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Abstract. We revisit the problem of representing a high-dimensional
data set by a distance-preserving projection onto a two-dimensional plane.
This problem is solved by well-known techniques, such as multidimen-
sional scaling. There, the data is projected onto a flat plane and the
Euclidean metric is used for distance calculation. In real topographic
maps, however, travel distance (or time) is not determined by (Eu-
clidean) distance alone, but also influenced by map features such as
mountains or lakes. We investigate how to utilize landscape features for a
distance-preserving projection. A first approach with rectangular cylin-
drical mountains in the MDS landscape is presented.
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1 Introduction

Large data sets call for tools that (semi-) automate as many of the tedious steps
in data analysis as possible, but usually cannot replace the visual inspection of
data or results, because the visual perception of humans is extremely good in
detecting abnormalities that are difficult to detect automatically. This explains
why visualisation techniques are useful and important, even in times of powerful
data mining techniques and large data sets.

In this paper, we therefore revisit the problem of mapping high-dimensional
data to a two- or three-dimensional representation. There are various approaches
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to solve this problem: a data record may be represented by a pictogram, where
each attribute is mapped to a detail of the pictogram (e.g. stick figures or Cher-
noff faces), a record may be represented by a sequence of line segments (e.g. one
line segment per attribute as with parallel coordinates), or it may be projected
into a low-dimensional space and then represented by a dot in a scatter plot. In
the latter category the main objective is usually to preserve either the variance
of the data (principal component analysis (PCA) [4]) or the distances between
the data objects (e.g. multidimensional scaling (MDS) [7], and modifications
thereof [8]). For most of these techniques the graph consists of one graphical
element per data record (pictogram, sequence of lines, dot). Only with very few
visualisation techniques additional elements provide further information about
the depicted data. Just like in a map with level curves, where the existence of
mountains between two geographical positions indicate a longer traveltime, we
want to understand the graph as a landscape that carries information in its own
right.

The paper is organized as follows: In section 2 we discuss the kind of land-
scape we will consider and justify it by some theoretical considerations. We stick
to the idea of a distance-preserving map and, starting from a flat map (discussed
in section 3), we incrementally modify the landscape to improve the overall error
(section 4). Some results and examples are provided in section 5.

2 MDS Representation on a Landscape

We assume that a p-dimensional data set X = {z1,z2,...,2,} C RP is given.
By d(v,w) we denote the Euclidean distance ||v — w||. In MDS each of the high-
dimensional data points x; has to be mapped to a low-dimensional representative
yi. The projection of X is denoted as Y = {y1,¥y2,...,yn} C R? where 1 < g < p
(typically ¢ € {2,3}). A perfect distance-preserving projection of X to Y would
keep the distances dj; := d(w;, 7;) of the high-dimensional space identical to the
distances d?i’j :=d(ys,y;) of the projected data objects, that is, di; = dfj holds. A
perfect projection is, however, impossible except for a few trivial cases. Therefore,
MDS seeks to minimize the error introduced by the projection (|d; — d};| for all
i,7). Common objective functions are [7]:
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Usually the selected stress function is minimized by a numerical optimisation
method such as gradient descent.

A similar technique that does not use any of the above objective functions
is the self-organizing map (SOM) [6]. The data objects are assigned to cells
on a regular grid such that data objects in neighbouring cells are similar to
each other. Traditionally, the colouring of the cells is used to provide additional
information about the similarity to data in adjacent cells. In [9] an extension has
been proposed that encodes information about the data density as well as the
distance between cell data in a landscape, the so-called U*-matrix. The distance
of neighbouring cells is reflected by the landscape, but for non-adjacent cells no
conclusions can be made.

In this work we stick to a distance-preserving map (just as with MDS), but we
want to use the landscape as an additional parameter influencing the perceived
distance between data objects placed in the landscape. With a real map the
true travel distance depends on the chosen path: we may circumvent or climb
a mountain, for instance. To be of immediate use no tedious path optimisation
should be necessary to understand the visualisation, therefore only the straight
connection between the points is considered relevant for their distance. If the
straight line between two projected points is shorter than the distance between
their high-dimensional originals, we may introduce obstacles on the path to
increase their map-distance. From the number and height of the obstacles a user
gets a better impression of the true distance.

A landscape MDS (LMDS) may be constructed in the following way: We seek
for an initial distribution of data objects on a flat plane guaranteeing that

dl; < d; (4)

holds for all 4, j € {1,...,n}. This condition is motivated by the fact that moun-
tains can only increase the distances. Then we place rectangular or cylindrical
mountains (parameterized by location, size and height) in the landscape such
that the difference |d}; — df;| is reduced. In our simple first model a mountain
increases the path length by twice the height of the cylindrical mountain, corre-
sponding to climbing the mountain and descending to the base level again.

Can such a landscape MDS deliver better results than traditional MDS? Yes,
it can, at least in theory. We place the projections y; on a circle such that the
distances are no larger than the original ones and no three points are collinear
(figure 1, left). We ensure d?j < dj; by making the circle sufficiently small. Then
introduce cylindrical mountains m;; (¢ < j) such that each mountain m;; is
crossed only by the line connecting the two points y; and y; (figure 1, right).
Choosing hij = (df; — d;)/2 reduces the error of the distances to zero in the
landscape.

The drawback of this solution is obviously that in the worst case n(n —1)/2
very narrow cylindrical mountains for n data objects have to be introduced.
The resulting landscape is very different from common maps and thus hard to
interpret. We will develop a better alternative in the following sections.
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Fig. 1. An optimal solution with zero error.

3 Imitialisation of LMIDS

As mentioned above, landscape MDS (LMDS) must be initialized such that the
constraints (4) for the distances are fulfilled. There are a number of approaches
which can be used for the initialization of an LMDS map. To choose the best ini-
tialization strategy, we performed a comparison of the following four approaches:

(a) Projecting the data to the plane by PCA approach automatically satisfies
the constraint (4) of smaller distances.

(b) The second approach enhances the first one by shifting points within al-
lowed intervals after the PCA projecting. The intervals are computed such
that the error function (3) is minimized and the violation of the constraints
(4) is avoided. The interval computation involves the golden section search
algorithm.

(c) Classical MDS which violates the constraint of smaller distances.

(d) MDS with constraints on distances using a Lagrange function which is de-
fined as

n—1 n
L =FE;+ Z 2 /\ij (dfj - df]) . (5)
i=1 j=itl

Although no analytical solution of (5) exists, the Lagrange function can be
optimized iteratively using the Arrow-Hurwitz-Uzawa algorithm [2]:
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where a®) and %) are the step length parameters. The undetermined La-

grange multipliers /\E;-H_l) are equal to zero when the constraints (4) are

satisfied, and become positive when the constraints are violated.

Fig. 2. The cube data set.

To compare the initialization results provided by the different approaches
listed above, we used a number of benchmark data sets: "Iris’ (4 attributes) and
'Glass’ (9 attributes) from the UCI Machine Learning Repository [1] with 150
and 214 data objects, respectively, as well as the two three-dimensional data
sets ’Cube’ and ’Coil’ (see the left images in figures 2 and 3, respectively.) with
360 and 160 data objects, respectively. The results for these data sets provided
by the considered initialization methods are listed in table 1. The number of
iterations required for PCA with shifting was 5, because more iterations did not
significantly improve the results. For constrained MDS with the Arrow-Hurwitz-
Uzawa algorithm, the number of iterations was 5000.

As can be seen from table 1, constrained MDS with the Arrow-Hurwitz-
Uzawa optimisation procedure considerably outperforms the other three ap-
proaches w.r.t. the objective function (3) and avoiding the violation of con-
straints (4). So we will use this technique for the initialization of LMDS in the
following section. The important advantage of the procedure (6) are its high
speed of convergence and its low computational costs.

4 Adding Mountains to the Landscape

In the previous section, initialisation strategies were compared that position
the data points on a flat landscape in such a way that the constraints (4) are
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3D Mountvisualization

Fig. 3. The coil data set.

(almost) satisfied. Therefore, in the next step, mountains will be introduced that
can only lead to in an increase of the distances of the flat landscape. The effect
of a cylindrical or rectangular mountain of height h on the distance between two
points 4 and j is

dif" =dij + &izh, & €40, 1, 2} (7)

Figure 4 shows the possible cases and the values for &;;.

When we add mountains to the landscape, we have to decide where to place
the mountains (the underlying rectangle for a rectangular mountain and centre
point as well as the radius for a cylindrical mountain), determine their heights
and also the number of mountains we want to introduce. Again, there is no
analytical solution to this problem. The objective function is not even continuous

Table 1. Empirical comparison of the initialisation strategies.

Data|PCA: MDS: PCA with shift-|Arrow-Hurwitz-
set ing: Uzawa MDS:
Error (3) |Error (3) Error (3) Error (3)
Sum of violations|Sum of violations|Sum of violations
of constraint (4) |of constraint (4) |of constraint (4)
Iris  [0.0097589 0.00632271946452 |0.009536704494 0.0090821097634
0 453.0641 0 3.085490787E-4
Coil [0.0768078 0.0546562810427 0.076738333 0.0746009358153
0 8805.257 0 8.20138002E-4
Glass [0.170403 0.03577761897878  |0.10563177615 0.080108479955
0 4176.65 0 7.677778033E-4
Cube [0.070009 0.0479180387553 0.067812491266 0.0652975311919
0 1669.474 0 7.673804646E-4
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Fig. 4. Effects of a rectangular mountain on the distance between two points.

according the coefficients &;;. Therefore, we apply an evolution strategy (see for
instance [3]) for positioning the mountains. The height of a mountain is not
considered as a parameter of the evolution strategy, since the optimal height for
a mountain with a fixed location can be obtained from ‘9E3 = 0, leading to

n n d?j_dfj
b Zi:l Zj:i+1 T@fij (8)
Zz 1 Z] i+1 22"] fij

There are two strategies to add mountains to the landscape. Mountains can
be introduced to the landscape one by one or a fixed number of mountains
is added simultaneously. In both cases, the intersection of mountains must be
avoided. Otherwise, (7) would not be valid anymore and the computing of the
revised distances would become quite complicated. It is, however, allowed that
one mountain is placed completely on top of another, as long as there is not
just a partial overlap of mountains. When k moutains are added simultaneously
and not one by one to the landscape, the optimal heights of the mountains can
no longer be computed from (8). The heights are given by the solution of the
following system of linear equations.
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The solution of this system of linear equations can lead to negative heights.
Negative heights as well as the avoidance of overlapping mountains is enforced
by a dynamic penalty function to the evolution strategy that assigns a low fitness
to solutions with intersecting mountains. The penalty function for cylindrical
mountains is described here. The corresponding penalty function for rectangular
mountains can be defined in a similar way. Two cylindrical mountains with radius
r; and 7; overlap when the distance 0(¥) between the midpoints of their circles
satisfies

60 < pl gl (10)

If in this case either 8\ + 7@ < 7 or §(¥) 4 ri < ¢ holds, then one of the
mountains lies completely on top of the other and no penalty is required. In case
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a penalty is needed, it is defined as g;; = ! + 77 — §(9), otherwise g;; = 0 is
chosen. The overall penalty is given by

k

k=1 k&
pen = Z—min{hi,O} + Z Z 9ij- (11)

i=1 i=1 j=i+1

The penalty function is increased with the number of generations of the
evolution strategy, so that in the end solutions with intersecting mountains have
no chance to survive due to the bad fitness value. The overall fitness is given
equation (3) plus

£(t) - pen (12)

where f(t) is a positive and increasing function. ¢ refers to the generation number
of the actual population of the evolution strategy.

In order to speed up the computations, the determination of the ¢;; val-
ues for rectangular mountains is carried out based on the Cohen-Sutherland
line-clipping algorithm (see for instance [5]) used in computer graphics. Line
clipping refers to the problem of finding out whether a line has to be drawn in
a rectangular window on the computer screen, so that it is necessary to deter-
mine, whether the line is completely inside, completely outside or partly inside
the window. This corresponds exactly to the problem of finding out whether a
connecting line between two points is affected by a rectangular mountain, as it
is illustrated in figure 4.

For cylindrical mountains the same strategy is used by applying the Cohen-
Sutherland line-clipping algorithm to the bounding square of the circle associated
with the cylindrical mountain. In case a line intersects the bounding square, it is
still necessary to test whether it intersects also the circle. But at least for lines
outside the bounding square, we know &;; = 0.

Introducing mountains in a greedy manner step by step with the evolution
strategy turned out to be faster than adding mountains simultaneously. However,
the results of the latter strategy were slightly better in our experiments.

5 Examples

In this section we present the results of numerical simulations of the proposed
LMDS visualisation method. We used five data sets: the first four are the arti-
ficial data sets ’Cube’, "Pyramid’, ’Coil’ and 'Ring’. Two of them were already
mentioned in section 3. The third data set is a real-world data set from a waste-
water treatment (WWT) plant in Germany. The results are shown in figures 2,
3,5, 6 and 7, respectively. Note that the 3D-effect is better, when the images can
be rotated or zoomed. The four artificial data sets are all three-dimensional. On
the left-hand side of each figure, the original data set is shown, on the right-hand
side the LMDS result.

For the WWT plant, measurements of 15 process variables over a period of six
years were available. The main task was to visualize the year-to-year variations
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Fig. 5. The pyramid data set.
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Fig. 6. The ring data set.
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in the plant. We did not use any information on time or date for the generation
of the visualisation.

The 3D-diagram generated from our method shows a clear separation of the
year 1996 which is marked by bigger yellow spheres. This is confirmed by our
knowledge of changes in the process that were implemented in the year of 1997.

B 3D Mountvisualization

Fig. 7. The wastewater treatment plant data set.

Table 2 shows a comparison of the error values for classical MDS and for
LMDS for the objective function (3). The error value of LMDS is not always
better. The main reason is the greedy strategy to start with an MDS initialisa-
tion with the constraints described in equation (4). It seems that the restricted
MDS gets stuck in a local minimum easier and the introduction of mountains
afterwards cannot always compensate this effect completely.

6 Conclusions

We have introduced a new method that exploits a landscape for multidimen-
sional scaling instead of a flat plane. In principle, it is possible to position the
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Table 2. Comparison of MDS to LMDS

Error according to equation (3)
Data set MDS LMDS
Pyramid 0.02028127 0.00872146
Ring 0.02551469 0.02430803
Cube 0.04791804 0.03802418
Coil 0.05465628 0.05809677
Wastewater treatment plant|0.07254737 0.08211769

data points on the landscape in such a way that the distances in the original
high-dimensional data space are preserved exactly. However, this will lead to
extremely complicated and non-intuitive landscapes.

Simplified landscapes allowing only a strictly limited number of mountains
suitable for real visualisation purposes cannot guarantee this exact represen-
tation of the distances anymore. However, shortening distances instead of in-
creasing them by mountains might lead to better solutions. The reason for this
problem can be seen in figure 8. The typical way to fit a two-dimensional plane
into a higher dimensional space would be to fold it like a towel, which would
lead to larger distances instead of smaller distances as illustrated in figure 8. But
mountains in LMDS can only increase, but not decrease distances and concepts
like wormholes’ that would be needed to shorten distances are not very suitable
for visualisation purposes.

Fig. 8. The problem of fitting a lower into a higher dimensional space.
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