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Abstract. Weather is an important source of delay for aircraft. Recent
studies have shown that certain weather factors have significant influence
on air traffic. More than 50% of all delay accounts to weather and causes
among others high costs to airlines and passengers. In this work we will
show to what extent weather factors in the closer region of Frankfurt Air-
port have an impact on the delay of flights. Besides the results of a linear
regression model we will also present the results of some modern data
mining approaches, such as regression trees and fuzzy clustering tech-
niques. With the clustering approach we will show that several weather
conditions have a similar influence on the delay of flights. Our analyses
focus on the delay that will be explicitly caused by weather factors in the
vicinity of the airport, the so-called terminal management area (TMA).
Thus, delay caused by weather at the departure airport or by other cir-
cumstances during the flight will not bias our results. With our methods
it becomes possible to predict the delay of flights if certain weather fac-
tors are known. We will specify these factors and quantify their effects
on delay.

1 Introduction

Traffic at Frankfurt Airport is increasing every year. As for car traffic, obstruc-
tion or delay in air traffic is mostly caused by high traffic volume. Apart from
this, weather is an important source of delaying, particularly in the vicinity of
an airport. In this paper we discuss which weather factors at Frankfurt Airport
may have an effect on the travel time on approaching aircraft. Delays according
to a certain schedule will not be concern of this work. To be independent for
the most part from any delay that might be caused at the departure airport or
during the flight (en route), we only consider in this study the travel time that
aircraft need from the entrance in the terminal management area (TMA) until
landing. In average, this travel time is about 30 minutes.

Our analyses focus on a weather dataset that consists of more than ten
weather factors which are captured at the airport at least half-hourly by different
sensors. Another dataset that contains all flights for the same time period is
used to bring it in correlation with the weather data. The objective of these
analyses is the prediction of the travel time of an aircraft given a comparable
weather description. With this information it is possible to manage landside
procedures, such as the disposition system, taxing, arrangement on the apron
and the aircraft’s stand. Optimising these procedures could afford saving money
since these resources are always scarce.



We will present in this paper the results of three statistical methods, which we
apply on this data. Beside linear regression, we use two modern learning methods
namely regression trees and fuzzy clustering. The clustering of the weather data
shows that there are some significant weather conditions at Frankfurt Airport
which have a certain effect on the travel time.

2 Related Work

There are several publications on this topic analysing only a short time period
or considering only a few different weather factors.

In [4] a model is described that predicts a daily flight time index for Los
Angeles Airport. This index represents the daily flight time by weighting several
factors such as weather but also origin airport departure delay. The problem
of weather normalisation is addressed in [3] to improve a performance measure
which aims at comparing different airspace systems.

The effect of thunderstorms on delay at Frankfurt Airport is discussed in
[7]. This study shows that one thunderstorm affects the air traffic in the TMA
at Frankfurt Airport for three hours and causes approximately one thousand
minutes delay for one hundred aircraft.

[8] investigates the effects of weather at Frankfurt Airport to compute the
daily punctuality at Frankfurt Airport. These analyses base on daily indices of
punctuality and local weather data of the airport. By means of multiple linear
regression, more than twenty weather parameters are determined with effect on
punctuality. With this model it can be estimated the punctuality of one day,
given the expected weather conditions.

3 The Weather Data

This study is based on the ATIS? weather dataset of the years 1998 and 1999.
This dataset consists of more than ten attributes, describing certain weather
factors at Frankfurt Airport which where captured by different sensors over a
timeframe of some minutes. The following table shows these weather factors.

We will call a datum that is composed of these ATIS
atmospheric pressure
temperature
visibility
cloud coverage
cloud layers
precipitation
precipitation intensity
wind speed†

wind direction†

attributes a weather report. Regularly, weather re-
ports will be recorded in an ATIS dataset every 30
minutes. Only when the weather changes quickly,
weather reports will be recorded in a shorter inter-
val.

Apart from the precipitation attributes, these
weather factors are described by means of numer-
ical values. For certain methods, precipitation, which
is actually nominal, must be converted into numer-
ical values, too.

? Automatic Terminal Information Service
† from two different sensors



Fig. 1. Two Components of the Weather Data after PCA

4 The Flight Data

For the observed time period, we use a flight dataset, which contains the arrival
times of all aircraft. Since we are mainly interested in the delay that is caused
by certain weather factors in the vicinity of the airport, we consider the point in
time of the aircraft’s entrance in the TMA and the time when the corresponding
aircraft is landing. As mentioned above, this travel time is about 30 minutes in
average.

Additionally, the dataset contains the identification of the runway that was
used for the respective landing. The runway configuration, the direction that is
actually used for approaches and departures, is of importance when analysing
the effect of certain wind components, such as headwind and tailwind.

5 Data Preprocessing

The weather dataset consists of attributes which have different ranges of values.
For the linear regression method and the clustering, which we intend to use, it is
essential to normalise the data. Thus, coefficients resulting from linear regression
can be interpreted directly as degree of importance. Clustering is sensitive to
different scaled variables, too. Without normalising the data large distances that
may occur regarding wide range attributes such as visibility and atmospheric
pressure would result in misleading clusters.

A first insight into the weather data we obtain by applying a principle com-
ponent analysis (PCA). The first three components have eigenvalues which are
greater than 1. These three hypothetical components cover more than 70% of
the variation in the data.

Figure 1 shows two components of the weather data, which result from ap-
plying PCA. Obviously, there are two linearly separable clusters. The clear sep-
aration of the data into two clusters is due to two different weather conditions:
cloudy weather and cloudless weather.



Atmospheric Tem- Visi- Precipi-
Pressure perature bility tation

1015 30 30000 -
1020 22 25000 SHRA
1020 8 20000 BCFG
1018 6 2000 BR

→

Atmospheric Tem- Visi- Precipitation
Pressure perature bility SHRA BCFG BR

-0.06 2.5 0.53 0 0 0
0.5 1.4 0.16 1 0 0
0.5 -0.5 -0.21 0 1 0

0.27 -0.77 -1.55 0 0 1

Table 1. Data Preprocessing

When considering the precipitation attribute, another important conversion
has to be made. Some statistical methods can not deal with nominal attributes
directly. Usually, a numerical representation for such variables has to be found.
In most cases, values of such nominal variables will be converted into dichoto-
mous (0/1-coded) variables. That means, that for every value that occurs in
column precipitation a new variable will be created, that is either 1 if this kind
of precipitation has been recorded or 0 otherwise. Thus, normalising and con-
verting variables for a small extract of the data (see left part of table 1) leads
to the right part of table 1.

From the flight data two additional variables can be extracted. It is obvious,
that the travel time depends to a high degree on the capacity of the airport.
Thus, shortages mainly result from the demand, that is a factor determined by
means of the amount of aircraft that wish to land.

Another essential attribute is the travel time. We intend to assign a specific
travel time value to each weather report. Since weather reports occur usually
half-hourly and arrivals may occur with inter-arrival times of a few minutes, it is
necessary to determine a specific value for the travel time. To obtain these values
for a certain weather report, we propose to consider all approaching flights,
that have entered the TMA already and those flights that have been landed
after that point in time where the preceding weather report has been recorded.
Thus, we count the number of flights according to the above definition and call
this attribute traffic. Further, we examine all travel times of those flights and
choose the median travel time. In some cases, the mean estimator would be not
appropriate, particularly when some normal flights will be pooled with one flight
that has an extreme long travel time.

For some data mining methods, such as for clustering and regression trees, it
is advisable to eliminate the dependence of the travel time on the traffic. Since
traffic is very important to predict the travel time, regression trees would mostly
use the traffic attribute for the prediction and weather factors would be rarely
represented in the tree. Further on, clusters of weather conditions would not be
meaningful when comparing them with average travel times.

For each flight in the flight dataset, the corresponding landing runway can
be read. Because the wind sensors measure wind speed and wind direction one
can compute the related headwind components and crosswind components. This
might be of interest, since runway configuration changes, when tailwind exceeds
five knots.



6 Statistical Analyses

In this section we describe the results of three statistical methods. For a more
detailed description of the principles of the algorithms we refer to the literature.

6.1 Multiple Linear Regression

Linear regression aims at estimating the conditional expected value of one vari-
able y given the values of some other variable or variables x. The variable of
interest, y, is called the dependent variable. The other variables x are called the
independent variables. A multiple linear regression model is typically stated in
the form

y = a0 + ax1 + a2x2 + . . . + apxp.

Usually, the parameters a1, a2, . . . will be estimated by the method of least
squares. In our context, the dependent variable is the travel time. The inde-
pendent variables are the weather factors and the traffic. Including the new
variables when converting the precipitation attribute, the coefficients for more
than 40 independent variables have to be determined.

Usually, one starts applying linear regression using all given variables and
eliminating variables stepwise that do not contribute significantly to the pre-
diction. From air traffic experts we know that some variables might have a
non-linear, for instance logarithmic or quadratic influence. Therefore, we also
extended the regression function correspondingly.

Table 2 shows the final results applying this procedure. Since most of the
variables are normalised, the values of the estimated parameters can be directly
interpreted as degree of impact. For the precipitation variables the 0/1-coded
values are used, traffic is used as described in section 5 and for visibility we
recommend to used the logarithm of visibility. With these variables we obtain a
model with a coefficient of determination R2 = 0.63.

Obviously, a certain kind of precipitation affects the travel time significantly.
Thus, snow prolongs the travel time by some minutes. Snowfall decreases visi-
bility and occurs often in conjunction with iced runways. In such cases, runways
but also aircraft must be cleared and deiced. This may cause delay if traffic vol-
ume is high, because these procedures take some time and must be repeated as
the case may be.

Mist near the ground might be problematic, since the airport is often still
visible from a larger height, but when approaching visibility decreases dramati-
cally. Also fog, thunderstorms and rain affect the air traffic in terms of visibility.
When visibility decreases, then separation of aircraft must be enlarged. Rain
leads to wet runways and causes therewith a risk of skidding and elongated
braking distances. Thunderstorms imply very high risks for air traffic, since they
are associated with a number of weather phenomena. Generally, their avoidance
leads to significant impairment.

Increasing values for temperature, cloud layer1 and visibility favour short
travel times. Increased temperatures and high cloud layers stand often for good



Variable
Parameter

P
Estimate

traffic 0.05 ≤ 0.0001
traffic2 -1.3 ≤ 0.0001
traffic3 22.4 ≤ 0.0001
log(visibility) -22.3 ≤ 0.0001
temperature -25.5 ≤ 0.0001
cloud coverage2 -34.1 ≤ 0.0001
cloud layer1 -41.3 ≤ 0.0001
headwind 12.8 0.0029
south wind 9.1 ≤ 0.0001
wind speed1 41.9 ≤ 0.0001
wind speed2 12.5 ≤ 0.0001
fog 385.9 ≤ 0.0001
fog patches 86.9 ≤ 0.0001
mist 48.4 ≤ 0.0001
rain 26.3 ≤ 0.0001
rain, mist 111.1 ≤ 0.0001
snow grains 658.5 ≤ 0.0001
snow grains, mist 287.1 ≤ 0.0001
snow, mist -183.7 0.0095
snow shower 286.8 ≤ 0.0001
thunderstorm, rain 422.6 ≤ 0.0001
Table 2. Results for Linear Regression

weather conditions at all. Wind speed is an important source of delay at Frank-
furt Airport. The high probabilities for the two measured wind speed values
and the computed wind components ascertain that these variables contribute
significantly to the regression model. Depending on the wind speed and the
wind direction the runway configuration changes. Since high wind speed corre-
lates mostly with other bad weather conditions separation will be enlarged and
therefore delay increases.

6.2 Regression Trees

Regression tree learning is a method for approximating continuous-valued target
functions, in which the learned function is represented by a tree. Learned trees
can also be represented as sets of if-then rules. Such rules can be easily interpreted
by humans.

With the well known CART (Classification and Regression Tree) [2] algo-
rithm we aim at inducing such trees, with the objective to determine important
weather factors and significant values for these weather factors, which enable us
to predict the travel time.

Figure 2 shows a simple tree that consists of fifteen nodes and eight leaves.
Each node represents a decision based on a certain weather factor and an asso-
ciated value. The leaves of the tree stand for the predicted travel time that will
be measured in average when applying the respective rule. CART determines
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the optimal split in a greedy way considering every single attribute and dividing
the dataset at this point that minimises the variance for the child nodes and
maximises the difference between the sum of quadratic deviations in the parent
node and those in the child nodes.

When inducing different regression trees with different datasets by means
of cross validation one can observe that these trees have not always the same
structure. But in general, attributes that are represented in top levels of one
tree will be also represented in the top level of most other trees. We consider
these attributes as important ones, which can be found very often in the tree
and whose values are quite similar.

The following table shows some results. Analysing a set of regression trees,
for some weather factors, such as visibility and certain wind components, a spe-
cific value can be obtained. Thus, wind speed about a value of 7-10 kt in average,
which includes very high peaks of about 35 kt, leads to long travel times. Also
low visibility complicates the air traffic. Although, temperature is represented
very often in regression trees, no specific value can be given. This is due to a
main disadvantage of regression trees, which can only produce orthogonal data
splits. A diagonal curve progression as shown in figure 3 will be stepwise approx-
imated be several nodes with different values.

frequently represented attributes rarely represented attributes
head wind (7-10 kt) cross wind
south wind (9 kt) cloud coverage1

visibility (2000-3500m) cloud coverage2

temperature atmospheric pressure
cloud layer1
cloud layer2



Nevertheless, some attributes that the experts suspect to be important, such
as crosswind and cloud coverage, occur quite rarely in the regression trees. Ob-
viously, the other wind components are mostly higher and therefore represented
in the top levels of the trees. As well, cloud coverage, that affects actually visi-
bility, is according to our results less important to predict the travel time than
the height of cloud layers or visibility.

Finally, we produce regression trees of different complexity to acquire the
appropriate size for these trees. Generally, trees becoming more and more com-
plex can predict the travel time for the training dataset better and better. With
hundreds of branches, a training dataset can be adapted nearly perfectly. Since
outliers and natural deviations may occur in such datasets, those complex trees
cannot predict the travel time very well for new data. Quite the contrary, rather
small trees are capable to predict well even for new data.

As a result we can make good predictions of similar quality as with linear
regression, with regression trees of depth eight. Bigger trees tend to overfit the
training data and yield poor results on test data.

6.3 Clustering

Even though, it is valuable to know which single weather factors affect the air
traffic, due the complex interaction of different weather factors it is essential to
inspect real weather conditions as a whole and their effect on the air traffic.

With clustering is becomes possible to partition the weather data into groups,
the so called clusters. Such a weather cluster might describe a certain weather
condition by means of a prototype, that is the centre of the respective cluster. As
it can be clearly seen in figure 1 the dataset contains two separable clusters. These
two clusters mainly describe the difference between weather reports referring
to cloudy weather and those referring to cloudless weather. Beside this, other
weather conditions seem not to be separated linearly that clearly. If these clusters
differ also relating to the travel time, then we can predict this value for future
flights, too.

Nevertheless, even if weather is subject of smooth transitions, one may distin-
guish some weather conditions anyway. We apply the fuzzy clustering algorithm
fuzzy c-means (FCM), which allows us – as our tests have shown – to find stable
weather clusters. As always when clustering with a prototype-based clustering
technique, the number of prototypes is of concern. Common validity measures [6,
9, 1, 5] give no definite answer toward the question, how many prototypes should
be used for the clustering on this dataset. Therefore, it is recommended to ex-
periment with different numbers of clusters in order to minimise the prediction
error as well as maintain the interpretability of the clusters in terms of weather
situations.

Table 3 shows the most interesting prototypes which result from partitioning
both the cloudy weather reports and the cloudless weather reports separately



clus-
ter

tempera-
ture

cloud
coverage1

cloud
coverage2

atmospheric
pressure

visi-
bility

cloud
layer1

cloud
layer2

head-
wind

cross-
wind

south-
wind

1 22.9 - - 1017.4 30166.4 - - 1.6 2.0 -0.1
2 14 - - 1013.5 29109.9 - - 10.2 7.9 10.7

3 16.5 2.1 3.5 1014.8 29127.9 3.32 6.91 4.9 3.4 1.7
4 13.4 2.2 3.7 1014.1 25703.5 4.06 24.57 4.9 3.3 2.5
5 6.7 2.1 3.6 1022.0 21926.3 2.02 3.63 5.8 6.7 -6.2
6 4.7 2.1 3.8 1021.1 9705.5 1.24 3.15 3.5 3.0 2.3
7 12.2 2.1 3.3 1009.1 35328.9 2.63 5.1 12.9 4.4 6.7
8 10.6 2.1 3.7 1008.2 20356.5 1.76 3.6 9.2 8.8 11.2

Table 3. Prototypes of FCM Clustering

into eight clusters. The prototypes appear in ascending order regarding the av-
erage travel time for flights that correspond to the described weather conditions.

Cluster 1 and 2 describe weather conditions of cloudless weather. The esti-
mated travel time for flights corresponding to the weather conditions of cluster 1
is 1566s in average with a standard deviation about 157s. Therefore, this cluster
represents the best weather conditions regarding the travel time. Obviously, the
reason for this are increased temperatures, good visibility and almost no wind.
The second cluster represents weather conditions which lead to the longest travel
times when considering only cloudless weather. Although most weather factors
indicate quite good flight conditions, the strong wind leads to these long travel
times (1687s/254s)?.

Cluster 3 (1606s/183s) and cluster 4 (1639s/187s) represent good weather
conditions when cloudy weather was recorded. Both clusters indicate increased
temperatures, good horizontal and vertical visibility and moderate wind speed.
Increased temperatures mostly represent physical conditions, which attend higher
approach speed and consequently shorter travel time. The connection between
temperature and the travel time, that can also be observed in figure 3, is revealed
in cluster 5 (1675s/235s) and cluster 6 (1676s/257s), too. Additionally, cluster
6 is featured by lowest visibility be it horizontal or vertical. The longest travel
times due to the weather conditions are represented by cluster 7 (1715s/252)
and cluster 8 (1737s/231s). Wind has the most important effect on the travel
time in these two clusters. As other studies have shown, reduced approach speed
(i.e. due to headwind) affect the capacity of the airport. Particularly when ap-
proaching, due to strong wind flight paths are deformed, which forces pilots to
enlarge separation to preceding aircraft. If in addition to this visibility is re-
duced due to a low cloud layer and a visual approach is not possible, this might
lead to a considerable enlargement of separation and to significant delay con-
sequently. Cluster 7 mainly contains weather reports where rain and also snow
was recorded, which additionally affects visibility and thus the air traffic.

? notation: (average travel time/standard error)



7 Conclusions

In this paper we have discussed some learning methods to predict the travel time
of approaching aircraft at Frankfurt Airport with the emphasis to gain knowledge
about the influence of the weather conditions. By means of linear regression we
have investigated which weather factors affect the air traffic to which extent.
With regression tree induction, we have applied a method whose results are
easy to interpret. Such trees give hints toward the question, what the critical
values are for certain variables to predict the travel time. Clustering enables us
to examine weather conditions by partitioning the weather dataset into weather
clusters. As the results indicate, weather clusters have characteristic travel times.
The results of the different learning methods have one thing in common, there
is a considerable variance, which is not explained yet by these models. Hence,
future work will be to improve accuracy of the prediction. To achieve this, we
plan to estimate missing values so that we can use such weather reports that
have been left out so far. Furthermore, an additional treatment of outliers could
lower the prediction error.
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