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Abstract. The main approach of this work is the implementation of a cluster analysis program for
identification of regulatory regions in genomes. These regions are important parts of the genetic pool
in higher developed organisms. They are composed of several basic elements, so called transcription
factor sites, which can be identified by special analysis tools more or less vaguely. The program we
have developed is able to search for two-dimensional clusters in the results of such analysis tools to
give hints on gene regulatory regions. For this purpose two fuzzy clustering algorithms have been
implemented: The fuzzy c-means (FCM) and the Gath and Geva fuzzy clustering algorithm (GG)
with two conventional cluster validity methods and one which has been developed especially for this
application. All results of the cluster analysis program can be visualized and documented automatically.
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1 Introduction

The genome of an organism contains the complete
information to organize its development and func-
tion. The coordinate realization of this informa-
tion, i.e. the precise tuning of the expression of its
genes, is of extreme importance. One of the most
important steps on which gene expression is reg-
ulated is transcription, the copying of DNA into
RNA sequences. It is controlled by the regulatory
regions on the genomic DNA termed promoters and
enhancers, both of them being composed of short
sequence elements of 5-25 base pairs (bp) length
(consider a bp as one character of the DNA se-
quence code). They interact with a functional class
of proteins called transcription factors (TF). Occa-
sionally, several individual TF binding sites (TFS)
together constitute a ”composite element” [6] which
exerts a function which may be qualitatively differ-
ent from those of the constituents. The computer-
aided identification of enhancers or promoters as
gene regulating regions is a difficult task because
they cannot be identified by only one search cri-
terion. This problem is due to the abundance of
satisfying search criteria and the lack of knowledge
about rules of composition, location, coding gram-
mar etc. So far it is impossible to make direct pre-
dictions on possible gene regulating regions. So we
have to look for another strategy to search for po-
tential enhancers and promoters in eukaryotic DNA
sequences. The underlying ideas for this approach
base on the following facts:

1. Most (known) eukaryotic enhancers and pro-
moters contain several TFS in an area nor-
mally of some hundred base pairs. Figure 1
shows the known enhancer of the simian virus
40 with the contained TFS.

2. For their biological function, TFS depend on a
defined sequence context including other TFS.

3. There exist at least three programs for the se-
quence based identification of potential TFS
in DNA. These programs are PatternSearch
[9], MatInspector [7] and ConsInspector [2].
These programs produce lists of potential TFS
with two attributes: DNA position and score.
The score should coincide with the binding
affinity of the considered transcription factor.
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Figure 1: Enhancer of Simian Virus 40 genome as a
cluster of several TFS of many different TF. Total
sequence length: 5243 bp

From (1.) and (2.) we can conclude that many
enhancers and promoters build clusters of TFS on
DNA. Point (3.) allows us to expect that we are able
to identify many or most of the TFS in a given DNA



sequence (at least most of the TFS with high bind-
ing affinity). So the idea of a procedure to give hints
on possible enhancers and promoters is to search for
clusters of potential TFS in the output of available
TFS analysis programs. Expected high scored TFS
as true positives this means to to look for clusters
which contain significant high scored TFS.

2 Strategies for TFS cluster -
analysis

According to the available data describing each po-
tential TFS we could imagine two different ways to
look for TFS clusters:

2.1 One-dimensional clustering

The simplest idea of a TFS cluster analysis is to
cluster only on the DNA position of TFS and so
get a one-dimensional cluster space. But depend-
ing on the TFS analysis program used, a lot of
false positives (error type two) have been produced
along with false negatives (error type one). This
fact makes it obvious that the data to be clustered
contain a lot of noise data. In many cases the scores
of TFS could help to filter many false positives. But
in the case of one-dimensional clustering this infor-
mation is not appropriately used and thus cluster
analysis would not be able to give helpful hints on
possible enhancers or promoters in most cases. Fig-
ure 2 demonstrates this problem using an example
of one-dimensional TFS data.
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Figure 2: One-dimensional TFS data of the hepati-
tis B virus (HBV) genome. Each white rectangle
a potential TFS.

2.2 Two-dimensional cluster analysis
and DNA projection

Adding a TFS quality based on the score of the po-
tential TFS as a second dimension in cluster space
improves the results drastically as shown in figure
3. Now we are able to differentiate the cluster qual-
ity by simple projection on the second dimension
(quality) and can choose all clusters with a signifi-
cant degree of quality for DNA projection. Selected
clusters can be projected onto the first axis of clus-
ter space, the DNA position. Such resulting inter-

vals are named potential transcription regulating
regions (= TRR). Several strategies for selecting
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Figure 3: Two-dimensional TFS data of HBV

genome.

’high quality clusters’ can be imagined, e.g. usage
of all clusters which contain at least one data point
with a quality greater than a given threshold or us-
age of all clusters which contain only data points
that exceed a given quality threshold or even man-
ual cluster selection. The current work uses the first
strategy, since it has been experimentally proven
that high-scoring TFS may act as an anchor to in-
clude low-scoring TFS into a TRR.

2.3 Why fuzzy clustering ?

Predictions on potential gene regulating regions can
be done only vaguely because of vague data (scored
TFS) and vague semantics of potential TFS (false
positives, data points between neighboured clusters,
etc.). It is obvious that fuzzy clustering can solve
these problems in a better way than ’hard cluster-
ing’ algorithms. So the user can choose one of the
best three membership degrees of each data point to
a cluster for the defuzzification procedure of cluster-
ing assignments. Figure 4 demonstrates the mean-
ing of applied fuzzy clustering for DN A-projection.

2.4 Creating data points from TFS

Before we can start reading TFS data from TFS
analysis output and transform it into cluster space
we have to ensure that the TFS scores will satisfy
the following two conditions:

e true positives should have a similar high qual-
ity score,

e true negatives should have a similar low qual-
ity score,

to be able to compare the quality of potential TFS
of different transcription factors independent of the
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Figure 4: Displaying two-dimensional TFS clusters
with two DNA projections depending on used de-
fuzzification: the upper one uses best and the lower
one second best level of membership degrees.

used search pattern or search matrix. For this pur-
pose a quality function has been developed which is
based on TFS scores and if necessary on search pat-
tern characteristics for each recognized TFS analy-
sis program (PatternSearch, Mat- and ConsInspec-
tor). This has been done by empirical work. These
quality scores were used as the quality attributes of
TFS data for cluster analysis.

After reading the TFS data from a selected TFS
analysis output file this data is stored in a rela-
tional database. For a new cluster analysis run all
or a user-defined subset of the TFS data can be
prefiltered by quality threshold filters to get rid of
obviously low scored data. A second optional fil-
ter, the so called shrink filter eliminates false TFS
hot spots. These hot spots are multiple TFS hits of
one or more (functionally similar) factors at a cer-
tain DNA position which do not occur as multiple
TFS at this position in reality. Using a shrink fil-
ter recognized hot spots of selected factors will be
shrunk into one data point for clustering to avoid
overweighting a DNA position. On the other hand,
a weighted clustering process could be performed
using multiple search patterns for special factors
and skipping the shrink filter procedure.

As a final step of creating data points from TFS
data a transformation from world-coordinates DN A-
position and quality score into cluster space with
‘compatible axis scalings’ must be defined. Obvi-
ously, different scalings of coordinate axes against
each other could influence the result of data par-
titioning drastically. In this case, the data space
could be limited to a finite area because DNA po-
sitions are limited by sequence length. The range
of possible TFS quality can be limited by simple
thresholds for minimum and maximum quality since
true positives could be estimated against a mini-
mum and false positives against a maximum qual-
ity score. So coordinate transformation could be re-
duced to a simple interval transformation with three

user-definable parameters: minimum and maximum
quality threshold (Yy,;, and Ymax) and maxi-
mum quality value in cluster space (Vmax). For-
mula (1) shows the transformation T}, from TFS
data to cluster data points. Note that for improving
the visualization of the DNA projection the qual-
ity scores will be transformed inversely into cluster
space so that the higher scores are nearer to zero.
T.

inv *
[0, Xmax] X [Yins Ymax] — [0, Umax] x [0, Vmax]

e ()

(Ymax — Yimin

Xmax Sequence length in bp

Ymax Est. upper quality for false positives
Yiin Est. lower quality for true positives
Vmax Max. range of quality in cluster space
Umax Sequence length in cluster space

Umax := Xmax and Y i, < Ymax.

In most cases best results have been achieved with
setting the maximum quality range Vimax in cluster
space two to three times higher than the expected
maximum width of TRR regions (300-500 bp). This
maximum TRR width will play a special role for
the automatic determination of the optimal num-
ber of clusters as we will see later (cluster quality
constraint (=CQC)).

3 Fuzzy clustering algorithms

In order to understand in which way fuzzy cluster-
ing can help us in the search for gene regulating
regions, we take a brief look at the fundamental
ideas of objective function based fuzzy clustering in
general. (For an overview see for example [5].)

3.1 Objective function based fuzzy
clustering

In objective function based fuzzy clustering a suit-

able fuzzy partition for a given data set

X = {z1,...,2,} C IR? has to be found. That

means that for each datum z; and each cluster 1
a membership degree u;; between 0 and 1 has to
be determined. wu;; indicates the degree to which
datum =z is assigned to cluster 7. For probabilistic
(fuzzy) clustering the constraint

C
E Uy, = 1
1=1

is required, i.e., the membership degree 1 of each
datum can be distributed over different clusters.

forall k € {1,...n}



A cluster is represented by a typical member
(usually the center of the cluster). Thus, objective
function based fuzzy clustering aims at minimizing
the objective function

J(X,Uv) = 3 (ua)™d(vi,2)  (2)

i=1 k=1

under the above mentioned constraint by a suitable
choice of the cluster centers v; and the matrix U of
membership degrees u;x. d(vi,zx) is the distance
between prototype v; and datum . The param-
eter m > 1 is called fuzziness index. For m — 1
the clusters tend to be crisp, i.e. either u;; — 1 or
ux — 0, for m — oo we have u;; — 1/c. Usually
m = 2 is chosen.

For the moment, we assume the number of clus-
ters ¢ to be fixed.

Differentiating (2) leads to the necessary condi-
tions

1

Ui, = 1

P (%) —

y - 2k=1(uik)"2 (4)
' =1 (uik)™

for a minimum. These equations are therefore ap-

plied alternatingly for the computation of the clus-

tering result until there are (almost) no changes in

the matrix U.

The most simple fuzzy clustering algorithm is
the fuzzy c—means (FCM) (see f.e. [1]) where the
distance d is simply the Euclidean distance. It
searches for spherical clusters of approximately the
same size.

Gustafson and Kessel [4] and later on Gath and
Geva [3] extended the FCM in order to adapt to
different cluster shapes and sizes. Their main idea
is to introduce a symmetric, positive definite matrix
for each cluster, carrying out a transformation on
the difference vector (v; — zx) whose length deter-
mines the distance of a datum to a cluster center.

(3)

and

3.2 Determining the number of clus-
ters

The usually unknown number of clusters can be de-
termined on the basis of a suitable cluster validity
measure (see for instance [1, 3, 5, 8, 11]) that eval-
uates a given fuzzy partition. The fuzzy cluster-
ing is carried out with varying numbers of clusters
and as the final result the fuzzy partition is chosen
which obtained the best evaluation value. However,
it turned that for our problem the common validity
measures are not adequate. Therefore, we designed
a specific strategy.

The maximal size of gene regulating regions is
bounded and thus clusters larger than this size do

not make sense. Therefore, we defined the function
twd (too wide cluster):

1. Let maxg, be the maximal admissible length
of a cluster (in the direction of the z-axis for
the DNA positions).

2. We fix a quality value T in order to neglect
clusters that contain only low scorers.

3. We defuzzify the fuzzy partition by assigning
each datum to the cluster for which it yields
the highest membership degree.

4. For these crisp clusters that contain at least
one datum with a quality better than T (i.e.
a value lower than T'), we compute their ex-
tension in z-direction.

5. The function twd yields the value 0 if the ex-
tension in z-direction of all clusters considered
in 4. is less than max.,;, otherwise twd is 1.

The number of clusters is determined by increas-
ing it stepwise starting from 1 until twd reaches the
value zero. When we have to increase the number of
clusters, we do not add new prototypes randomly,
but within those clusters that cause twd to be 1.
The new prototype is placed on the position of the
datum which is assigned to the corresponding clus-
ter but has the lowest membership degree or near
the datum in the cluster with the largest Euclidean
distance to the prototype. In this way, clusters that
are too large are split.

4 Results

The verification process of the TFS cluster analy-
sis results was done on sequences with known gene
regulatory regions. Such information was obtained
from TRANSFAC [10], a relational database avail-
able via WWW that contains detailed information
about experimentally verified TFS. The following
two subsections report two examples of performed
TFS cluster analysis: one completely successful (ge-
nome of simian virus 40) and one that demonstrates
some problems related to the TFS data (genome of
hepatitis B virus).

4.1 Cluster Analysis of whole simian

virus 40 (SV40) genome

Figure 1 shows the known enhancer of this DNA
sequence. After a TFS analysis using MatInspector
with all available search matrices (vertebrates) from
TRANSFAC, we obtained the result shown in figure
5. To improve speed and accuracy of TFS cluster
analysis, all data points in the area where obviously
no clusters could be found were filtered out with a



Figure 5: Two dimensional TFS data of the SV40
genome. A strong cluster of high-quality TFS is
marked by a white rectangle. The position of the

experimentally verified enhancer is shown by grey
'E’ box.

quality score filter (in this example quality thresh-
old = 0.95, choosen from visualization). Figure 6

shows the result of a Gath and Geva run and fol-
lowing DNA projection that leads to the displayed

TRRs. Different matrices for most known tran-
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Figure 6: Gath and Geva clustering of prefiltered
(quality > 0.90) SV40 data with DNA projection.
The position of the experimentally verified enhancer
is shown by grey 'E’ box.

scription factors have been used. Resulting false
TFS hot spots were compensated by a special shrink
filter. The leftmost TRR with the high density of
contained potential TFS represents nearly exactly
the range of the authentic SV40 enhancer. By look-
ing at the best TFS hit of each TF in this automat-
ically documented TRR, we get a good description
of the real SV40 enhancer:

TRR_2 FROH: 27 TO0: 465

AP-1 AT: 27 (-) QUAL: 0.9750 HATR: V$AP1_Q
Sp1 AT: 72 (4) QUAL: 0.9300 HATR: V$SP1_Q6
Sp1 AT: 93 (4) QUAL: 0.9420 HATR: V$SP1_Q6
AP-1 AT: 112 (4) QUAL: 0.9750 HATR: V$AP1_Q2
Oct-1 AT: 117 (4) QUAL: 0.9640 HATR: V$0CT1i_Q6
WF-kappaB AT: 163 (+) QUAL: 1.0000 HATR: VSNFKB_C
AP-1 AT: 184 (4) QUAL: 0.9750 HATR: V$AP1_Q2
Oct-1 AT: 189 (4) QUAL: 0.9640 HATR: V$0CT1i_Q6
WF-kappaB AT: 235 (+) QUAL: 1.0000 HATR: VSNFKB_C
C/EBPbeta AT: 238 (-) QUAL: 0.9022 HATR: V$CEBPB_O1
AP-1 AT: 254 (4) QUAL: 0.9430 HATR: V$APIFJ_Q2
AP-4 AT: 268 (4) QUAL: 1.0000 HATR: V$AP4_Q6
c¢-Hyb AT: 465 (4) QUAL: 0.9580 HATR: V$CHYB_O1

END OF TRR_2

The meaning of the other TRRs is to be proofed by
experimental verification. Only the one enhancer is
actually known in the SV40 genome.

4.2 Cluster analysis of whole hepati-
tis B virus (HBV) genome

The identification of the two HBV enhancers with
TFS cluster analysis is more difficult than in the
first example. First, the composition complexity of
both enhancers is very low (figure 7) and second, the
main factor C/EBP can not be identified very well
by currently available search matrices (true posi-
tives often get a poor score and thereby become
false negatives). As shown in figure 3 the TFS data

10|00 1 1|00 1290 13|00 14|00
C/EBP C/EBP C/EBPC/EBP
MNE-1 RXR MNF-1
CREB
14‘-00 1590 1690 1790 18P0
C/EBP C/EBP CEBP C/EBP
C/EBP CIEBP C/EBP
CFEP

Figure 7: Two Enhancers of HBV genome as clus-
ters with low composition complexity (over 75%
C/EBP). Total sequence length: 3182 bp

of the HBV genome contains no such strong "high-
quality’ clusters like the SV40 genome. Although
a search for the known TFS fails in most cases for
C/EBP, the Gath and Geva algorithm was able to
detect the first enhancer, as shown in figure 8. This
is an example of composing effects from noisy and
incomplete data in TFS cluster analysis.
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Figure 8: Gath and Geva clustering of prefiltered
(quality > 0.90) HBV data with DNA projection.
Although the first enhancer (grey 'E1’ box) was
detected appropiately, the second one (grey 'E2’
box) could not be found since abundance of cor-
rect C/EBP TFS data. The quality of TRR for
the first enhancer can be improved by adding two
further cluster prototypes.



5 Discussion

We have shown that clusters of high scored poten-
tial TFS can be found in many DNA sequences
and often such clusters coincide with experimentally
verified enhancers or promoters. In some cases this
procedure fails for the following reasons:

1. Failure of TFS analysis. For some transcrip-
tion factors they produce too much false pos-
itives even with restrictive search parameters.

2. In the case of homeogenous clusters, the clus-
ter analysis depends on the quality of the re-
spective search pattern. This risque is largely
diminished in the case of clusters of high com-
plexity.

3. Not all TFS exhibit a strong factor/ DNA
binding affinity.

Problem (1.) could be reduced by selecting good
and reliable search patterns (verified by many tests)
or improved TFS analysis programs (e.g. based on
physical DNA structure). Point (3.) could be han-
dled by searching for composite elements in (and
near) the TRRs. Further investigations will im-
prove the knowlegde about good search patterns,

good parameters, like coordinate transformation etc.

If more knowledge about gene regulatory regions
and improved TFS analysis tools accumulates, the
TRR data from cluster analysis could be used as ev-
idence knowledge for a knowledge based system. Al-
though more information than only sequence based
TFS analyis data is neccessary for an exact identi-
fication of enhancers and promoters (e.g. physical
structure analysis), this new method could give im-
portant hints on potential gene regulating regions.
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