
 
 

 

Evolving Fuzzy Rule-based Classifiers 
 

Plamen Angelov 
Dept of Communication Systems 

InfoLab21 
Lancaster University 

Lancaster LA1 4WA, UK  

Xiaowei Zhou 
Dept of Communication Systems 

InfoLab21 
Lancaster University 

Lancaster LA1 4WA, UK 

Frank Klawonn 
Dept of Computer Science 

University of Applied Sciences 
BS/WF, Salzdahlumer Str. 46/48 
D-38302 Wolfenbuettel, Germany 

 
 

Abstract— A novel approach to on-line classification based on 
fuzzy rules with an open/evolving structure is introduced in this 
paper. This classifier can start ‘from scratch’, learning and 
adapting to the new data samples or from an initial rule-based 
classifier that can be updated based on the new information 
contained in the new samples. It is suitable for real-time 
applications such as classification streaming data, robotic 
applications, e.g. target and landmark recognition, real-time 
machine health monitoring and prognostics, fault detection and 
diagnostics etc. Each prototype is a data sample that represents 
the focal point of a fuzzy rule per class and is selected based on 
the data density by an incremental and evolving procedure. This 
approach is transparent, linguistically interpretable, and 
applicable to both fully unsupervised and partially supervised 
learning. It has been validated by two well known benchmark 
problems and by real-life data in a parallel paper. The 
contributions of this paper are: i) introduction of the concept of 
evolving (open structure) classification (eClass) of streaming 
data; ii) experiments with well known benchmark classification 
problems (Iris and wine reproduction data sets). 

I. INTRODUCTION 

LASSIFICATION problems appear quite often in 
industrial systems, robotics, defence and are the basic 
tool used for pattern recognition tasks in signal and 

image processing, decision making, data mining, fault 
detection, automatic object recognition etc [1,2]. The basic 
problem in classification is to induce a classification function, 
or classifier, from a set of data samples. In many practical 
problems nowadays the data are produced in large quantity 
and very fast [3]. Such high-volume, non-stationary data 
streams bring new challenges to the well established learning 
methods [4]. In particular storing the complete data is often 
practically impossible and as a result the data streams cannot 
be analyzed in a batch mode. At the same time, most 
conventional learning methods, such as support vector 
machines [5,6], which aims at designing a classifier with 
guaranteed boundaries of the error, discriminant analysis [1], 
decision trees [7] or neural network classifiers [8], design the 
classifier in batch mode, that is, by using the complete data 
and labels that has been observed. Thus, they allow for 
extracting knowledge from a snapshot of the data stream at a 
certain point of time. Facing the challenge to cope with 
real-time classification of streaming data there is a need to 
develop classifiers that extract tractable knowledge from the 
data or digital signals in real-time.  

More recently, learning classifiers [9] have been developed 
in the framework of evolutionary/genetic algorithms 

(EA/GA) and fuzzy rule-based systems that adapt their 
rule-base with new samples arriving on-line. They are, 
however, driven by a ‘directed’ random search according to 
the EA/GA concepts. Incremental Bayesian classifiers has 
also been reported which allow data samples to arrive one at a 
time, but the classifier structure is assumed to be fixed [10]. 
An evolving Bayesian classifier is under development and the 
preliminary results are reported in [11]. 

On the other hand, fuzzy rule-based systems that are 
evolving in the sense that their structure is not fixed, but can 
grow and shrink has been recently developed [12,29] and 
applied successfully to a number of identification [13], 
time-series prediction [14], fault detection [15], and control 
problems [16]. These systems are transparent and 
interpretable. We use the term ‘evolving’ in a different 
context to the context when used in EA/GA. According to the 
Oxford Dictionary ‘evolve’ means ‘unfold; develop; be 
developed, naturally and gradually’ [17, p.294]. One can 
contrast this to the more general ‘evolutionary’ [17, p.294] 
‘development of more complicated forms of life (plants, 
animals) from earlier and simpler forms’, which is naturally 
related to the ‘genetic’ [17, p.358] ‘branch of biology dealing 
with the heredity, the ways in which characteristics are passed 
on from parents to offspring.’ We use further the term 
‘evolving’ fuzzy classifier (eClass) in the sense of ‘gradual 
development’ of the classifier structure (fuzzy rule-base). 
This new paradigm introduced for neural networks in [18,19], 
for decision trees in [20], and for fuzzy rule-based systems in 
[21] can be regarded as a higher level adaptation. This 
emerging new paradigm mimics the evolution of individuals 
in nature during their life-cycle, specifically the autonomous 
mental development typical of humans: learning from 
experience, inheritance, gradual change, knowledge 
generation from routine operations, and rules extraction from 
the data. A trivial analogy is the way people learn during their 
life – starting with an empty rule-base they learn new rules 
during their life from experience and based on the data 
streams that their preceptors generate to the brain. The 
development of the rule-base is gradual, but the rules are not 
fixed or pre-defined. We generate new rules when new facts 
(data samples) that can not be described by the existing rules 
and when they are descriptive enough, not to be ‘one-off’’ 
outliers [22]. It is well known that fuzzy rule-based systems 
are universal function approximators [23]; they are suitable 
for extracting interpretable knowledge, therefore, they are 
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viewed as a promising framework for designing effective and 
powerful classifiers.  

II. THE STRUCTURE OF THE PROPOSED CLASSIFIER 

The rule base that describes the non-linear evolving 
classifier eClass can be described as a set of fuzzy rules of the 
following form: 
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binary output of the MIMO exTS [22] fuzzy system. 

Note that the type of the fuzzy rule depends on the type of 
the consequent [22]: 
a) first order Takagi-Sugeno, TS (the consequents are 

linear classifiers): 
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b) zero order TS (the consequents are the class labels):  
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The output of the exTS, y is formed as [22]: 
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where i
jlµ is the membership value of the jth feature, 

j=[1,n]; l=[1,L]. 
We use the so called ‘winner-takes-all’ de-fuzzification to 

determine the correct class, which is the usual choice in 
classification problems: 
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The membership functions that describe the closeness to 
the prototype can be of any form, but usually the Gaussian 
bell function is preferred due to its generalization capabilities: 
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where i

jld is the distance between a sample and the 

prototype (focal point) of the ith fuzzy rule; i

jlσ  is the spread 

of the membership function, which also represents the radius 
of the zone of influence of the fuzzy rule. 

Note that in order to simplify notations further the index l 
will be omitted and a remark will be made that calculations 
are made per class.  

The spread of the membership σ is determined based on the 
scatter [26] of the data per cluster. In Figure 1 both, so called 
‘one sigma’ and ‘two sigma’ zones, are given around each 
prototype (each fuzzy rule) for the IRIS data set using 
Euclidean distance. In this particular example there are two 
prototypes (respectively, two fuzzy rules) for one of the 
classes and one rule for the other two classes. 

The scatter resembles standard deviation and is given by 
[22]:  
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where l=[1,L] is the number of clusters; )( *
,cos j
i xxd  

denotes the distance from cluster centre to new sample 
assigned into this cluster.  
      The scatter can be updated recursively by: 
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When a new cluster/rule is formed, Nl←Nl+1, its initial 
local scatter [26] is approximated by the average of the local 
scatters for the existing fuzzy rules for that class [22]: 
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The structure of the proposed classifier is thus formed by 
sets of fuzzy rules of type (1) in such a way that there is at 
least one fuzzy rule per class. The prototypes around which 
the fuzzy rules are formed are samples selected from the 
available data by unsupervised learning (eClustering). The 
learning of the exTS fuzzy model is described in detail in 
[22].  

III. EVOLVING CLASSIFIERS FROM DATA STREAMS 

A. Potential of the prototypes and its recursive calculation 

The eClass is initialized with the first data samples. A 
fuzzy rule is formed around each one of these samples per 
class. Potential of the prototype is set to 1)( *11

1 =xP . 
Consequently, each data sample is first being classified to one 
of the classes defined in the classifier and then its suitability 
to become a prototype (to form another fuzzy rule) has been 
checked. The decision whether a data sample is used to form a 
prototype or to replace an existing prototype is based on the 



 
 

 

data spatial density measure, called potential [13,24]. 
The potential calculated for a data sample is a function of 

the accumulated distance between this sample and all other 
samples in the data space per class. Thus, it represents the 
density of the data that surrounds a certain data sample. 
Originally [21,24] using Euclidean distance:  
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where Pk(xk) denotes the potential of the kth data sample,  

xk. 
Note that formula (7) requires accumulating the 

information from history of all the data which obviously 
contradicts the requirement for real-time and on-line 
application. The derivation of the recursive version of the 
potential expression (7) is given in [13]. Starting from 
substituting (4) into (7) and performing certain manipulations 
that are given in the Appendix we arrive at: 
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In this equation, values )(kα and )(kγ  can easily be 
calculated based on the availability of the current data point, 
x(k) only. The values )(kβ  and )(kjΓ  that require 

accumulation of past information can be easily stored in two 
variables with small size (the scalar, )1( −kβ  and the 

n-dimensional vector-column ( )Tn kkkk )(),...,(),()( 21 ΓΓΓ=Γ ). 

Then one can calculate recursively )(kβ  and )(kjΓ  by [13]:  
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     Each time a new data sample is read it affects the data 
density of the data space of the respective class, therefore the 
potentials of the previous centre needs to be updated. This 
update can also be done in a recursive way as detailed in [13], 
and no extra variable needs to be memorized, apart from the 
current potential of the existing prototypes (focal points):  
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B. eClass Procedure 
The proposed evolving fuzzy rule-based classifier can start 

either ‘from scratch’ (with an empty rule-base) or with some 
pre-specified set of fuzzy rules in form of (1). Each new data 
sample that has been read can be used to upgrade or modify 
the rule base if the label is also provided. We call this mode D 
(for Design) and we apply it in on-line mode (possibly in 
real-time). If the label is not provided, the existing fuzzy rule 
base will generate the predicted class, that is, it will work in 
mode C (for Classification). Note that eClass can work in any 
combination of these two modes. For example, one can 
perform D for certain number of samples and afterwards 
perform C for another set of samples. This is close to the 
off-line classifiers design concept. One can also perform D 
and C for the same sample (performing C first and using the 
rule-base that existed before this sample was read and only 
after the classification to perform D if the class label is 
provided). This is close to the adaptive modelling and control 
concept when the prediction and learning are combined in the 
same time step. An important specific of eClass is that not 
only the number of fuzzy rules but the number of classes, L 
may also be evolving and does not need to be pre-fixed. This 
specific is not used in this paper, because the two benchmark 

Fig. 1 Classification for Iris problem: a snapshot illustrating four 
prototypes (two for the class Versicolor and one for each of the remaining 
classes); σ are different for different clusters on different dimensions. 



 
 

 

 

problems that have been considered have a pre-specified and 
fixed number of features. This characteristic of eClass has 
been, however, used in a real-life example [27].  

When eClass is in D mode from the second data sample 
onwards its potential, Pk(x(k)) is updated recursively by 
(8)-(9). Then the potential of each of the previously existing 
prototypes, ( ))(* kxP i

k  is also updated using (11). Comparing 
the potential of the new data sample with the potential of each 
of the existing prototypes the following three outcomes are 
possible: 
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If condition (12) occurs that means that we have a data 
sample that is strongly representative [21,22] and thus we add 
a new prototype to the rule base. For each newly added 
prototype we form a new fuzzy rule based at that prototype as 
a focal point. Additionally, we check whether any of the 
already existing prototypes are described well by the newly 
added fuzzy rule. By well we mean [22] that the value of the 
membership function satisfies: 
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For the previously existing prototypes for which this is the 
case, we remove them. 

Alternatively (if (12) does not hold), we do not change the 
overall structure of the classifier. 

The procedure for the evolving fuzzy rule based classifier 
eClass when it applies a joint classification and classifier 
design (C+D) can be summarised in the following 
pseudo-code: 

 
 
BEGIN eClass (C + D) 
Initialize (get first data sample or 
start from a pre-trained classifier); 
DO for the pair xk, k=2,3,… WHILE data 
stream ends 
 Classify xk (assign it to a class, C

l); 
 Calculate Pk(xk)using (8)-(9); 
 Update P(x*) using (11) 
 Calculate the potential difference 
IF (12) THEN add a new fuzzy rule 
around xk; 
IF (11) THEN remove the prototype(s), 
xi* for which it is true;  
Get the real class label, Cl  

END DO 
 

 
The flow chart (Figure 2) describes the structure of eClass 

as a server thread in real-time application implementations. 
 

IV. EXPERIMENTAL RESULTS 
The proposed classifier, eClass was tested on two well 

known benchmark problems. It should be noted that despite 
the clearly off-line nature of these benchmark problems they 
were used to test the proposed classifier in order to have some 
comparison. In a parallel paper [27], a real-life application for 
image data on-line classification is presented. Results on 
these two datasets are also compared with the results from the 
approach ‘Incremental Principle Component Analysis’ [28]. 

A. Iris Data set 
The Iris data set is a widely used benchmark for 

classification studies. The data set has three classes that 
represent three types of the Iris plants, namely Iris Setosa, Iris 
Verginica, and Iris Versicolor. There are four features of the 
plants that are available for all the samples in the data set. 
They represent the sepal and petal lengths and widths in cm. 
The data set consists of 150 samples that is, 50 for each 
species. In [25] 19 different classifiers were reviewed, and all 
of them give between three and 24 misclassifications. The 
results when using eClass are tabulated in Table I. When 
comparing the result given by eClass with these result, one 
should take into account the fact that eClass starts in this 
experiment ‘from scratch’ with an empty rule base and no 
pre-training and evolves its structure from the data stream. 

In our experiment, tests have been carried out in three 
different ways. In the first test we classify each sample first 
without knowing its label. Afterwards, we get its correct class 
label and use the pair (sample and label) to evolve the 
rule-base. The joint classification and learning process (C + 
D) is continued during the whole process of 150 samples. The 
samples are in the original order as presented in the UCI 
repository. In the second test, 100 randomly ordered samples 
are used to evolve the classifier (D mode), and the rest 50 are 
used to test (C mode). In the last test, so called ‘leave one out’ 
strategy is used that is eClass runs 150 times, each time 

 
Fig. 2 Flow chart of Evolving Classification for real-time applications. 



 
 

 

having 149 samples for classifier design (D) and the 
remaining single sample is used for classification.  

B. Wine Reproduction Data 
Wine Reproduction data set is another common benchmark 

problem. The data set comes from the chemical analysis of 
wines grown in Italy derived from three different cultivars. 
There are three classes, 178 samples with thirteen continuous 
numerical features available in the data set.  

In a similar way the three experiments have been carried 

out with this data set. In the third experiment, 80 randomly 
organized samples are used as training data to evolve the rule 
base, and the remaining 98 data samples are used to test the 
fixed classifier. All the results of testing eClass with Wine 
data set are tabulated in Table II. 

Both tests on Iris data and Wine data shows that the 
proposed classifier eClass has the advantage of that evolving 
its structure from scratch without losing much precision 
(classification rate). In the online evolving mode, the 
performance slightly deteriorates, but is comparable to the 
results of other off-line approaches reported in [25]. In its 
offline mode, eClass has results of the same level of precision 
as as the best of the classifiers reported in [25]. 

 

V. CONCLUSION 
A novel approach, eClass, to on-line classification is 
introduced in this paper. It stems from subtractive and 
Mountain clustering [24]. It works in online mode and can 
work in real-time. It is non-iterative, and recursive 
calculations are used which avoids memorizing the whole 

history of the data without loss of information about the data 
density. This enables low memory requirements and much 
less computation. The learning process can start ‘from 
scratch’ learning and adapting to the new data samples. It can 

also start from some initial rule-based classifier that can be 
updated based on the new information contained in the new 
samples. Thus it is suitable for on-line and real-time 
applications such as classification of signals and streaming 
data, robotic applications, e.g. target and landmark 
recognition, real-time machine health monitoring and 
prognostics, fault detection and diagnostics etc. It can work 
for classification or evolvable classifier design only or for 
joint classification and classifier design. A novel formula for 
recursive calculation of the cosine distance is introduced in 
the paper that is suitable for on-line and real-time 
applications. Experiments with well known benchmark 
classification problems (Iris and wine data sets) have been 
performed and the results are very promising. The results 
indicate that eClass can achieve high classification rate 
(comparable or better than the off-line pre-fixed classifiers) 
as reported in the literature for two benchmark problems. At 
the same time it has a transparent form and can accommodate 
new data samples integrating the new data and existing 
knowledge. 
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