
Rank Correlation Coefficient Correction by

Removing Worst Cases

Martin Krone1 and Frank Klawonn12

1 Department of Computer Science
Ostfalia University of Applied Sciences

Salzdahlumer Str. 46/48, D-38302 Wolfenbuettel, Germany
{ma.krone,f.klawonn}@ostfalia.de

2 Bioinformatics and Statistics
Helmholtz Centre for Infection Research

Inhoffenstr. 7, D-38124 Braunschweig, Germany

Abstract. Rank correlation can be used to compare two linearly or-
dered rankings. If the rankings include noise values, the rank correlation
coefficient will yield lower values than it actually should. In this paper,
we propose an algorithm to remove pairs of values from rankings in order
to increase Kendall’s tau rank correlation coefficient. The problem itself
is motivated from real data in bioinformatics context.

Key words: Rank correlation coefficient, greedy algorithm, graph algo-
rithms

1 Introduction

The motivation for the formal problem we will discuss in this paper comes from
biological experiments with the bacterium pseudomonas aeruginosa. In these
experiments, each of more than 4,000 genes was knocked out and the mutants
resulting from the knocked out genes were examined under more than 100 con-
ditions. Conditions are, for instance, different antibiotics in varying concentra-
tions. For each condition we obtain a value, describing the deviation from the
“normal condition”. Genes that are functionally related are expected to show
similar behaviour under the same conditions, especially under those where they
should be highly activated (expressed) if they were not knocked out. If we order
the deviations from the “normal condition” for each mutant, we can compare
these rankings of the conditions. A high correlation between two rankings would
be a hint to functionally related genes. However, although many of the genes
will play a certain role under almost all conditions, there are some conditions
for each gene where it might have no influence. Unfortunately, we do not know
which conditions these are for each gene. These conditions can therefore lead to
a reduction of the correlation between the genes or mutants.

In order to reduce this effect, we do not consider the correlation with re-
spect to all conditions. For each pair of genes, we are allowed to remove a fixed
small number k of conditions, to compute the correlation coefficient. Here we

2 Martin Krone and Frank Klawonn

use Kendall’s tau rank correlation coefficient [2]. The task is to remove those
conditions that lead to the highest increase of the rank correlation coefficient.

The paper is organized as follows. In Sect. 2, we briefly recall Kendall’s tau
rank correlation coefficient and show how it can be associated with undirected
graphs. Section 3 reformulates our problem as a graph problem and discusses
the infeasible brute force solution and a greedy approach. An improved greedy
algorithm based on a look-ahead strategy is proposed in Sect. 4. Experimental
results are provided in Sect. 5 before the final conclusions.

2 Formalization of the problem

Let x and y be two rankings of length n and both be free of duplicate values
(so-called ties). Then Kendall’s tau rank correlation coefficient can be used to
measure the degree of correspondence between x and y. It is defined as

τ =
pc − pd
(

n
2

) , (1)

where pc denotes the number of concordant (meaning: in the same order) and
pd the number of discordant (meaning: in the opposite order) among all

(

n
2

)

different pairs. Two pairs (xi, yi) and (xj , yj) are referred to as concordant if
sgn(xi − xj) = sgn(yi − yj) and denoted discordant otherwise. As it is assumed
throughout this paper that both rankings are free of ties, every two pairs are
either concordant or discordant.

Furthermore, the correspondence between x and y can be represented by an
undirected graph by applying the following set of instructions:

1. Create a graph G = (V,E) where V is the set of n nodes labelled v1, . . . , vn.
2. For every pair (i, j) s.t. 1 ≤ i < j ≤ n, add an undirected edge between vi

and vj to E if (xi, yi) and (xj , yj) are discordant.

Theorem 1. For −1 ≤ τ ≤ 1, the number of edges in the resulting graph is

given by

|E| =

(

n

2

)

1− τ

2
. (2)

Proof. As the number of edges |E| equals the number of discordant pairs and

pc + pd =

(

n

2

)

(3)

holds, it follows from (1) that

τ =

(

n
2

)

− 2|E|
(

n
2

) . (4)

Solving (4) for |E| proves this theorem. ⊓⊔

Thus, the resulting graph is free of edges provided that τ = 1 whereas it will
equal the so-called complete graph Kn if τ = −1.

Rank Correlation Coefficient Correction by Removing Worst Cases 3

3 Reformulation as a graph problem

Recall that we seek to delete a fixed constant k < n of conditions for the pair of
rankings we want to compare. This set of conditions has to be selected in such a
way that as many discordant pairs as possible are removed in order to increase
the rank correlation coefficient.

As the correspondence between two rankings can be represented by an undi-
rected graph, an equivalent task is to delete a k-subset of the nodes from the
graph such that as many edges as possible are thereby removed. At first glance,
finding the best k-subset might seem to be an easily solvable problem. However,
as deleting any node from the graph decreases the degree of all its adjacent
nodes, this is actually a considerably more difficult task. In fact, this is a varia-
tion of the so-called node-deletion problem [4]. However, this problem is usually
seen with regard to finding a minimum number of nodes whose deletion results
in a subgraph that satisfies a given graph-property. As approaches [1] for those
kinds of tasks cannot be applied to our specific problem, we will now examine
two generic approaches along with their advantages and disadvantages.

3.1 Bruteforce approach

The most obvious approach to our problem is to determine all
(

n
k

)

subsets of k
nodes and select the set whose deletion results in the removal of more edges than
any other set. Note that the total number of removed edges does not depend on
the order the nodes of a set are deleted in. Thus, it is sufficient to test only one
of all k! permutations for each set of k nodes.

While this approach guarantees to find the best set, it will rarely be used in
practice unless testing all

(

n
k

)

subsets can be done in reasonable time which will
only be possible if both n and min(k, n−k) are very small. In other cases, one is
usually interested in a different approach that requires less steps, but accepts at
the same time that less edges in comparison to the bruteforce algorithm might
be removed from the graph.

3.2 Using a greedy strategy

Greedy algorithms are based on the idea of choosing the local optimum in each
step hoping this will lead to the best overall performance. While there are some
problems that can efficiently be solved by this approach, such as creating a
minimum cost spanning tree [3], greedy algorithms often only find approximate
solutions. Note that the definition of the local optimum depends on the specific
field of application. As we seek to remove as many edges as possible from the
graph by deleting a given number of nodes, a greedy strategy for this problem
is to delete the node with the highest degree in each step.

It is important to realize that the strategy described above may fail to remove
the maximum number of edges if more than two nodes are deleted from the
graph. We show this is indeed true for k = 3 by comparing the bruteforce
algorithm to this greedy strategy when applied to the graph in Fig. 1 that is based

4 Martin Krone and Frank Klawonn

on the rankings in Table 1. Initially, the greedy algorithm deletes node v7 as it
has a higher degree than any other node. Consequently, five edges are removed
from the graph. Note that all remaining nodes have degree three and the graph is
now symmetric with respect to {v1, v2, v3} and {v4, v5, v6}. As each pair of nodes
from either set is not adjacent, the greedy algorithm will delete any pair. Thus,
a total of eleven nodes are removed from this graph. The bruteforce approach,
however, yields a better result. Initially, each pair of nodes of the set {v1, v2, v3}
is not adjacent and each of these nodes has degree four. Consequently, deleting
all nodes of the set {v1, v2, v3} in arbitrary order allows the bruteforce algorithm
to remove twelve edges from the graph. However, this greedy approach might

Table 1. Pair of rankings that can be represented by the graph in Fig. 1

1 2 3 4 5 6 7

5 6 7 1 3 4 2

v1 v2 v3

v7

v4 v5 v6

Fig. 1. Example for a graph for which the greedy algorithm removes less edges than
the bruteforce approach

still be preferred to the bruteforce algorithm as it can easily be implemented
and often comes close to the maximum number of edges that can be removed by
deleting a certain number of nodes. As this greedy strategy has to find the node
having the highest degree in each of k iterations (which can be done in O(n)
steps), its overall complexity is O(kn).

4 An improved greedy strategy

Throughout this section, we use Si to denote the set of nodes that were removed
in the first i− 1 iterations and let degS(v) be the degree of v ∈ V if all nodes of
the set S were removed from the graph.

Rank Correlation Coefficient Correction by Removing Worst Cases 5

The greedy strategy that we described in the previous section does not suc-
ceed in removing as many edges as possible from a graph in all cases as it does
not take into account the number of edges that can be removed in the subsequent
k − i iterations when deciding on the node that will be deleted in the ith step.
Thus, in order to improve this greedy strategy for the node-deletion problem, it
is necessary to find a way to compute or estimate the number of edges that can
be removed in the remaining k− i steps provided that a node v of the set V \Si

was deleted in the ith step. We will now look at three different approaches.

1. One idea is to choose from all
(

n−i
k−i

)

possibilities of selecting k − i nodes
from the remaining n− i nodes the set that results in the highest number of
removed edges if all its elements are deleted from the current graph. However,
this approach basically corresponds to the idea of the bruteforce algorithm
described in Sect. 3.1 and will be of limited use for bigger graphs.

2. A different approach is to sort the remaining nodes by their degree in de-
scending order and select the first k − i nodes from the ordered list. Then,
approximate the sought-for value by calculating the sum of degrees of the
selected nodes. Note that this approach usually overestimates the real num-
ber of edges that can be removed in the remaining iterations as it does not
consider that some of the selected nodes may be connected by an edge that
is consequently counted twice.

3. Moreover, one can also attempt to take into account the effects of deleting
v by looking ahead one step in the iteration and apply a second greedy
algorithm to determine a lower bound on the number of edges that can be
removed in the subsequent iterations. This approach will now be described
in more detail.

Assume that the algorithm has completed the first i− 1 iterations and now has
to find the node that will be deleted in the ith step. For each node v of the set
V \ Si of the remaining n− i+ 1 nodes, carry out the following steps:

1. Create a copy of the current graph and delete v from this copy.
2. For each of the subsequent k− i iterations, find and delete from the copy the

node with the highest degree. Let hi(v) denote the total number of edges
that are removed from the copy in this step.

Finally, set
gi(v) = degSi

(v) + hi(v) (5)

to calculate a lower bound on the number of edges that can be removed in the
ith step and its subsequent iterations provided that v was deleted in the ith
iteration. In order to apply this idea to the node-deletion problem, determine in
each iteration 1 ≤ i ≤ k the node w ∈ V \ Si that maximizes gi, remove it from
the graph along with its adjacent edges and update the set of deleted nodes by
setting Si+1 = Si ∪{w}. A high-level description of this nested greedy approach
is given in Algorithm 1.

It should be emphasized that hi(v) provides only a lower bound (but usually
a good one provided that k − i is not too large) on the exact number of edges

6 Martin Krone and Frank Klawonn

that can be removed in the remaining k− i iterations if v was deleted in the ith
step. While an algorithm deleting nodes on the basis of gi will consequently not
remove as many edges as possible in all cases, it will never perform worse than
the greedy algorithm described in Sect. 3.2.

Theorem 2. The nested greedy algorithm never removes less edges than the

greedy approach.

Proof. If t ∈ V denotes the node having the highest degree in the initial graph,
the total number of edges removed by the greedy algorithm equals g1(t). Algo-
rithm 1 evaluates g1(v) for all v ∈ V to calculate a lower bound on the overall
number of edges that can be removed under the assumption that v was deleted
in the first step and selects the node that maximizes g1. As t ∈ V , it follows
that g1(t) ≤ maxv∈V g1(v) and the nested greedy algorithm will therefore never
remove less edges in comparison to the greedy approach. ⊓⊔

S ← ∅1

r ← 0 // Denotes the number of edges removed by this algorithm2

for i← 1 to k do3

b← null4

m← −1 // Any other value less than zero is fine5

for v ∈ V \ S do6

u← deg
S
(v)7

S′ ← S ∪ {v} // Create a copy and delete v from this copy8

for j ← i+ 1 to k do9

w ← v ∈ V \ S′ : deg
S′(v) ≥ deg

S′(x) ∀x ∈ V \ S′
10

u← u+ deg
S′(w)11

S′ ← S′ ∪ {w} // Delete w from the copy12

end13

if u > m then14

m← u15

b← v16

end17

end18

r ← r + deg
S
(b)19

S ← S ∪ {b} // Update graph by deleting b20

end21

Algorithm 1: The nested greedy algorithm for the node-deletion problem

The inner loop (lines 9 to 13) of Algorithm 1 that is used to calculate hi makes
this approach more complex in comparison to the greedy algorithm. Recall that
the number of nodes that have not been removed from the graph at the beginning
of the ith iteration (1 ≤ i ≤ k) equals n− i+1. In each iteration i and for every
node v ∈ V \ Si of the set of the remaining nodes a copy of the graph is created
which v is deleted from. Then, k − i iterations (i.e. for i + 1 ≤ j ≤ k) of the

Rank Correlation Coefficient Correction by Removing Worst Cases 7

inner loop are used to calculate hi(v). In each of these iterations the node having
highest degree among all n − j + 1 nodes that remain in the copy of the graph
has to be found and deleted from the copy. Thus, the total number of steps can
be evaluated as

k
∑

i=1

(

(n− i+ 1) ·

k
∑

j=i+1

(n− j + 1)
)

= O
(

k2n2 + k4
)

. (6)

Recall that a total of k nodes are removed from a graph with n nodes. As k will
be much smaller than n in our field of application, the total number of steps is
limited by O

(

k2n2
)

.
Further improvement of Algorithm 1 requires a better estimation of the num-

ber of edges that can be removed in the subsequent iterations than the lower
bound provided by hi. We found that increasing the level of nesting the greedy
algorithms easily allows for an improved lower bound and will be useful if either
the number of nodes in the graph or the number of nodes that one is allowed to
remove increases. To illustrate this idea, the entire Algorithm 1 was nested into
another greedy algorithm. This new algorithm has running time O

(

k3n3
)

as
Algorithm 1 will be called O(n) times in each of k iterations and will be denoted
twice nested greedy. It can be shown using the arguments of the previous proof
that this new algorithm will never perform worse than Algorithm 1.

5 Experimental results

We compared our proposed nested greedy as well as the twice nested greedy
algorithm to the bruteforce approach and the greedy algorithm on the basis
of three parameters. The first parameter, n, denotes the number of conditions
used for the comparison of two rankings. While n was larger than 100 in the
experiments with the bacterium pseudomonas aeruginosa, we used values ranging
from 30 to 60 to keep the running times of the algorithms, and in particular of
the bruteforce approach, low. The second parameter, denoted τ , represents the
value of Kendall’s tau rank correlation coefficient for a pair of rankings. Recall
that the number of edges in a graph is given by

(

n
2

)

1−τ
2

for −1 ≤ τ ≤ 1. Our
tests included values of 0, 0.25 and 0.5 in order to test the algorithms on graphs
of varying sparsity. Finally, as k, the number of conditions that we are allowed
to remove to increase the rank correlation coefficient, is unknown, we used two
values ranging from 10% to 15% of the value of n.

The tests were performed as follows. For each combination of n and τ , we
created a list of 10,000 pairs of rankings with a length of n and a rank correlation
coefficient of τ . If this was not possible, for example if n = 15 and τ = 0,
the pairs of rankings were created in such a way that their rank correlation
coefficient is as close to τ as possible. Then, each pair of rankings was used
to create an undirected graph using the instructions in Sect. 2. Finally, the
algorithms were applied to delete k nodes from each graph in such a way that as
many edges are thereby removed. The numbers in the three rightmost columns of

8 Martin Krone and Frank Klawonn

Table 2 represent the number of times (out of 10,000) that each of the algorithms
removed less edges from a graph in comparison to the bruteforce approach. In

Table 2. Results on comparing three different greedy algorithms with respect to the
bruteforce approach

n τ k Greedy Nested Greedy Twice Nested Greedy

30 0 3 205 7 0
30 0 5 548 31 3
30 0.25 3 149 6 0
30 0.25 5 466 21 0
30 0.5 3 183 3 0
30 0.5 5 479 33 0
40 0 4 291 12 0
40 0 6 482 43 0
40 0.25 4 190 4 0
40 0.25 6 470 44 3
40 0.5 4 227 4 1
40 0.5 6 483 39 1

order to compare the algorithms on bigger graphs, a slightly different approach
was required. For each combination of n and τ , we again created 10,000 pairs of
rankings, but excluded the bruteforce approach from the tests as it could not be
applied to the resulting graphs in reasonable length of time. As the twice nested
greedy algorithm never performs worse than the greedy or the nested greedy
approach, all comparisons were no longer done with respect to the bruteforce
approach, but to the twice nested greedy algorithm. Consequently, the results
in Table 3 only provide a valuable indication but do not exactly resemble how
well the greedy and the nested greedy algorithm perform on bigger graphs in
comparison to the bruteforce approach. We conclude from these results that the
greedy algorithm should not be used for the correction of the rank correlation
coefficient as it happens quite frequently that this algorithm does not remove
as many discordant pairs as possible, even if the number of conditions that one
is allowed to remove is small. Our proposed nested greedy algorithm, however,
provides a more reliable method and removed less discordant pairs in comparison
to the bruteforce approach in only very few cases. While the twice nested greedy
algorithm yields results that come even closer to those of the bruteforce approach,
it shall only be used if one accepts the higher running time. However, if both n

and min(k, n− k) are very small, the bruteforce approach might still be used.

6 Conclusions

We have proposed an efficient algorithm to cope with an otherwise infeasible
problem. Our basic assumption was that the number k of conditions to be re-

Rank Correlation Coefficient Correction by Removing Worst Cases 9

Table 3. Results on comparing the greedy and the nested greedy approach with respect
to the twice nested greedy algorithm

n τ k Greedy Nested Greedy

50 0 5 269 13
50 0 8 612 49
50 0.25 5 207 9
50 0.25 8 548 36
50 0.5 5 226 8
50 0.5 8 601 48
60 0 6 304 15
60 0 9 567 46
60 0.25 6 269 11
60 0.25 9 566 45
60 0.5 6 261 10
60 0.5 9 559 63

moved is fixed. Future work will include investigations on choosing k automati-
cally based on statistical considerations, i.e. to find the point, when we start to
increase the rank correlation coefficient artificially.

References

1. Fujito, T.: A Unified Local Ratio Approximation of Node-Deletion Problems (Ex-
tended Abstract). In: Algorithms - ESA ’96, pp. 167–178. Springer, London (1996)

2. Kendall, M.G.: A new measure of rank correlation. Biometrika 30, 81–93 (1938)
3. Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Traveling

Salesman Problem. Proc. Am. Math. Soc. 7, 48–50 (1956)
4. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: 10th Annual

ACM Symposium on Theory of Computing, pp. 253–264. ACM, New York (1978)

