the high dimensional space as good as possible, enabling us to
come up with an efficient computing scheme.

1 Introduction

Many applications in science and business such as signal analysis or costumer
segmentation deal with large amounts of data which are usually high dimensional
in the feature space.

Before further analysis or processing of data is carried out with more so-
phisticated data mining techniques, data preprocessing and exploratory data
analysis is an important step. As a part of this process, visualization of the data
helps to decide which kind of method probably leads to good results. Since the
visual assessment of a feature space that has more than three dimensions is not
possible, it becomes necessary to find an appropriate visualization scheme for
such datasets.

The general data visualization problem we consider here is to map high di-
mensional data to a two-dimensional plane – usually a computer screen – trying
to preserve as many properties or as much information of the high dimensional
data as possible. In other words, we have to face a dimension reduction problem.
A very simple approach is to look at scatter plots obtained from projections
to two selected features. However, each scatter plot will only contain the in-
formation of the two chosen features and with a high number of features it is

infeasible to inspect the scatter plots resulting from all possible combinations
of two features. Before finding a mapping of the high dimensional data to the
two-dimensional plane, an error or quality measure must be defined in order
to evaluate the suitability of such a mapping. Principal component analysis is
one possible choice, producing an affine transform that preserves as much of the
variance in the data as possible. However, instead of the variance, other criteria
like the distance between the single data vectors might be of higher interest.
Multidimensional scaling (see for instance [1, 4]) is a technique that aims at pre-
serving the distances between the data, when mapping them to lower dimensions.
Although multidimensional scaling and related approaches yield promising and
interesting results, they suffer from high computational needs concerning mem-
ory as well as computation time. In recent years some research has been done in
this regard [2, 6, 7].

In this paper we present a new approach for dimension reduction to visualize
high dimensional data. Instead of trying to preserve the distances between fea-
ture vectors directly, our algorithm transforms high dimensional feature vectors
into two-dimensional feature vectors under the constraints that the length of
each vector is preserved and that the angles between vectors approximate the
corresponding angles in the high dimensional space as good as possible, enabling
us to come up with an efficient computing scheme. After a brief review of the
concept of multidimensional scaling and related approaches, we explain the the-
oretical background of our approach and discuss some illustrative examples in
the end of the paper.

2 Multidimensional Scaling

Multidimensional scaling (MDS) is a method that estimates the coordinates of a
set of objects Y = {y1, . . . , yn} in a feature space of specified (low) dimensionality
that come from data X = {x1, . . . , xn} ⊂ <p trying to preserve the distances
between pairs of objects. Different ways of computing distances and various
functions relating the distances to the actual data are commonly used. These
distances are usually stored in a distance matrix

Dx =
(

dxij
)

, dxij = ‖xi − xj‖ , i, j = 1, . . . , n.

The estimation of the coordinates will be carried out under the constraint, that
the error between the distance matrix Dx of the dataset and the distance matrix
Dy =

(

dyij
)

, dyij = ‖yi − yj‖ , i, j = 1, . . . , n of the corresponding transformed
dataset will be minimized.

Thus, different error measures to be minimized were proposed, i.e. the abso-
lute error, the relative error or a combination of both. A commonly used error
measure, the so called Sammon’s mapping

E =
1

n
∑

i=1

n
∑

j=i+1

dxij

n
∑

i=1

n
∑

j=i+1

(

dyij − dxij
)2

dxij

describes the absolute and the relative quadratic error. To determine the trans-
formed dataset Y by means of minimizing error E a gradient descent method
can be used. By means of this iterative method, the searched parameter yk, will
be updated during each step proportional to the gradient of the error function
E. Calculating the gradient of the error function leads to

∂E

∂yk
=

2
n
∑

i=1

n
∑

j=i+1

dxij

∑

j 6=k

dykj − dxkj
dxkj

yk − yj
dykj

.

After random initialization, for each projected feature vector yk a gradient de-

scent is carried out and the distances dyij as well as the gradients
∂d

y

ij

∂yk
will be

recalculated again. The algorithm terminates when E becomes smaller than a
certain threshold.

The complexity of MDS is O(c · n2), where c is the (unknown) number of
iterations needed for convergence of the gradient descent scheme. Thus MDS is
usually not applicable to larger datasets. Another problem of MDS is that it
does not construct an explicit mapping from the high dimensional space to the
lower dimensional space, but just tries to position the lower dimensional feature
vectors in a suitable way. Therefore, when new data have to be considered, they
cannot be mapped directly into the lower dimensional space, but the whole MDS
procedure has to be repeated. NeuroScale [5] is a scheme that tries to construct
an explicit mapping for MDS in the form of a neural network. However, it does
not reduce the complexity of MDS. In [3] a more efficient, but still iterative
approach was proposed making use of a step-by-step reduction by one dimension
based on determining the best projection in each step.

In this paper, we propose a different algorithm, not needing any iterative
scheme and whose complexity can be reduced to O(n · logn).

3 Multidimensional Scaling with Polar Coordinates

Multidimensional scaling suffers from several problems. Besides the quadratic
need of memory, MDS, as described above is solved by an iterative method,
expensive with respect to computation time. Furthermore, a completely new
solution must be calculated, if a new object is added to the dataset.

With MDSpolar we present a new approach to find a two-dimensional pro-
jection of a p-dimensional dataset X . MDSpolar tries to find a representation in
polar coordinates Y = {(l1, ϕ1), . . . , (ln, ϕn)}, where the length lk of the original
vector xk is preserved and only the angle ϕk has to be optimized. Thus, our
solution is defined to be optimal if all angles between pairs of data objects in the
projected dataset Y coincide as good as possible with the angles in the original
feature space X .

A straight forward definition of an objective function to be minimized for
this problem would be

E =

n
∑

k=2

k−1
∑

i=1

(|ϕi − ϕk| − ψik)
2 (1)

where ϕk is the angle of yk, ψik is the positive angle between xi and xk, 0 ≤ ψik ≤
π. E is minimal, if the difference of the angle of all pairs of vectors of dataset X
and the corresponding two vectors in dataset Y are zero. The absolute value is
chosen in equation (1) because the order of the minuends can have an influence
on the sign of the resulting angle. The problem with this notation is that the
functional E is not differentiable, exactly in those points we are interested in,
namely, where the difference between angles ϕi and ϕk becomes zero. Another
intuitive approach would be

E =

n
∑

k=2

k−1
∑

i=1

((ϕi − ϕk)
2 − ψ2

ik)
2. (2)

In this case the derivative can be determined easily, however, resulting in a
system of nonlinear equations for which no analytical solution can be provided.

In order to overcome these difficulties, we propose an efficient method that
enables us to compute an approximate solution for a minimum of the objective
function (1) and related ones. In a first step we ignore the absolute value in (1)
and consider

E =

n
∑

k=2

k−1
∑

i=1

(ϕi − ϕk − ψik)
2 (3)

instead. When we simply minimize (3), the results will not be acceptable. Al-
though the angle between yi and yk might perfectly match the angle ψik, ϕi−ϕk
can either be ψik or −ψik. Since we assume that 0 ≤ ψik holds, we always have
(|ϕi−ϕk|−ψik)

2 ≤ (ϕi−ϕk−ψik)
2. Therefore, finding a minimum of (3) means

that this is an upper bound for the minimum of (1). Therefore, when we min-
imize (3) in order to actually minimize (1), we can take the freedom to choose
whether we want the term ϕi −ϕk or the term ϕk −ϕi to appear in (3). Before
we discuss techniques to minimize (3) with the freedom of reordering, we have
to preprocess the data in order to fit them best to our approach.

3.1 Data Preprocessing

The following figure illustrates an important problem by means of a simple
dataset. The table next to the graphics contains the values of the angles between
all three feature vectors.

ψ x1 x2 x3

x1 0 135 135
x2 135 0 90
x3 135 90 0

Even though, this feature space has only two dimensions and therefore an exact
reproduction of the dataset should be possible, this cannot be achieved with-
out additional preprocessing. Since we only want to preserve the angles between
data vectors, it is obvious that any solution will be invariant with respect to
rotation of the dataset. Thus, assuming without loss of generality ϕ1 = 0 en-
forcing ϕ2 = 135, then according to our objective function (1) ϕ3 = 180 leads
to the optimal solution, which is obviously not what we are looking for. This
problem is caused by the fact that ψik is defined as a positive angle which sat-
isfies ψik ≤ 180◦. This problem can be solved easily by translating all feature
vectors into the first quadrant. More generally, for a higher dimensional dataset
we apply a translation that makes all components of data vectors non-negative.
For this we only have to determine for each component the largest negative value
occurring in the dataset and using this as a positive value of the corresponding
component of the translation vector. Note that, when the dataset is normalized,
i.e. all components are between 0 and 1, no further preprocessing is required.

Thus, doing this kind of preprocessing, we actually do not preserve the orig-
inal data properties but those after the transformation. Of course, rotation and
translation is not changing any inter-data properties. The translation vector has
to be stored so that for incremental adding of new objects the transformation
can be performed accordingly. For most of the new objects the transformation
will be as requested. It may occur that for new objects which have one or more
extreme components the translation will not be sufficient to eliminate the neg-
ative components. In such a case, which is rather rare if the previous data is
representative, the mapping of the respective object is still working, but not
that exact sometimes.

3.2 Approximation of MDSpolar

When we are free to choose between ϕi − ϕk and ϕk − ϕi in (3), we take the
following into account

(ϕk − ϕi − ψik)
2 = (−(ϕk − ϕi − ψik))

2 = (ϕi − ϕk + ψik)
2.

Therefore, instead of exchanging the order of ϕi and ϕk, we can choose the sign
of ψik, leading to

E =

n
∑

k=2

k−1
∑

i=1

(ϕi − ϕk − aikψik)
2 (4)

with aik = {−1, 1}. In order to solve this modified optimization problem of
equation (4) we take the partial derivatives of E, yielding

∂E

∂ϕk
= −2

k−1
∑

i=1

(ϕi − ϕk − aikψik). (5)

Thus, on the one hand, neglecting that we still have to choose aik , our solution
is described by a system of linear equations which means its solution can be
calculated directly without the need of any iteration procedure. On the other
hand, as described above, we have to handle the problem of determining the sign
of the ψik in the form of the aik-values.

To fulfil the necessary condition for a minimum we set equation (5) equal to
zero and solve for the ϕk-values, which leads to

ϕk =

∑k−1

i=1
ϕi −

∑k−1

i=1
aikψik

k − 1
. (6)

Different optimization strategies are conceivable. Of course, an important condi-
tion is the computational complexity of the respective approximation algorithm.
In this paper we present a number of different strategies, starting with a greedy
algorithm which is quadratic with the number of data objects in time, but is
linear in space. Later on, we propose an algorithm that can even reduce the
complexity to O(n · logn).

3.3 A Greedy Algorithm for the Approximation of MDSpolar

As mentioned above, this solution describes a system of linear equations. Since
the desired transformation is rotation invariant ϕ1 can be set to any value, i.e.
ϕ1 = 0. By means of a greedy algorithm we choose aik ∈ {−1, 1} such that
for the resulting ϕk the error E of the objective function (4) is minimal. For
ϕ2 the exact solution can always be found, since a12 is the only parameter to
optimize. For the remaining ϕk the greedy algorithm sets aik in turn either −1
or 1, verifying the validity of the result, setting aik the better value immediately
and continuing with the next aik until all k − 1 values for aik are set.

Algorithm 1 describes in a simplified way the greedy method. When imple-
menting the method, it can be optimized in that way, that the first ϕk in the
for-loop has not always to be recalculated if in step i− 1 the parameter aik has
not been changed to −1. In such cases ϕk holds the value from the previous step.

As mentioned above, ϕ1 can be set to any value and ϕ2 can always be chosen
in such a way that the angle ψ12 is preserved exactly. For the remaining angles ϕk

Algorithm 1 Greedy MDSpolar

X = {x1, x2, . . . , xn}
Let Ψn×n be a matrix with the pairwise angles ψij between all (xi, xj)
ϕ1 = 0
for k = 2 to n do

aik = 1 for all i = 1 . . . k − 1
for i = 1 to k − 1 do

ϕk =

∑

k−1

j=1
ϕj−

∑

k−1

j=1
ajkψjk

k−1
ek =

∑k−1

j=1
(ϕj − ϕk − ajkψjk)

2

t = ϕk
aik = −1

ϕk =

∑

k−1

j=1
ϕj−

∑

k−1

j=1
ajkψjk

k−1
fk =

∑k−1

j=1
(ϕj − ϕk − ajkψjk)

2

if ek < fk then

aik = 1
ϕk = t

end if

end for

end for

no guaranty can be given that the greedy algorithm finds the optimal solution.
Incremental adding of feature vectors can be achieved by simply extending the
outer for-loop for another iteration for each new object. The angle ϕk will be
computed analogously as for previous feature vectors.

3.4 Relative MDSpolar

As for conventional MDS, also for MDSpolar different approaches regarding the
objective function are feasible. The solution described above minimizes the ab-
solute difference of pairwise angles of the original dataset and the transformed
dataset. Large angles, which cause in tendency a large E may effect the solution
in that way, that the transformation will represent vectors with small angles to
others less correctly. Considering the relative error leads to

E =

n
∑

k=2

k−1
∑

i=1

(

ϕi − ϕk − aikψik
ψik

)2

(7)

∂E

∂ϕk
= −2

k−1
∑

i=1

(

ϕi − ϕk − aikψik
ψik

)

1

ψik
. (8)

The greedy algorithm (1) can be applied only modifying the calculation specifi-
cation for ϕk

ϕk =

∑k−1

i=1

ϕi

ψ2

ik

−
∑k−1

i=1
aik

1

ψik

∑k−1

i=1

1

ψ2

ik

. (9)

Because of the different objective functions the validity of solutions with the
absolute MDSpolar and the relative MDSpolar can not be compared by means of
E.

4 Weighted MDSpolar

In certain cases the objective when transforming data is to preserve relations of
feature vectors of the original feature space in the target feature space. Thus,
feature vectors that form a cluster should be represented as exact as possible in
the target feature space, too. The transformation of feature vectors with a large
distance to the respective feature vector can have a lower accuracy. An approach
to achieve this goal is the introduction of weights wik to our objective function

E =

n
∑

k=2

k−1
∑

i=1

wik(ϕi − ϕk − aikψik)
2. (10)

Determine the derivative leads to

∂E

∂ϕk
= −2

k−1
∑

i=1

wik(ϕi − ϕk − ψik) (11)

and solving for ϕk

ϕk =

∑k−1

i=1
wik(ϕi − aikψik)
∑k−1

i=1
wik

. (12)

Note that this is a generalization of relative MDSpolar . For relative MDSpolar ,
we simply choose the weights as wik = 1/ψ2

ik.
Since our transformation preserves the length of each data vector, it is guar-

anteed that vectors with a large difference in length will not be mapped to close
points in the plane, even though their angle might not be matched at all. There-
fore, we propose to use a small or even zero-weight for pairs of data vectors that
differ significantly in their length. The weight could be defined as a function of
the difference between the length values li and lj of two data vectors:

wik = w(li, lk) = w(z). (13)

We can use the absolute difference for z, i.e.

z = za = |li − lk| .

This might be useful if certain information about the structure of the data is
known in advance. The argument zr for relative weighting functions

z = zr = min

{

li
lk
,
lk
li

}

Fig. 1. Different Weighting Functions

might be useful if a certain threshold can be determined, beyond which difference
in the relative distance between two feature vectors, the angle between them
need not have any effect on the calculation of the respecting ϕk. To decrease
the computational complexity, weights should be chosen in such a way, that for
feature vectors with a certain (large) distance the respecting weights become
zero. The following function describes a simple weighting function, which is the
second function shown in Figure 1:

w(zr) =

√

(

zr−ϑ
1−ϑ

)

, if zr ≥ ϑ

0 , otherwise
(14)

where ϑ ∈ [0, 1].

With the threshold ϑ one can control indirectly the fraction of the data, that will
be used to determine the respective angle ϕk. Thus, small values for ϑ lead to lots
of weights w6= 0 which comes along with high computational complexity. Values
near 1 for ϑ lead to a quickly decreasing weighting function and to low compu-
tational complexity, respectively. Any other function can be used as weighting
function. For reasons of an easy implementation and low computational com-
plexity a decreasing function which leads to a more or less large fraction of zero
weights should be used.

For an efficient implementation it is useful to sort the feature vectors by
means of their length. Note that this can be achieved with O(n · logn) time
complexity. When determining the weights for the calculation of ϕk it is sufficient
to consider the feature vectors starting from index k. Weights will be calculated
stepwise. With every step the weights become smaller until a weight becomes
zero. Since the weighting function is decreasing, a further iteration would lead
to zero, too. Thus, the calculation of weights stops at this point. In cases where
clusters with a large amount of data are expected in a dataset, it might be
rather useful to limit the maximum number of iterations for the calculation of
the weights than setting a larger threshold. In this case, the projected vectors
will be forced to a proper position already by a significantly large fraction of
other feature vectors in the dataset. It might also be useful to reduce ϑ locally,
when only few vectors satisfy the condition in equation (14).

With a limitation of the number of weights w > 0 and a moderate ϑ at the
same time, it can be achieved that the number of weights considered for the

calculation of ϕk does not differ too much for different ϕk and limited compu-
tation time can be guarantied. Instead of considering the angles of all feature
vectors with the greedy algorithm (1) it might be useful to consider only few
feature vectors and calculating the exact solution of the sign problem. Using a
weighting function enables the user of MDSpolar to set a certain bin size which
indicates the number of feature vectors that will be considered when calculat-
ing the desired ϕk . By means of this one can reduce the computation time and
reinvest it in finding the exact solution of the sign problem. Thus, the upper
bound for the complexity of our algorithm is due to sorting the data which is
O(n · logn). Solving the sign problem for a given maximum bin size b with the
greedy strategy and using a certain number c of iterations, this accounts with
O(n · b · c) to the entire algorithm.

Evaluation of the transformation can be done by determining the average
deviation from the original angles. In general this can be obtained by dividing
E through the number of terms summed up. For the error function (4) one

has to divide whith n2
+n
2

. With this measured value one can compare different
mappings even if they vary in the number of objects.

5 Results

Figure 2 shows some results of MDSpolar in comparison with the Sammon Map-
ping. In favour of an easy verification of the results we applied MDSpolar to
some 3-dimensional datasets. The validity of the solution can be evaluated by
visual inspection. The cube dataset (a) is about a synthetic dataset, where data
points scatter around the corners of a 3-dimensional cube. Thus, the cube dataset
contains eight well separated clusters. The dataset in (b) is comparable to a
serpentine. As the figures (d) and (g) show, the transformations of MDSpolar
are similar to these of conventional MDS. Whereas MDS needs some thousand
iterations until convergence, MDSpolar finds an explicit solution after solving
the system of equations. The transformations in figure (e) and (h) result from
weighted MDSpolar with weighting functions where at most twelve weights got
values greater than zero. Thus, the transformation is based only on a relatively
small number of angle comparisons. Therefore, locally these transformations are
very accurate, but generally the loss of information is sometimes higher.

Since the value of ϕk is calculated from all preceding ϕ1 . . . ϕk−1 according
to equation (6) or equation (9) respectively, a solution with MDSpolar , either
absolute or relative, depends to some degree on the order of the dataset. Our
tests have shown, that in such cases only few feature vectors lead to higher errors,
while others will not. Thus, not the complete transformation will be wrong, but
only some feature vectors. Initialization is also a matter of fact of conventional
MDS.

(a) Cube Dataset (b) Coil Dataset

(c) Sammon Mapping (d) relative MDSpolar (e) weighted MDSpolar

(f) Sammon Mapping (g) relative MDSpolar (h) weighted MDSpolar

Fig. 2. Different Transformations with MDSpolar

6 Conclusion

We presented a new approach for dimension reduction. MDSpolar bases on the
reduction of the error of the pairwise angle between feature vectors comparing
angles of the original feature space with the angles in the transformed feature
space. With MDSpolar it is possible to add new feature vectors to the dataset
and find a transformation for this feature vector without re-calculating the whole
transformation. Our solution is explicit, which leads here to short computation
time. Furthermore, we presented a greedy algorithm to get an approximation of
the exact solution.

With weighted MDSpolar we have introduced a weighting function with the
objective to differentiate ones feature vector’s importance to the approximation
of the respecting ϕk. Non-similar feature vectors contribute less to the accuracy

of the result than similar feature vectors. If such weighting functions are designed
in such a way that a (large) fraction of the angles ϕi gets zero weight, then an
exact solution of the sign problem can be found within moderate computation
time. Our tests have shown that good solutions can be already found with 10 non-
zero weights. Our examples approve that this approach is promising. Developing
appropriate approximation schemes will be subject of future work. Furthermore,
we plan to modify this technique to learn a function that maps feature vectors
to the 2-dimensional feature space. New objects could be mapped even simpler
to the plane.

References

1. Borg, I., Groenen, P.: Modern Multidimensional Scaling : Theory and Applications.
Springer, Berlin (1997).

2. Chalmers, M.: A Linear Iteration Time Layout Algorithm for Visualising High-
Dimensional Data. Proceedings of IEEE Visualization 1996, San Francisco, CA
(1996), 127–132.

3. Faloutsos, C., Lin, K.: Fastmap: A Fast Algorithm for Indexing, Data-Mining and
Visualization of Traditional and Multimedia Datasets. In: Proceedings ACM SIG-
MOD International Conference on Management of Data, San Jose, CA (1995), 163–
174.

4. Kruskal, J.B., Wish, M.: Multidimensional Scaling. SAGE Publications, Beverly
Hills (1978).

5. Lowe, D., Tipping, M.E.: Feed-Forward Neural Networks Topographic Mapping for
Exploratory Data Analysis. Neural Computing and Applications, 4, (1996), 83–95.

6. Morrison, A., Ross, G., Chalmers, M.: Fast Multidimensional Scaling through Sam-
pling, Springs and Interpolation. Information Visualization (2003) 2, 68–77.

7. Williams, M., Munzner, T.: Steerable, Progressive Multidimensional Scaling. 10th
IEEE Symposium on Information Visualization, Austin, TX (2004), 57–64

