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Abstract

This paper proposes a new clustering algorithm in the fuzzy-c-means family, which
is designed to cluster time series and is particularly suited for short time series and
those with unevenly spaced sampling points. Short time series, which do not allow
a conventional statistical model, and unevenly sampled time series appear in many
practical situations. The algorithm developed here is motivated by experiments in
biology. Conventional clustering algorithms based on the Euclidean distance or the
Pearson correlation coefficient, such as hard k-means or hierarchical clustering are
not able to include the temporal information in the distance measurement. Uneven
sampling commonly occurs in biological experiments. The temporal order of the data
is important and the varying length of sampling intervals should be considered in
clustering time series. The proposed short time series (STS) distance is able to measure
similarity of shapes which are formed by the relative change of amplitude and the
corresponding temporal information. We develop a fuzzy time series (FSTS) clustering
algorithm by incorporating the STS distance into the standard fuzzy clustering scheme.
An example is provided to illustrate the performance of the proposed FSTS clustering
algorithm in comparison with fuzzy c-means, k-means and single linkage hierarchical
clustering.
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1 Introduction

Microarrays revolutionize the traditional way of one gene per experiment in molecular biol-

ogy (Brown and Botstein 1999, Duggan et al. 1999, Brazma and Vilo 2000). With microar-

ray experiments it is possible to measure simultaneously the activity levels for thousands

of genes. The appropriate clustering of microarray expression data can lead to classi-

fication of diseases, identification of co-expressed functionally related genes, functional

groupings of genes, and logical descriptions of gene regulation, among others (D’Haeseleer

et al. 1999, Tavazoie et al. 1999).

Time course measurements are becoming a common type of experiments in the use

of microrarrays, (DeRisi et al. 1997, Chu et al. 1998, Cho et al. 1998, Eisen et al. 1998,

Spellman et al. 1998). If a process is subject to variations over time, the conventional

measures used for describing similarity (e.g. Euclidean distance) will not provide useful

information about the similarity of time series in terms of the cognitive perception of a

human (Höppner 2001). An appropriate clustering algorithm for short time series should

be able to identify similar shapes which are formed by the relative change of expression

and the temporal information, regardless of absolute values. The conventional clustering

algorithms based on the Euclidean distance or the Pearson correlation coefficient, such

as hard k-means (KM) or hierarchical clustering (HC) are not able to include temporal

information in the distance measurement. Figure 1 shows three time series with different

shapes. The appropriate distance metric for gene expression clustering would identify that

g2 is more similar to g3 than to g1, since the deviation of shape across time of g3 from the

shape of g2 is less than that of g1. The Euclidean distance and the Pearson correlation

coefficient do not take into account the temporal order and the length of sampling intervals;

for these metrics both g1 and g3 are equally similar to g2. In this paper we introduce a

new clustering algorithm which is able to use the temporal information of uneven sampling

intervals in time series data to evaluate the similarity of the shape in the time domain.

This paper is organized as follows: Section 2 defines the objective and basic concepts of

the piecewise slope (PS) distance based on the requirements of short time series clustering.

In Section 3, the fuzzy short time series (FSTS) algorithm is introduced as a modification

of the standard fuzzy c-means algorithm (FCM). Section 4 presents an artificial data set

to illustrate and compare the performance of the proposed algorithm with FCM, KM and
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Figure 1: Three unevenly sampled time series with different shapes.

single linkage HC. Finally, conclusions are made in Section 5 summarizing the presented

research.

2 Piecewise slope distance

This section presents a measurement of similarity for time series DNA microarray data

based on the requirements of gene expression time series clustering. The performance of

the distance is illustrated by means of simple tests where temporal information is a key

aspect.

The objective is to define a distance which is able to capture differences in the shapes,

defined by the relative change of expression and the corresponding temporal information,

regardless of the difference in absolute values. We approach the problem by considering

the time series as piecewise linear functions and measuring the difference of slopes between

them. Considering a gene expression profile x = [x0, x1, . . . , xnt ], where nt is the number

of time points, the linear function x(t) between two successive time points tk and t(k+1)

can be defined as x(t) = mkt + bk, where tk ≤ t ≤ t(k+1), and

mk =
x(k+1) − xk

t(k+1) − tk
(1)

bk =
t(k+1)xk − tkx(k+1)

t(k+1) − tk
. (2)

The STS distance we propose corresponds to the sum of the squared differences of the

slopes obtained by considering time series as linear functions between measurements. The
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STS distance between two time series x and v is defined as:

d2
STS(x, v) =

nt−1∑
k=0

(
v(k+1) − vk

t(k+1) − tk
− x(k+1) − xk

t(k+1) − tk

)2

. (3)

To evaluate the performance of this distance in comparison with the Euclidean distance and

the Pearson correlation coefficient, two simple tests are performed. The objective of the

first test is to evaluate the ability to incorporate temporal information to the comparison

of shapes. The objective of the second test is to evaluate the ability to compare shapes

regardless of the absolute values.

For the first test, let us consider the time series shown in Figure 1. Table 2 illus-

trates the corresponding STS distance, Euclidean distance, and the Pearson correlation

coefficient between g2 and g1, and g2 and g1, respectively. The results show that the STS

distance is the unique metric which reflects the temporal information in the comparison

of shapes.

Euclidean distance STS distance Pearson correlation coefficient
(g2, g1) 1.513 0.500 0.904
(g2, g3) 1.513 0.071 0.904

Table 1: STS distance, Euclidean distance, and Pearson correlation coefficient between g2

and g1, and g2 and g1.

For the second test, let us consider a linear transformation of the absolute values of the

time series shown in Figure 1. These modified series are shown in Figure 2(a). Since the

STS and the Euclidean distance are both sensitive to scaling, a z-score standardization of

the series is required for them to neglect absolute values (Everitt 1974). The z-score of

the ith time point of a gene x is defined in (4), where x is the mean and sx the standard

deviation of all the time points x1, . . . , xn in vector x

zi =
(xi − x)

sx
. (4)

The time series after standardization are shown in Figure 2(b).

Table 2 summarizes the STS distance, the Euclidean distance, and the Pearson cor-

relation coefficient between g′2 and g′1, and g′2 and g′1. The results show that the STS

distance was the unique distance which can properly capture the temporal information.
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(a) Before standardization
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(b) After standardization

Figure 2: Three unevenly sampled time series data with different shapes, which correspond
to linear transformations of the time series in Figure 1.

Euclidean distance STS distance Pearson correlation coefficient
(g2, g1) 0.870 1.103 0.904
(g2, g3) 0.870 0.386 0.904

Table 2: STS distance, the Euclidean distance, and the Pearson correlation coefficient
between g′2 and g′1, and g′2 and g′1.

3 Fuzzy piecewise slope clustering algorithm

This section introduces the FSTS clustering algorithm as a FCM clustering algorithm

(Bezdek 1981). We present the minimization of the standard objective function and the

resulting cluster prototypes.

There are a wide variety of clustering algorithms available from diverse disciplines such

as pattern recognition, text mining, speech recognition and social sciences amongst others

(Everitt 1974, Jain and Dubes 1988). The algorithms are distinguished by the way in

which they measure distances between objects and the way they group the objects based

upon the measured distances. In the previous section we have already established the

way in which we desire the “distance” between objects to be measured; hence, in this

section, we focus on the way of grouping the objects based upon the measured distance.

For this purpose we select a fuzzy clustering scheme, since fuzzy sets have a more realistic

approach to address the concept of similarity than classical sets (Zadeh 1965). A classical

set has a crisp or hard boundary where the constituting elements have only two possible

values of membership, they either belong or not. In contrast, a fuzzy set is a set with

fuzzy boundaries where each element is given a degree of membership to each set.
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Figure 3: Diagram of the iteration procedure for the FCM clustering algorithms. Con-
sidering the partition of a set X = [x1, x2, . . . , xg], into 2 ≤ c < g clusters, the fuzzy
clustering partition is represented by a matrix U = [uik], whose elements are the values of
the membership degree of the object xk to the cluster i, ui(xk) = uik.

Fuzzy clustering is a partitioning-optimization technique which allows objects to belong

to several clusters simultaneously with different degrees of membership to each cluster

(Bezdek 1981, Höppner et al. 1999). The objective function that measures the desirability

of partitions is described in (5), where nc is the number of clusters, ng is the number of

vectors to cluster, uij is the value of the membership degree of the vector xj to the cluster

i, and d2(xj, vi) is the squared distance between the vector xj and the prototype vi.

J(x, v, u) =
nc∑
i=1

ng∑
j=1

uw
ij d2(xj , vi) . (5)

Figure 3 illustrates the iteration steps of the FCM algorithm, the representative of the

fuzzy clustering algorithms. In order to use the STS distance following the conventional

fuzzy clustering scheme, we need to obtain the value of the prototype vk that minimizes

(5), when (3) is used as the distance. Substituting (3) into (5) we obtain

J(x, v, u) =
nc∑
i=1

ng∑
j=1

uw
ij

nt−1∑
k=0

(
vi(k+1) − vik

t(k+1) − tk
− xj(k+1) − xjk

t(k+1) − tk

)2

. (6)

The partial derivative of (6) with respect to vik is:

∂J(x, v, u)
∂vik

=
ng∑
j=1

uw
ij

∂

∂vik

((
v(k+1) − vk

t(k+1) − tk
− x(k+1) − xk

t(k+1) − tk

)2

+
(

vk − v(k−1)

tk − t(k−1)
− xk − x(k−1)

tk − t(k−1)

)2
)

=
ng∑
j=1

uw
ij

[
2
(
vik − vi(k+1) − xjk + xj(k+1)

)
(
tk − t(k+1)

)2
]
−
[

2
(
vi(k−1) − vik − xj(k−1) + xjk

)
(
tk − t(k−1)

)2
]

=
g∑

j=1

2uw
ij

(
akvi(k−1) + bkvik + ckvi(k+1) + dkxj(k−1) + ekxjk + fkxj(k+1)

)
(
tk − t(k+1)

)2 (
tk − t(k−1)

)2 (7)
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where

ak = −(t(k+1) − tk)2

bk = −(ak + ck)

ck = −(tk − t(k−1))
2

dk = (t(k+1) − tk)2

ek = −(dk + fk)

fk = (tk − t(k−1))
2.

Setting (7) equal to zero and solving for vk we have

ng∑
j=1

uw
ij

(
akvi(k−1) + bkvik + ckvi(k+1)

)
= −

ng∑
j=1

uw
ij

(
dkxj(k−1) + ekxjk + fkxj(k+1)

)
(
akvi(k−1) + bkvik + ckvi(k+1)

) ng∑
j=1

uw
ij = −

ng∑
j=1

uw
ij

(
dkxj(k−1) + ekxjk + fkxj(k+1)

)

akvi(k−1) + bkvik + ckvi(k+1) = −

ng∑
j=1

uw
ij

(
dkxj(k−1) + ekxjk + fkxj(k+1)

)
ng∑
j=1

uw
ij

akvi(k−1) + bkvik + ckvi(k+1) = mik (8)

where

mik = −

ng∑
j=1

uw
ij

(
dkxj(k−1) + ekxjk + fkxj(k+1)

)
ng∑
j=1

uw
ij

.

Equation (8) yields an undetermined system of equations. We know the relations of the

prototype values among the time points, but not the absolute value at each time point.

That is, we know the shape but not the absolute level. If we add two fixed time points

at the beginning of the series with a value of 0, then solving the system for any nt, the

prototypes can be calculated as

v(i, n) =
n−3∑
r=2

mir

r−1∏
q=1

cq


 n−1∏

q=r+1

aq +
n−1∏

q=r+1

cq +
n∑

p=r+3

n−1∏
j=p−1

cj

p−2∏
j=r+1

aj


/

n−1∏
q=2

cq +

mi(n−1)

n−2∏
q=1

cq/

n−1∏
q=2

cq + mi(n−2)

n−3∏
q=1

cq(a(n−1) + c(n−1))/
n−1∏
q=2

cq. (9)

where mi1 = 0 and c1 = 1.
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The same scheme of the iterative process as for the FCM, described in Figure 3 is

followed, but the distance and the prototypes are calculated using (3) and (9), respectively.

The same three user-defined parameters found in the FCM algorithm; the number of

clusters nc, the threshold of membership to form the clusters α, and the weighting exponent

w are also found in the proposed FSTS algorithm. The weighting exponent refers to the

fuzziness of the clustering results, a value of one will produce hard clusters and the larger

the value of w the fuzzier the clusters become. Figure 4 illustrates the pseudocode of the

proposed FSTS clustering algorithm.

STEP 1: Initialization

ng : number of genes
nt : number of time points
X : gene expression matrix (GEM) [ng × nt]
nc : number of clusters
w : fuzzy weighting factor
a : threshold for membership
ε : termination tolerance

STEP 2: Initialization of the partition matrix
Initialize the partition matrix randomly, U (0) [nc × ng].

STEP 3: Repeat for l = 1, 2, ...
3.1 Compute the cluster prototypes:

v(i, 1)(l) = 0,
v(i, 2)(l) = 0,
For v(i, n)(l) use Equation (9) 1 ≤ i ≤ nc, 3 ≤ n ≤ nt.

3.2 Compute the distances:

d2
STS(xj , vi) =

nt−1∑
k=0

(
v
(l)

i(k+1) − v
(l)
ik

t(k+1) − tk
− xj(k+1) − xjk

t(k+1) − tk

)2

1 ≤ i ≤ nc, 1 ≤ j ≤ ng .

3.3 Update the partition matrix:
if dSTSij > 0 for 1 ≤ i ≤ nc, 1 ≤ j ≤ ng ,

u
(l)
ij =

1
nc∑

q=1

(dSTSij/dSTSqj)1/(w−1)

,

otherwise u
(l)
ij = 0 if dSTSij > 0, and u

(l)
ij ∈ [0, 1] with

nc∑
i=1

u
(l)
ij = 1.

until U (l) − U (l−1) < ε.

Figure 4: Pseudo code of the FSTS clustering algorithm.

4 Illustrative example

This section presents a simple artificial data set to illustrate and compare the performance

of the proposed FSTS clustering algorithm in terms of the cognitive perception of a human.

7



Four groups of five vectors were created where each group has the same parameters of

linear transformation between time points, as shown in Table 4. That is, for the group i,

1 ≤ i < 4, xj(k+1) = mikxjk + bik, with 0 ≤ k < (nt − 1) and 1 ≤ j < 5. The values of m

and b were obtained randomly for each group.

Time points Value
x0 initial value
x1 m1x0 + b1

x2 m2x1 + b2
...

...
xnt m(nt−1)x(nt−1) + b(nt−1)

Table 3: Artificial profile x = [x0, x1, . . . , xnt ]. A group of vectors with similar shape can
be obtained by changing the initial value.

The resulting artificial data set, shown in Figure 5(a), was clustered using FCM, FSTS,

KM and HC algorithms, respectively. All the algorithms were able to identify the four

clusters shown in Figure 5(b) successfully. The clustering parameters were w = 1.6 and

α = 0.4 for the two fuzzy algorithms.
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(a) Artificial Data (b) Clustering results

Figure 5: Artificial data set and clustering results for FCM, FSTS, HK and HC algorithms.

The second test used a subset of the artificial data set shown in Figure 5(a). The

original data set was “resampled” selecting 10 time points randomly out of the 20 original

time points. The resulting data set is shown in Figure 6(a). In this case, only the FSTS

algorithm is able to identify the four clusters successfully, while FCM and HC identify

two clusters and the other two mixed, as shown in Figure 7 and HC does not produce

consistent results. The clustering parameters for the FSTS algorithm were w = 1.2 and

α = 0.6. Different parameters were tested for the FCM, 1.2 < w < 2.5 and 0.3 < α < 0.6
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giving unsuccessful results. Finally the algorithms were evaluated using the three time

series data presented in Section 2. The objective is to cluster g1, g2 and g3 in two clusters.

The FSTS algorithm is the unique method capable of grouping g2 with g3 separated from

g1 consistently. FCM, HK, and HC do not have consistent results since they find g2 as

similar to g1 as to g3 as described in Section 2.
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(a) Unevenly resampled artificial data (b) Consituting clusters

Figure 6: Unevenly resampled artificial data set and the constituting clusters.

(a) FCM clustering results (b) HC clustering results

Figure 7: Clustering results for FCM and HC algorithms.

5 Conclusions

The FSTS clustering algorithm was presented as a new approach to cluster short time-

series. The algorithm is particularly well suited for varying intervals between time points,

a situation that occurs in many practical situations, in particular in biology. The FSTS

algorithm is able to identify similar shapes formed by the relative change and the temporal

information, regardless of the absolute levels. Conventional clustering algorithms, includ-
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ing FCM, KM, or HC, are not able to properly include the temporal information in the

distance metric. We tackled the problem by considering the time series as piecewise linear

functions and measuring the difference of slopes between the functions. We illustrated

the algorithm with an artificial data set. The FSTS algorithm showed better performance

than the conventional algorithms in clustering unevenly sampled short time series data.
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Höppner, F.: 2001, Learning temporal rules from state sequences, IJCAI Workshop on

Learning from Temporal and Spatial Data. pp. 25–31.
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