

Evolving Fuzzy Rule-based Classifiers

Plamen Angelov
Dept of Communication Systems

InfoLab21
Lancaster University

Lancaster LA1 4WA, UK

Xiaowei Zhou
Dept of Communication Systems

InfoLab21
Lancaster University

Lancaster LA1 4WA, UK

Frank Klawonn
Dept of Computer Science

University of Applied Sciences
BS/WF, Salzdahlumer Str. 46/48
D-38302 Wolfenbuettel, Germany

Abstract— A novel approach to on-line classification based on
fuzzy rules with an open/evolving structure is introduced in this
paper. This classifier can start ‘from scratch’, learning and
adapting to the new data samples or from an initial rule-based
classifier that can be updated based on the new information
contained in the new samples. It is suitable for real-time
applications such as classification streaming data, robotic
applications, e.g. target and landmark recognition, real-time
machine health monitoring and prognostics, fault detection and
diagnostics etc. Each prototype is a data sample that represents
the focal point of a fuzzy rule per class and is selected based on
the data density by an incremental and evolving procedure. This
approach is transparent, linguistically interpretable, and
applicable to both fully unsupervised and partially supervised
learning. It has been validated by two well known benchmark
problems and by real-life data in a parallel paper. The
contributions of this paper are: i) introduction of the concept of
evolving (open structure) classification (eClass) of streaming
data; ii) experiments with well known benchmark classification
problems (Iris and wine reproduction data sets).

I. INTRODUCTION

LASSIFICATION problems appear quite often in
industrial systems, robotics, defence and are the basic
tool used for pattern recognition tasks in signal and

image processing, decision making, data mining, fault
detection, automatic object recognition etc [1,2]. The basic
problem in classification is to induce a classification function,
or classifier, from a set of data samples. In many practical
problems nowadays the data are produced in large quantity
and very fast [3]. Such high-volume, non-stationary data
streams bring new challenges to the well established learning
methods [4]. In particular storing the complete data is often
practically impossible and as a result the data streams cannot
be analyzed in a batch mode. At the same time, most
conventional learning methods, such as support vector
machines [5,6], which aims at designing a classifier with
guaranteed boundaries of the error, discriminant analysis [1],
decision trees [7] or neural network classifiers [8], design the
classifier in batch mode, that is, by using the complete data
and labels that has been observed. Thus, they allow for
extracting knowledge from a snapshot of the data stream at a
certain point of time. Facing the challenge to cope with
real-time classification of streaming data there is a need to
develop classifiers that extract tractable knowledge from the
data or digital signals in real-time.

More recently, learning classifiers [9] have been developed
in the framework of evolutionary/genetic algorithms

(EA/GA) and fuzzy rule-based systems that adapt their
rule-base with new samples arriving on-line. They are,
however, driven by a ‘directed’ random search according to
the EA/GA concepts. Incremental Bayesian classifiers has
also been reported which allow data samples to arrive one at a
time, but the classifier structure is assumed to be fixed [10].
An evolving Bayesian classifier is under development and the
preliminary results are reported in [11].

On the other hand, fuzzy rule-based systems that are
evolving in the sense that their structure is not fixed, but can
grow and shrink has been recently developed [12,29] and
applied successfully to a number of identification [13],
time-series prediction [14], fault detection [15], and control
problems [16]. These systems are transparent and
interpretable. We use the term ‘evolving’ in a different
context to the context when used in EA/GA. According to the
Oxford Dictionary ‘evolve’ means ‘unfold; develop; be
developed, naturally and gradually’ [17, p.294]. One can
contrast this to the more general ‘evolutionary’ [17, p.294]
‘development of more complicated forms of life (plants,
animals) from earlier and simpler forms’, which is naturally
related to the ‘genetic’ [17, p.358] ‘branch of biology dealing
with the heredity, the ways in which characteristics are passed
on from parents to offspring.’ We use further the term
‘evolving’ fuzzy classifier (eClass) in the sense of ‘gradual
development’ of the classifier structure (fuzzy rule-base).
This new paradigm introduced for neural networks in [18,19],
for decision trees in [20], and for fuzzy rule-based systems in
[21] can be regarded as a higher level adaptation. This
emerging new paradigm mimics the evolution of individuals
in nature during their life-cycle, specifically the autonomous
mental development typical of humans: learning from
experience, inheritance, gradual change, knowledge
generation from routine operations, and rules extraction from
the data. A trivial analogy is the way people learn during their
life – starting with an empty rule-base they learn new rules
during their life from experience and based on the data
streams that their preceptors generate to the brain. The
development of the rule-base is gradual, but the rules are not
fixed or pre-defined. We generate new rules when new facts
(data samples) that can not be described by the existing rules
and when they are descriptive enough, not to be ‘one-off’’
outliers [22]. It is well known that fuzzy rule-based systems
are universal function approximators [23]; they are suitable
for extracting interpretable knowledge, therefore, they are

C

viewed as a promising framework for designing effective and
powerful classifiers.

II. THE STRUCTURE OF THE PROPOSED CLASSIFIER

The rule base that describes the non-linear evolving
classifier eClass can be described as a set of fuzzy rules of the
following form:

()ii
l

i
nn

ii
l

fyTHEN

xisxANDANDxisxIFR

=

)(...)(: **
11 (1)

where T
nxxxx],...,,[21= is the vector of features; i

lR
denotes the ith fuzzy rule; i=[1, Nl]; l=[1,L]; Nl is the number
of fuzzy rules per cluster; L is the number of classes (note that

NL ≤ ; ∑
=

=
L

l
lNN

1
, N is the overall number of fuzzy

rules; that is there is at least one fuzzy rule per
class); ()*i

jj xisx denotes the jth fuzzy set of the ith fuzzy rule;

j=[1,n];
*i

x is the prototype (focal point) of the ith
 rule

antecedent;],...,,[21
i
l

iii yyyy = is the L-dimensional
binary output of the MIMO exTS [22] fuzzy system.

Note that the type of the fuzzy rule depends on the type of
the consequent [22]:
a) first order Takagi-Sugeno, TS (the consequents are

linear classifiers):

[]

T

i
nl

i
n

i
n

i
l

ii

i
l

ii

Ti xf

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ααα

ααα
ααα

K

KKKK

K

K

21

11211

00201

,1
 (1a)

b) zero order TS (the consequents are the class labels):

[]Ti
l

iiif 00201 ααα= (1b)
The output of the exTS, y is formed as [22]:

∑
∑∏

∏
=

= =

==
N

i

i
lN

j

n

j
j

i
jl

n

j
j

i
jl

l y
x

x
y

1

1 1

1

)(

)(

µ

µ
 (1c)

where i
jlµ is the membership value of the jth feature,

j=[1,n]; l=[1,L].
We use the so called ‘winner-takes-all’ de-fuzzification to

determine the correct class, which is the usual choice in
classification problems:

()l

L

l
yClass

1
maxarg
=

= (2)

The membership functions that describe the closeness to
the prototype can be of any form, but usually the Gaussian
bell function is preferred due to its generalization capabilities:

2

2
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

=
i
jl

i
jld

i
jl e σµ i=[1,Nl]; j=[1,n]; l=[1,L] (3)

where i

jld is the distance between a sample and the

prototype (focal point) of the ith fuzzy rule; i

jlσ is the spread

of the membership function, which also represents the radius
of the zone of influence of the fuzzy rule.

Note that in order to simplify notations further the index l
will be omitted and a remark will be made that calculations
are made per class.

The spread of the membership σ is determined based on the
scatter [26] of the data per cluster. In Figure 1 both, so called
‘one sigma’ and ‘two sigma’ zones, are given around each
prototype (each fuzzy rule) for the IRIS data set using
Euclidean distance. In this particular example there are two
prototypes (respectively, two fuzzy rules) for one of the
classes and one rule for the other two classes.

The scatter resembles standard deviation and is given by
[22]:

1)0(;)(
)(

1)(
)(

1

2*
,cos == ∑

=
l

kS

j
j

i

l
l

l

xxd
kS

k σσ (4)

where l=[1,L] is the number of clusters;)(*
,cos j
i xxd

denotes the distance from cluster centre to new sample
assigned into this cluster.
 The scatter can be updated recursively by:

[] [] () [][]2*
,

222)1()(,
)(

1)1()(−−+−= kkxxd
kS

kk l
i

l
ll σσσ (5)

When a new cluster/rule is formed, Nl←Nl+1, its initial
local scatter [26] is approximated by the average of the local
scatters for the existing fuzzy rules for that class [22]:

∑
=

+ =
l

l

N

i

i
k

l

N

N
k

1

1 1)(σσ (6)

The structure of the proposed classifier is thus formed by
sets of fuzzy rules of type (1) in such a way that there is at
least one fuzzy rule per class. The prototypes around which
the fuzzy rules are formed are samples selected from the
available data by unsupervised learning (eClustering). The
learning of the exTS fuzzy model is described in detail in
[22].

III. EVOLVING CLASSIFIERS FROM DATA STREAMS

A. Potential of the prototypes and its recursive calculation

The eClass is initialized with the first data samples. A
fuzzy rule is formed around each one of these samples per
class. Potential of the prototype is set to 1)(*11

1 =xP .
Consequently, each data sample is first being classified to one
of the classes defined in the classifier and then its suitability
to become a prototype (to form another fuzzy rule) has been
checked. The decision whether a data sample is used to form a
prototype or to replace an existing prototype is based on the

data spatial density measure, called potential [13,24].
The potential calculated for a data sample is a function of

the accumulated distance between this sample and all other
samples in the data space per class. Thus, it represents the
density of the data that surrounds a certain data sample.
Originally [21,24] using Euclidean distance:

()
()

,..3,2;
1)(/)(1

1)(

1

1)(

1

2
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=

∑∑
=

−

=

k
kSkxx

kxP

l

n

j

kS

i
ji

kl
l

 (7)
where Pk(xk) denotes the potential of the kth data sample,

xk.
Note that formula (7) requires accumulating the

information from history of all the data which obviously
contradicts the requirement for real-time and on-line
application. The derivation of the recursive version of the
potential expression (7) is given in [13]. Starting from
substituting (4) into (7) and performing certain manipulations
that are given in the Appendix we arrive at:

() ())1()(2)(1)()(
1)()(

−+−+−
−

=
kkkkSk

kSkxP
l

l
k γβα (8)

where ()∑
=

=
n

j

j kxk
1

2)()(α (9a)

()∑ ∑
−

= =

=
1)(

1 1

2)(
kS

i

n

j

j
k

l

ixβ (9b)

)()()(
1

kkxk j
n

j

j Γ=∑
=

γ (9c)

∑
−

=

=Γ
1)(

1
)()(

kS

i

jj
l

ixk (9d)

In this equation, values)(kα and)(kγ can easily be
calculated based on the availability of the current data point,
x(k) only. The values)(kβ and)(kjΓ that require

accumulation of past information can be easily stored in two
variables with small size (the scalar,)1(−kβ and the

n-dimensional vector-column ()Tn kkkk)(),...,(),()(21 ΓΓΓ=Γ).

Then one can calculate recursively)(kβ and)(kjΓ by [13]:

0)1(
)1()1()(

=
−+−=

β
αββ kkk

 (10a)

0)1(
)1()1()(

=Γ

−+−Γ=Γ
j

jjj kzkk
 (10b)

 Each time a new data sample is read it affects the data
density of the data space of the respective class, therefore the
potentials of the previous centre needs to be updated. This
update can also be done in a recursive way as detailed in [13],
and no extra variable needs to be memorized, apart from the
current potential of the existing prototypes (focal points):

() ()
() ()∑

=
−−

−

−++−

−
= n

j
j

ii
k

i
kl

i
kli

k

kxkxkxPkxPkS

kxPkSkxP

1

2**
1

*
1

*
1*

)()()()(2)(

)(1)())((

 (11)

B. eClass Procedure
The proposed evolving fuzzy rule-based classifier can start

either ‘from scratch’ (with an empty rule-base) or with some
pre-specified set of fuzzy rules in form of (1). Each new data
sample that has been read can be used to upgrade or modify
the rule base if the label is also provided. We call this mode D
(for Design) and we apply it in on-line mode (possibly in
real-time). If the label is not provided, the existing fuzzy rule
base will generate the predicted class, that is, it will work in
mode C (for Classification). Note that eClass can work in any
combination of these two modes. For example, one can
perform D for certain number of samples and afterwards
perform C for another set of samples. This is close to the
off-line classifiers design concept. One can also perform D
and C for the same sample (performing C first and using the
rule-base that existed before this sample was read and only
after the classification to perform D if the class label is
provided). This is close to the adaptive modelling and control
concept when the prediction and learning are combined in the
same time step. An important specific of eClass is that not
only the number of fuzzy rules but the number of classes, L
may also be evolving and does not need to be pre-fixed. This
specific is not used in this paper, because the two benchmark

Fig. 1 Classification for Iris problem: a snapshot illustrating four
prototypes (two for the class Versicolor and one for each of the remaining
classes); σ are different for different clusters on different dimensions.

problems that have been considered have a pre-specified and
fixed number of features. This characteristic of eClass has
been, however, used in a real-life example [27].

When eClass is in D mode from the second data sample
onwards its potential, Pk(x(k)) is updated recursively by
(8)-(9). Then the potential of each of the previously existing
prototypes, ())(* kxP i

k is also updated using (11). Comparing
the potential of the new data sample with the potential of each
of the existing prototypes the following three outcomes are
possible:

a) () ())(max)(*

1
kxPkxP i

k

R

ik

i

=
> (12)

If condition (12) occurs that means that we have a data
sample that is strongly representative [21,22] and thus we add
a new prototype to the rule base. For each newly added
prototype we form a new fuzzy rule based at that prototype as
a focal point. Additionally, we check whether any of the
already existing prototypes are described well by the newly
added fuzzy rule. By well we mean [22] that the value of the
membership function satisfies:

()],1[;],1[,)(];,1[, 1 LlnjjekxNii j
il ==∀>=∃ −µ (13)

For the previously existing prototypes for which this is the
case, we remove them.

Alternatively (if (12) does not hold), we do not change the
overall structure of the classifier.

The procedure for the evolving fuzzy rule based classifier
eClass when it applies a joint classification and classifier
design (C+D) can be summarised in the following
pseudo-code:

BEGIN eClass (C + D)
Initialize (get first data sample or
start from a pre-trained classifier);
DO for the pair xk, k=2,3,… WHILE data
stream ends
 Classify xk (assign it to a class, C

l);
 Calculate Pk(xk)using (8)-(9);
 Update P(x*) using (11)
 Calculate the potential difference
IF (12) THEN add a new fuzzy rule
around xk;
IF (11) THEN remove the prototype(s),
xi* for which it is true;
Get the real class label, Cl

END DO

The flow chart (Figure 2) describes the structure of eClass

as a server thread in real-time application implementations.

IV. EXPERIMENTAL RESULTS
The proposed classifier, eClass was tested on two well

known benchmark problems. It should be noted that despite
the clearly off-line nature of these benchmark problems they
were used to test the proposed classifier in order to have some
comparison. In a parallel paper [27], a real-life application for
image data on-line classification is presented. Results on
these two datasets are also compared with the results from the
approach ‘Incremental Principle Component Analysis’ [28].

A. Iris Data set
The Iris data set is a widely used benchmark for

classification studies. The data set has three classes that
represent three types of the Iris plants, namely Iris Setosa, Iris
Verginica, and Iris Versicolor. There are four features of the
plants that are available for all the samples in the data set.
They represent the sepal and petal lengths and widths in cm.
The data set consists of 150 samples that is, 50 for each
species. In [25] 19 different classifiers were reviewed, and all
of them give between three and 24 misclassifications. The
results when using eClass are tabulated in Table I. When
comparing the result given by eClass with these result, one
should take into account the fact that eClass starts in this
experiment ‘from scratch’ with an empty rule base and no
pre-training and evolves its structure from the data stream.

In our experiment, tests have been carried out in three
different ways. In the first test we classify each sample first
without knowing its label. Afterwards, we get its correct class
label and use the pair (sample and label) to evolve the
rule-base. The joint classification and learning process (C +
D) is continued during the whole process of 150 samples. The
samples are in the original order as presented in the UCI
repository. In the second test, 100 randomly ordered samples
are used to evolve the classifier (D mode), and the rest 50 are
used to test (C mode). In the last test, so called ‘leave one out’
strategy is used that is eClass runs 150 times, each time

Fig. 2 Flow chart of Evolving Classification for real-time applications.

having 149 samples for classifier design (D) and the
remaining single sample is used for classification.

B. Wine Reproduction Data
Wine Reproduction data set is another common benchmark

problem. The data set comes from the chemical analysis of
wines grown in Italy derived from three different cultivars.
There are three classes, 178 samples with thirteen continuous
numerical features available in the data set.

In a similar way the three experiments have been carried

out with this data set. In the third experiment, 80 randomly
organized samples are used as training data to evolve the rule
base, and the remaining 98 data samples are used to test the
fixed classifier. All the results of testing eClass with Wine
data set are tabulated in Table II.

Both tests on Iris data and Wine data shows that the
proposed classifier eClass has the advantage of that evolving
its structure from scratch without losing much precision
(classification rate). In the online evolving mode, the
performance slightly deteriorates, but is comparable to the
results of other off-line approaches reported in [25]. In its
offline mode, eClass has results of the same level of precision
as as the best of the classifiers reported in [25].

V. CONCLUSION
A novel approach, eClass, to on-line classification is
introduced in this paper. It stems from subtractive and
Mountain clustering [24]. It works in online mode and can
work in real-time. It is non-iterative, and recursive
calculations are used which avoids memorizing the whole

history of the data without loss of information about the data
density. This enables low memory requirements and much
less computation. The learning process can start ‘from
scratch’ learning and adapting to the new data samples. It can

also start from some initial rule-based classifier that can be
updated based on the new information contained in the new
samples. Thus it is suitable for on-line and real-time
applications such as classification of signals and streaming
data, robotic applications, e.g. target and landmark
recognition, real-time machine health monitoring and
prognostics, fault detection and diagnostics etc. It can work
for classification or evolvable classifier design only or for
joint classification and classifier design. A novel formula for
recursive calculation of the cosine distance is introduced in
the paper that is suitable for on-line and real-time
applications. Experiments with well known benchmark
classification problems (Iris and wine data sets) have been
performed and the results are very promising. The results
indicate that eClass can achieve high classification rate
(comparable or better than the off-line pre-fixed classifiers)
as reported in the literature for two benchmark problems. At
the same time it has a transparent form and can accommodate
new data samples integrating the new data and existing
knowledge.

REFERENCES
[1] R. O. Duda, P. E. Hart, and D.G. Stork. “Pattern Classification” -

Second Edition. Wiley-Interscience, Chichester, West Sussex, England,
2000.

[2] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From Data Mining to
Knowledge Discovery: An Overview, Advances in Knowledge
Discovery and Data Mining, MIT Press, Cambridge, Massachusetts,
USA, 1996.

[3] P. Domingos and G. Hulten, “ Catching Up with the Data: Research
Issues in Mining Data Streams, Workshop on Research Issues in Data
Mining and Knowledge Discovery, Santa Barbara, CA, USA, 2001.

[4] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Heidelberg,
Germany: Springer Verlag, 2001.

[5] V. N. Vapnik, The Statistical Learning Theory, Springer Verlag, Berlin,
Germany, 1998.

[6] V. Kecman. Learning and Soft Computing. MIT Press, Cambridge,
Massachusetts, London, England, 2001.

[7] J. R. Quinlan, “Simplifying decision trees”, International Journal of
Man-Machine Studies, vol. 27, No3, pp.221–234, 1987.

[8] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, Oxford, UK, 1995.

[9] M. Butz, Rule-based Evolutionary Online Learning Systems: A
Principal Approach to LCS Analysis and Design, Physica Verlag,
v.191, Berlin, Heidelberg, Germany, 2006, ISBN 3-540-25379-3.

[10] K. M. A. Chai, H. T. Ng, and H. L. Chieu, “Bayesian Online Classifiers
for Text Classification and Filtering”, Proc.of the SIGIR’02, August
11-15, 2002, pp. 97-104, Tampere, Finland.

[11] F. Klawonn and P. Angelov, Evolving Extended Naive Bayesian
Classifier, 2006 IEEE Intern. Conf. on Data Mining, 18-22 December,
2006, Hong Kong, to appear

[12] P. Angelov, Evolving Rule-based Models: A Tool for Design of Flexible
Adaptive Systems. Heidelberg, Germany: Springer Verlag, 2002.

[13] P. Angelov and D. Filev, "An approach to on-line identification of
evolving Takagi-Sugeno models", IEEE Transactions on Systems, Man
and Cybernetics, part B, Cybernetics, vol.34, No1, pp. 484-498, 2004.

[14] P. Angelov and R. Buswell, “Identification of Evolving Rule-based
Models”, IEEE Transactions on Fuzzy Systems, vol.10, No5,
pp.667-677, 2002.

[15] P. Angelov, V. Giglio, C. Guardiola, E. Lughofer, and J. M. Lujan, “An
Approach to Model-based Fault Detection in In- dustrial Measurement
Systems with Application to Engine Test Benches”, Measurement
Science and Technology, vol.17, No7, 2006, pp.1809-1818.

[16] P. Angelov, “A Fuzzy Controller with Evolving Structure”,
Information Sciences, ISSN 0020-0255, vol.161, 2004, pp.21-35.

TABLE I
RESULTS FOR IRIS PROBLEM

 Design Classify Mode Rules Rate

I 150 150 (C&D)x150 4 98.0%
II 100 50 100D+50C 4 96.0%

III 149
(x 150)

1
(x 150)

149D+1C
(x150) 4 99.3%

iPCA
[28] 178 178 - 2 eigen

vectors 93.3%

TABLE II
RESULTS FOR WINE PROBLEM

 Design Classify Mode Rules Rate

I 178 178 (C&D)x178 7 96.1%
II 80 98 80D+98C 7 95.9%

III 177
(x 150)

1
(x 150)

177D+1C
(x150) 7 98.7%

iPCA
[28] 178 178 - 7 eigen

vectors 87.6%

[17] A. S. Hornby, Oxford Advance Learner’s Dictionary, Oxford
University Press, UK, 1974.

[18] B. Fritzke, “Growing cell structures – a self-organizing network for
unsupervised and supervised learning”, Neural Networks, vol. 7, No 9,
pp.1441-1460, 1994.

[19] N. Kasabov, “Evolving fuzzy neural networks for on-line
supervised/unsupervised, knowledge-based learning,” IEEE
Transactions on Systems, Man, and cybernetics, part B – Cybernetics,
vol. 31, pp. 902-918, 2001.

[20] R. Jin and G. Agrawal, “Efficient Decision Tree Construction on
Streaming Data”, Proc. of ACM SIGKDD, 2003.

[21] P. Angelov and R. Buswell, Evolving Rule-based Models: A Tool for
Intelligent Adaptation, Proc. of the 9th IFSA World Congress,
Vancouver, BC, Canada, 25-28 July 2001, pp.1062-1067.

[22] P. Angelov and X. Zhou, “Evolving Fuzzy Systems from Data Streams
in Real-Time”, Proc. 2006 International Symposium on Evolving Fuzzy
Systems, UK, IEEE Press, pp.29-35, September 2006, ISBN
0-7803-9719-3.

[23] L.-X. Wang, “Fuzzy Systems are Universal Approximators”, Proc. 1st
IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, San
Diego, CA, USA, pp.1163-1170, 1992.

[24] R. R. Yager and D. P. Filev, “Learning of Fuzzy Rules by Mountain
Clustering,” Proc. of SPIE Conference on Application of Fuzzy Logic
Technology, Boston, MA, USA, pp.246-254,1993.

[25] H. Ishibuchi and T. Nakashima, “Voting in fuzzy rule-based systems
for pattern classification problems”, Fuzzy Sets and Systems, vol. 103,
pp.223-238, 1999.

[26] P. Angelov and D. Filev, “Simpl_eTS: A Simplified Method for
Learning Evolving Takagi-Sugeno Fuzzy Models”, The 2005 IEEE
International Conference on Fuzzy Systems FUZZ-IEEE, Reno, Las
Vegas, USA, 22-25 May 2005, pp.1068-1073, ISSN 0-7803-9158-6/05.

[27] X. Zhou and P. Angelov, “Autonomous Self-localization in Completely
Unknown Environment using Evolving Fuzzy Rule-based Classifier”,
1st IEEE Symposium on Computational Intelligence for Security and
Defense Applications, CISDA 2007, April 1-5, 2007 Honolulu, HI,
USA, to appear.

[28] S.Pang, S.Ozawa, and N.Kasabov, “Incremental Linear Discriminant
Analysis for Classification of Data Streams”, IEEE Transactions on
Systems, Man, And Cybernetics –Part B: Cybernetics, Vol35, No.5,
October 2005.

[29] E. Lughofer and E. Klement, “FLEXFIS: A variant for incremental
learning of Takagi-Sugeno fuzzy systems,” in Proceedings of
FUZZ-IEEE 2005, Reno, Nevada, U.S.A., 2005.

