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Abstract— Air traffic at airports is affected by various factors. In section IV results on aviation and weather data will be

The capacity of an airport and the demand at a certain point shown followed by some concluding remarks in section V.
in time are serious parameters that account for a big extent

to aircraft delay and related variables. It has been proven hat II. MULTI-DIMENSIONAL SCALING

weather is another important impact in this regard. Although Lo . . . .

weather cannot be controlled, the knowledge of how weather ~Multi-dimensional scaling (MDS) aims at arrangingdata

affects the air traffic at an airport can be very helpful to objects X = {zi,...,2,} C RP into a low-dimensional

?hpti”ll(ize ﬁllirdtfaffic management. Data mining promises to gai  (typically a two- or three-dimensional) feature space whil
a noWe ge. . . . . . . . . . _
Usually, the very first step in data mining is data visualizaion. _pre_ser\_/lng pairwise s_lmllarlty of ok_:JjeCts approximategym

In this paper we discuss two new visualization techniques "a“tY _'S us_ually defined .by a QIstance measure, e.g. the

that allow to visualize aviation data and weather data in Euclidian distance. In this section we present two recent

order to contribute to the optimization process. These moda approaches that provide multi-dimensional scaling based o

multi-dimensional scaling techniques provide mappings ohigh-  density preservation and on the approximate preservafion o
dimensional data to low-dimensional feature spaces. We wighow pairwise angles between data objects.

some results on a practical application of a major European
airport. A. MDS,iar

|. INTRODUCTION Different from conventional multi-dimensional scaling
During the recent years a continuous world wide growth o¥here pairwise distances between data are considered,
air traffic could be observed, neglecting a temporary deeredMDS,..» generates 2-dimensional layouts preserving angles
due to terrorist acts in 2001. Likewise traffic forecastraaties between data approximately. For this purpose, a represamta
an increase of about% yearly for Europe [5]. Of course, thein polar coordinated” = {(l1,¢1), ..., (In,¢n)} is used for
airport’s capacity is mainly constrained by its traffic denda the target feature space, which allows to preserve the Hengt
Earlier studies have shown that weather is another majtorfacl of the original vectorr;, on the one hand and demands the
that affects the performance of an airport [1], [3], [4],.[6] Optimization of the angle; on the other hand. The solution
Since weather is a comprehensive description of multiptd MDS,... is defined to be optimal, if all angleg; and
single phenomena like temperature, height of cloud layers, between pairs of data objects in the projected data’set
wind speed, etc., data sets, describing the combination agfincide as well as possible with the anglgs in the original
weather and traffic at an airport, are fairly complex and thiigature spaceX.
high-dimensional when projecting them into a feature space The use of polar coordinates in the target space has two
Commonly, visualization is used as a part datanajor advantages: the number of parameters to be optimized
preprocessing, when trying to determine appropriate dasareduced and generalization can be achieved, which means
mining methods. In order to visualize high-dimensionakglatthat new points can be added without recalculation of thigeent
sophisticated techniques need to be applied that permitn@pping.
display complex data on limited projection media as compute Due to length preservation, data vectors of different lengt
monitors or printed hard copies. will be mapped far away from each other. This already
Multi-dimensional scaling is a family of methods that seeuarantees a roughly correct placement of the feature ngecto
to present the important structure of complex data on a edtiudn the target space. In order to differentiate dissimilatadaf
number of dimensions. In this paper we present two recesimilar length, the approximation of the respective anbkage
techniques of this kind and apply them on the practicad be considered. Since dissimilarity of objects of diffare
example of aviation and weather data. length is inherently reflected in the mapping, efficiency can
The rest of the paper is organized as follows: in section e gained when angle arrangements are mainly constrained
we discuss two recent multi-dimensional scaling approgich& objects of similar length. For vectors having a significan



difference in length, angle arrangements can be negletted. Algorithm 1 Greedy MD$oar
minimization of the error that has to be taken into account
when mapping high-dimensional data onto the plane while
approximating pairwise angles, is formalized by the follogy

Given the data seX = {x1,z2,...,2,}
Let ¥, ., be a matrix with the pairwise angles; between

objective function: all (2, ;)
n k—1 1= 0
for k=2 ton do
E= ik (i — Pk — aintbin)”. 1
Zzwk(w Pk~ aiir) @ ap=1foralli=1...k—1

k=2 1i1=1
fori=1tok—1do

wi, = get i ght (1, 1)
if w;, > 0 then
O = Z;‘:ll wik(kpi*aikwik)/z ?;11 Wik

Functional (1) contains some variables that are not inttedu
so far. Although, original angles);; will always satisfy

0 < ¢, < 180°, the order of the minuends; and ¢y
can have an influence on the sign of the resulting angle.

Therefore, the angle betweem and y; might perfectly €k = Zj;ll wir(P; — ¢ — ajrde)?
match the angle);;, ¢; — ¢, can either bey;, or —y. = g

The straight forward approach, putting the term — o air = —1

into brackets and taking the absolute or the quadratic Op = Lio) wik(i—aintin) /5 E gy,
value, unfortunately, yields either a functional that ist no fr = Z?;ll wi(©j — Ok — Gjrjk)?
differentiable entirely or those derivatives describe atem if e, < f5 then

of non-linear equations, for that no analytical solutiom ca ap = 1

be provided. In [7] it is explained in detail that we can take —

the freedom to choose whether we want the term- ¢, or sok.

the termyy — ¢; to minimize functional (1). Since we have end if

(or — i — Vir)? = (—(or — @i — Yir))? = (0i — or + ir)?, else _

instead of exchanging the order @f andy;,, we can choose break //breaks the inndor-loop
the sign ofy;;,. The above functional reflects the respective end if

sign of ¢, in form of the a;;-values, witha;, = {—1,1}. end for

Parameterv;;, refers to the concept of weighting the error end for
of angle adjustments. This weighting parameter should be
controlled in that way that mainly angles of data objectdwit
similar vector length will be optimized. Thus, the weight ofo a user defined weighting function, e.g.
vectors with similar length should be larger than the weight
vectors with significantly different length. This has thausa get i ght (I;,1;) = { (4)
that an optimization procedure focuses on these angles sinc
they produce large errors. The optimization procedure @n Rjhere ¢ is a user defined threshold. This simple binary
improved when omitting the adjustment of weights for paifgeighting function returns eithet for similar data vectors
of vectors, whose mapping is sufficiently differentiatedtbg or o for data vectors that are sufficiently differentiated by

1, if |li—lk|§19
0, otherwise

consideration of their length. means of their vector lengths. Many other weighting funio
As a fist step to minimizéZ we obtain the following partial are feasible, e.g. restricting the maximum number of non-
derivative zero weights for eack is suggestive. This refers to binning-
OE k—1 strategies that allow a conservative estimation of maximum
— = _22 Wi (i — Ok — Yir) (2) computational costs.
i, i=1 Once one weightv;;; became zero, the inndor-loop will

be interrupted and the nektwill be proceeded. This approach
is efficient and reasonable, since sorting by vector length w
arrange the data set like this that, once onev;; became

and set it equal to zero in order to fulfill the necesary caadit
for a minimum. Solving?E/ay, for ¢, we get

B Z;cz—ll Wik (9i — airtbin) 3 zero, all succeeding weights will also be zero for the s&me
Pk = Zk—l Wik : ®3) Initially, all signs fory;;, are positive, i.ea;;, = 1. Algorithm 1
=1 2

greedily sets a negative sign tq; wheney, > fi, i.e. when
For an efficient implementation it is useful to sort the-i;; actually minimizesE.
original feature vectors by means of their length and usin ]
a decreasing weighting function that depends on the dissirfi Pensity-based MDS
larity of the data pair. Then an efficient computation schemeThe approach of density-based MDS has been recently
can be defined that diminishes computational costs drégticaproposed in [8]. The idea behind is to reflect density vaoiai
Algorithm 1 describes the optimization procedure schematf high-dimensional data on low-dimensional mappings. For
cally. The functiorget Wei ght () returns a weight according this purpose, a multivariate Gaussian distribution is aefin



for each data object in the original space that represeets thhich can be derived from equations (5) and (6):

data point's potential energy. Adding these potentialddgie oP

multi-dimensional mountains. Summits of the mountains rep a = = (2m)P—F.

resent dense data regions, valleys represent sparse dag ar ) o o )
Density-based MDS aims at transforming the original dath afi"om this one can formulate the objective function. The
finding a low-dimensional layout whose potentials coinade Summarized modified potential in the original space is

well as possible with the mountains of the original. dljra- fi(wi) atw; and 37, g;(y:) aty; in the target
Formally the problem is described as follows. Given thgPace. Since both potentials should be equal, the objective
data setX = {z1,...,2.} C R” we seek for the mappedfunctmn can be defined as follows:
data sety’ = {y1,...,y,} C RF with k = 2 or k = 3 with w [ n " 2
the following potential forz;: Baensity = Z Zgﬂ'(yi) - Za - filz)
© O 2 i=1 \ j=1 j=1
1 1 W — 2
fila) = Zew (=32 (7) © (s
t=1 = D> (D w)—a-fi@)| . @
=1 =1
with ’
. 1 The gradient for each components:
ory/(2m)P

By = andz!" the " attribute of data object or x; is s =1 =1
denoted. Functionf; simply describes the density of g
dimensional Gaussian distribution with mean value and
variances? in each dimension. The parameteris fixed for

%gj(yi) is only zero when we havie= ¢ orl = j. For both
cases we obtain the derivatives from equation (8):

the entire procedure. It is small, then the potentials do k ® B\ 2 ) (s
- i 1 1 Y, —Y Y~y

rarely overlap. For very large the potential landscape will be aly) = =exp | —= i i

blurred completely with little variance in height. Theredpit M ¢ 2= o o

is useful to definer according to the diametet of the data
space, the average distance between data points, the number

n of data and the dimensionaliy. 0 a;(w) 1 exp 1 i
——gi(y) = —= _Z
(&

2 S S
v’ =y w -y
5 PR

For the target data space, the procedure tries to map e, 2~
feature vectorsY = {yi,...,y,} C R* such that the B
potentials Fori = j = I we have;2—g;(y;) = 0. Finally the gradient is:
k (t) 2 n
1 1 y(t) -y, 8Ewdensity 2
. - = _z i Zldensity 2 ) —a- ’ 9
9i(y) = Zexp 2;( P (6) ue 6; (9u(ys) —a- fi(zi)) )
ith & ! incide at least in th ints with IR T S W
with ¢é = avEr coincide at ea% in these points wit cexp (=5 Z zT . lT-
those in the original space. For thig, should be chosen t=1
similarly to o. — (gi(y) —a- fi(x))
Normally, the diameterd in the target space should be i 2
. o 1 ® _ ., ® (s) _,(s)
approximately of the same extent as for the original space. cexp | —= Yi Yi Y Yi
Otherwise, the area (or the volume) of the target space will b 2~ o o

much smaller compared to the hyper volume of the original

space(k < p). This means that the density in the target spadée desity-based approach should be combined with conven-
is also higher for the same size of the data set. Thushould tional MDS like Sammon’s mapping [11]. Thus, the Sammon
be chosen smaller than Further, it should be assured that th@radient Esq,mon and the density gradientyensit, can be
maximum height of the single potentials in the original spacombined through linear combination:

and in the target space match, i.e. the respective maxima of OF OF., . .
. .. . sammon density
the Gaussian distributions should be: E=a + : (10)
oyl oyl
filz) = gi(yi)- The parameters: and 8 can be considered as learning rates

or weights to control the impact of the respective mapping
Normally this will not be the case. Therefore a constari$ strategy. Thus, higher weights for the Sammon gradient
introduced: favour distance-based mappings and larger vaftider the
a- filx) = gi(y:) density gradient favour the density approach.



I1l. APPLICATION 8

In this section we briefly describe the data to analyze.
Subject of the study is to show the influence of weather in the o
vicinity of Frankfurt Airport on the travel time of approacly
aircraft. Therefore, two combined data sets will be conside a .
a weather data set that describes the weather situatiore at th
airport and an aviation data set that comprises arrivalgiofe 2r
all approaching aircraft at the airport.

A. Weather Data

The weather data originate from the AFlSeather data [

set. Different sensors present at the airport capture akver
weather characteristics and form a weather report. Such &4
report is released every thirty minutes (in case of rapidly
changing weather, the frequency is increased). Each Weathe-§8 " - - : : " .
report contains information such as temperature, air press (a) Mapping of originally high-dimsnional data. The symb¢, O, [, v)
wind speed and precipitation information, e.g. the presafc denote different weather situations under various trafimand.

snow, rain or hail. s

B. Traffic Data oL

In addition to the weather data set, information about the
traffic is available, through a data set that contains thigadrr 4 ~
times of all aircraft at Frankfurt Airport for the observed
time period. Since the variation in the travel time is of .|
interest that is caused by weather factors in the vicinity of
the airport, the point in time of the aircraft's entrance e t
airport vicinity — the terminal area (TMA) — and the time
when the corresponding aircraft is landing are considered.
The difference between these two times corresponds to the |
observed travel time in the TMA.

-4

Many research has been done on this subject[10], [6], [9].
In this paper we will analyze a sample of the data set with the;sM 8 il hioedimsnioral data. The sy 6
opjective to getmoreinsight_intoasp_ecific scenario_. Sutlgé &gnot:pdpig]e%eﬁt fﬂgﬁ'tngu)r'aﬁéas‘. imsnional data. The symbdL, 0, O)
this study will be the analysis of the impact of traffic demand
during extreme weather situations. For this purpose wedbuffig. dl- %@mmon’s Maﬁping of the combined aviamdagdh_wgadu%a
a. data. set that Cor-ltains a” Wegther reports dething d[bher Zit,naﬁzcrl ing two weather scenarios in association n igh traffic
visibility range or increased wind speed, both, in assamiat
with low traffic demand and high traffic demand, respectively
This corresponds to 1205 data which are labeled according IV. RESULTS
to three travel time classes (short, medium, lor@% of ) ) ] ]
this data account for short flight€2% account for flights N this section we will show some results of both multi-
with medium travel times and5% for flights with long flight dimensional scaling techniques on the combined aviatiah an
durations in the TMA. weather data set. _ _

With both techniques that we have described above, we willAS @ reference, figures 1(a) and 1(a) show different in-
visualize these different scenarios. It will show whethtee t terpretations of one mapping of the data gained with Sam-

impact of traffic demand or weather, combined or separatefJon's mapping. The symbols in figure 1(a) can be read as
is reflected in the data. follows. Small circles ©) represent weather reports with low

visibility and low traffic demand. Small boxe§&]] refer to
1ATIS (Automatic Terminal Information Service) is a contous broadcast 10W Visibility und high traffic demand. Weather, implying
of recorded information in airports. ATIS broadcasts cimessential weather increased wind speed with low traffic demand, is visualizgd b
information but also the active runway and other informatiequired by the diamond symbols(){) Small triangles (7) represent weather
ilots. T ’ - . .
P reports with increased wind speed and high traffic demand.

2For comparison, in the full data we ha¥6% short flights,41% medium ]
flight durations andl4% long flights in the TMA. The scattering of the feature vectors clearly shows that two
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Fig. 2. Mapping of the combined aviation and weather datavé#t Fig. 3. Mapping of the combined aviation and weather datavithtdensity-
MDSpola'r- based MDS.

weather clusters are formed. Likewise, different traffimaad Further, the correlation of increasing traffic demand amg &

is clearly reflected in the mapping. While the upper part dfavel times is clearly reflected in the mapping.

both figures mainly represent high traffic demand, lowefitraf Figures 2(a) and 2(b) show a mapping of the data using
demand is mostly spread in the lower part of both figurebIDS,.,,.. The main characteristics of the reference mapping
Figure 1(b) shows the same mapping but symbols refer (®ee figure 1) can also be found here. A binary weighting
another interpretation. In this figure, small boxej (epresent function yielding a bin-size of 200 is used with MPsg,, to
weather reports where short travel times could be achievettain the mapping. As for all mappings that are obtained by
Medium travel times are visualized by small circles)(and multi-dimensional scaling, both axes do not represeneeit
longer travel times by trianglesvj, respectively. Obviously, the original parameters, but a combination of all. Therefor
most data points account for medium and long travel timeaxes labeling is omitted intentionally. Mappings are riotat
but also data, comprising short travel times, can be foundvariant. Both interpretations of the mapping, again,vsho
Comparing to the travel time distribution of the full datd,sethat two weather clusters are formed as for the reference
where short flight duration prevail, a shift to long travehéis mapping, and travel time increases for demanding traffic.
can be observed. This fact reflects the impact of weath&todifications on the greedy algorithm in such a way, that the



inner for-loop will be repeated several times, allow a drastic
reduction of the bin-size yielding equal quality mappings t [1]
lower computational costs.

Density-based multi-dimensional scaling leads to mapfpinaa
shown in figures 3(a) and 3(b). This technique is fairl
expensive regarding computational costs and thereforg oni]
applicable to smaller data sets. For this reason we applied
it on a sample of the combined aviation and weather data
set. Also this mapping shows that weather and flight duratiofa]
discriminate the data noticeably.

V. CONCLUSION

(5]
In this paper, we have described two recent techniques that

provide visualization of high-dimensional data. As a picdt [
application, we have shown mappings of real high-dimeraion 7,
weather and aviation data. The results that were obtained by
MDS, .. and density-based MDS clearly show the impact
of weather on arriving aircraft, but also the impact of tkaffi
demand during critical weather situations. Subject of feitu
research should be a speedup of density-based MDS on ik
one hand and the consideration of different weather sogmarig
on the other hand.

[10]

(11]
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