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Abstract— Nearest neighbour classifiers provide intuitive clas-
sification decisions in the sense that they determine the class of an
unknown object on the basis of the most similar cases in a sample
database. However, in order to reach a good interpretability
of a nearest neighbour classifier, two important aspects should
be taken into account: The sample database should be kept
reasonably small and the similarity or distance measure should
be transparent. Especially, when objects with many attributes
are considered, a distance measure like the Euclidean distance
does not always lead to intuitive results.

In this paper, we present an approach to construct a nearest
neighbour classifier that tries to take care of these two aspects.
The sample database is kept small by adopting ideas from
classifier systems. We use an adaptive distance measure that
enables us to explain the similarity measure and the classification
decision in terms of simple fuzzy rules.

I. INTRODUCTION

Supervised classification is a learning task, where the class,
i.e. the value of a nominal attribute of an object has to
be predicted on the basis of some other given or measured
attributes of this object. The classifier is constructed using a
training set where in addition to the measured attributes also
the correct classes of the objects are known.

A great variety of classifiers like (naive) Bayesian, logistic
regression, decision trees, nearest neighbour or fuzzy rule-
based classifiers exist. In this paper, we focus on nearest neigh-
bour classifiers and demonstrate their relations to classifier
systems used in evolutionary computation and to fuzzy rules.

Nearest neighbour classifiers solve classification tasks on
the basis of a database of classified sample cases. A new
data object is classified on the basis of the class(es) of its
closest or most similar neighbour(s) in the sample database.
Although a large database of sample cases might enhance the
performance of a nearest neighbour classifier, it leads to higher
computational costs, when classifying new data, and it does
not contribute to the interpretability of the classifier. Simplicity
and interpretability can only be achieved, when the database
contains a reasonably small set of representative sample cases
or prototypes. Therefore, in this paper we propose a heuristic
method to keep the number of cases in the sample database

reasonably small. This method is motivated by techniques
applied in the context of classifier systems.

Another problem in the context of nearest neighbour classi-
fiers is the question how to measure the distance or similarity
between an object from the sample database and a new
object to be classified. Here we propose an adaptive nearest
neighbour classifier that uses a scaled distance similar as
it is sometimes used in fuzzy systems. This enables us to
specify fuzzy rules that explain the classification decision of
our nearest neighbour classifier. In this way, the user obtains
information about the similar cases in the sample database as
well as on the underlying similarity or distance measure.

The paper is organized as follows. In section II we briefly
review the concept of nearest neighbour classifiers. Section
IV introduces some basic ideas from classifier systems and
how they can be adopted in the context of nearest neighbour
classifiers. Our algorithm to construct a simplified nearest
neighbour classifier using the concepts from classifiers systems
and an adaptive distance measure is explained in section V
including some elementary examples. In section VI we outline
the relation to fuzzy rules. The final conclusions contain
perspectives for future work.

II. NEAREST NEIGHBOUR CLASSIFIERS

A nearest neighbour classifier [1] performs a classification
task, i.e. it defines a mapping from an input space � to a
finite output space � of classes based on a database ���
���	� of samples and a distance measure 
��
������� ������� . A�

-nearest neighbour classifier (where
�

is a positive integer)
determines the class of an object ����� by computing the

�
closest objects in the sample database (nearest neighbours) and
assigning the class to � which occurs most often among the�

nearest neighbours. A 1-nearest neighbour classifier simply
assigns the class of the closest sample in the database to an
object � .

The definition of a suitable distance measure 
 is crucial for
the performance of a nearest neighbour classifier. If the input
space consists of a set of � continuous-valued attributes, i.e.



� � ��� , then commonly the (squared) Euclidean distance is
chosen.

However, better performance can be achieved, when the
distance measure is adapted, leading to an adaptive nearest
neighbour classifier. Many techniques for adapting the distance
have been proposed in the literature, like for instance [2]
where the distance measure is adapted for each object in
the sample database based on a (local) linear discriminant
analysis. Although discriminant analysis is a powerful tool for
classification, the resulting classifier (or the resulting distance
measure in case of our nearest neighbour classifier) is not
easy to interpret. Therefore, we propose the following strategy
to obtain a simplified nearest neighbour classifier with an
adaptive distance that can even be visualised for the user,
providing better explanation of the resulting classification.

III. FUZZY CLASSIFIERS AND NEAREST NEIGHBOUR

CLASSIFIERS

Fuzzy classifiers are not based on prototypes like nearest
neighbour classifiers, but they use fuzzy rules for the classifi-
cation of an object. Many different types of fuzzy classifiers
have been proposed in the literature. A thorough overview can
be found in [3].

The type of fuzzy classifiers considered in this paper is
based on a finite set � of rules of the form � ��� :� : If ��� is 	 
 ���
 and ����� and � � is 	 
 � �
 then class is� 
 .� 
 � � is one of the classes. The 	 
 � �
 are assumed to be
fuzzy sets on � � , i.e. 	 
 � �
 ��� � ��� ������� . In order to keep the
notation simple, we incorporate the fuzzy sets 	 
 � �
 directly in
the rules. In real systems one would replace them by suitable
linguistic values like positive big, approximately zero, etc. and
associate the linguistic value with the corresponding fuzzy set.

Given an object ����� ��� ������� � � � � to be classified, the firing
degree of a single rue � is determined by	 
 � ��� ������� � � � ��� �� � � � 	 
 � �
 � � � � (1)

where  is the extension of a suitable t-norm to � arguments.
Very often,  is chosen to be the minimum, although this
leads to very restricted class separation abilities of the fuzzy
classifier [4], [5]. However, the Łukasiewicz t-norm, given by�� � � � 	 
 � �
 � � � ���"!$#�%'&)( �* � � � 	 
 � �
 � � � �,+.-/� �$-0� ��� �21 � (2)

leads not only to more flexible fuzzy classifiers, but enables
us also to establish a connection between fuzzy classifiers and
nearest neighbour classifiers later on.

After the firing degree (2) has been computed for each rule,
the fuzzy classifier will assign the object � to the class � 
 that
occurs in the conclusion part of the rule � with the highest
firing degree.

So far, we have not assumed any restrictions for the fuzzy
sets 	 
 � �
 in the rules. But in order to obtain interpretable rules,
so that linguistic values like positive big or approximately zero

make sense, it is necessary that the fuzzy sets are at least
convex. This means that they are first increasing until they
reach the membership degree one and afterwards they start
to decrease. Triangular, trapezoidal and Gaussian membership
functions are typical fuzzy sets with these properties. Consider
such a fuzzy set 	 and assume that 	��3�54
�6�7� holds. We
consider as a prototypical representative of this fuzzy set.
For triangular and Gaussian fuzzy sets �54 is unique, for
trapezoidal fuzzy sets we can choose for �84 any of the points
where the trapezoidal membership function assumes the value
one, usually we would choose the midpoint of this interval.
For such a fuzzy set the membership degree 	��3� � can be
interpreted as the degree of similarity of � to the prototype
value �94 . When we consider the value �'-:	��3� � , this can
be considered as the scaled and cut-off distance of � to the
prototype value �54 . This distance can be understood as scaled
and cut-off in the following sense. Let us first consider the
most simple case of the triangular fuzzy set shown in figure
1.

;
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Fig. 1. A triangular fuzzy set

It is obvious that we have in this simple case


�C��3�94 �D� �E�F�?-G	��3� ���7!'H I �KJ �94=-G� J ��� ��� (3)

Thus �2-'	��3� � is just the usual distance between �54 and � , cut
off at the value one. If the triangular membership function does
not have a width of two as in figure 1, but another width, still
being symmetric, equation (3) remains valid up to a scaling
factor L that has to be introduced, i.e.


�C��3�94 �D� ���F�?-G	��3� ���"!'H I �KJ �94=-G� JNM L
��� �
where L is 2/(width of the triangle). For asymmetric triangular
membership function different scaling factors are needed on
the left- and right-hand side of �54 . This idea of scaling can
even be generalised to trapezoidal, Gaussian or even more
general membership functions [6], [7], [8]. However, in the
context of this paper, it is sufficient to consider constant, but
possibly different scalings for the left- and right-hand side of�94 .

With this interpretation of the membership degree as a dual
concept of a scaled and cut-off distance to �84 , the firing degree
(1) of a rule � can be considered in the following way. Let
�

 
 � � �


 
 �� ������� � � 
 
 �� be the prototypical values associated
with the fuzzy sets 	 
 � �
 occurring in the premise of the rule



� . This means, we have


 C � � �� � � 
 
 �� � � �E�F�?-G	 
 � �
 � � � � �
for an object ���.� ���
������� � � � � to be classified. This means that	 
 � �
 � � � ��� �?-G!'H I � 
 C � � �� � � 
 
 �� � � ����� �
holds. Using the Łukasiewicz t-norm (2), the firing degree of
rule � can be understood as the overall similarity of the object
� to the prototypical object �


 
 � :
Sim

�
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 �� � � � ���	��� � + - � � -0� ��� �21)�
(4)

Assuming for the moment that the 
 � values are quite small,
which means we can neglect the minimum and the maximum
in (4), we obtain the overall similarity degree of the object �
to the prototypical object �


 
 � by

Sim
�
�
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 � � � 
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 � � � 
 
 �� � � � � � (5)

Finally, when we again understand similarity as the dual
concept of distance in the sense of

Dist �F�?- Sim � (6)

we derive from (4)

Dist
�
�

 
 � � ��� � �* � � � 
 � � � 
 
 �� � � � � � (7)

This means that this overall distance is computed by aggre-
gating the (scaled and cut-off) distances 
 � by the 1-norm. In
case of the Euclidean norm (the 2-norm), one would use

DistEuclidean

�
�

 
 � � ��� � �		


�* � � � 
 � � � 
 
 �� � � � � � �
However, in this paper, we will only consider the distance (7)
associated with the 1-norm.

A fuzzy classifier will classify an object � based on the
rule � for which � yields the highest firing degree. This
firing degree can be interpreted as the similarity degree to the
corresponding prototypical object �


 
 � associated with rule � .
Changing from similarity to the dual concept of distance in the
sense of (6), the fuzzy classifiers will classify object � to the
class of the prototypical object �


 
 � (i.e. the class associated
with rule � ) to which � has the smallest distance.

With these ideas in mind, we can now establish the connec-
tion between fuzzy classifiers and 1-nearest neighbour clas-
sifiers. Assume a nearest neighbour classifier uses a distance
function of the form


5� � 
 sdb � � � ��� �* � � � 
 � � � 
 sdb �� � � � �

where �


sdb � is an object from the sample database and � is an

object to be classified. Then each object �


sdb � in the sample

database induces a fuzzy rule with the fuzzy sets	���
 � sdb ���� � � � �E�F�?-G!$#�%�� 
 � � � 
 sdb �� � � � � ����� �
As long as the distances 
 � are small at least to the closest
object from the sample database, i.e. 
 ��� � for all � for this
object, the corresponding fuzzy classifier will yield exactly the
same classification as the nearest neighbour classifier.

The intention in this paper is not to construct a fuzzy
classifier based on a nearest neighbour classifier. The reason is
that a sample database of even more than one hundred objects
might still be considered as reasonable. However, a fuzzy
classifier with more than one hundred rules is very difficult to
interpret. The purpose in this paper is to provide an explanation
for the classification result of the nearest neighbour classifier
based on fuzzy rules. If a user wants to know why the nearest
neighbour classifier has decided to assign an object � to a
certain class, he can have a look at the fuzzy rules associated
with the closest or most similar objects to � . The fuzzy sets
in these rules will also show the importance of the single
attributes of � for its classification. In this way, we do not
try to understand the rule base as a whole, but simply use it
to explain single classification decisions.

The learning scheme for a nearest neighbour classifier which
is suitable for this scheme is based on principles from classifier
systems. Before we present the learning algorithm in detail
in section V, we briefly introduce the necessary ideas from
classifier systems in the following section.

IV. NEAREST NEIGHBOUR CLASSIFIERS AND CLASSIFIER

SYSTEMS

Learning classifier systems were introduced by [9], [10].
Their learning scheme is based on evolutionary principles,
especially genetic algorithm techniques. Classifier systems are
collections of if-then rules where each single rule is called a
classifier. In the simplest case, the premise of a rule consists of
a fixed number of (binary coded) conditions. The conclusion
part of the rule defines (binary coded) actions to be taken,
when the premise of the rule is satisfied. In contrast to our
view of classification, classifier systems are intended to act
as sensor actor systems. Nevertheless, we can adapt some of
their learning concepts.

A classifier systems acts as a rule base to determine, which
action has to be taken in which situation. Each classifier of
the classifier systems represents one rule. In a similar sense a
nearest neighbour classifier act as ”rule base” for classification
where each case in the sample database corresponds to the rule

If an object to be classified is very similar to me,
then it should be assigned to the same class as me.

During the learning (or reinforcement) phase of a classifier
system each rule is evaluated, depending on how often its
premise is satisfied and how good the initiated action was. The
evaluations of the rules are used as fitness values in a genetic
algorithm for selecting, mutating and combining rules.



We adopt this idea, when we construct the sample database
from the available classified cases. An object in the sample
database is evaluated based on how many other objects it has
as nearest neighbours and how many of them are classified
correctly. The detailed algorithm will be described in the next
section.

V. THE ALGORITHM

We have motivated an evaluation scheme that can help
us to construct a sample database for our nearest neighbour
classifier. However, so far we have not touched the question
of how to adapt the distance measure.

We enable this in the following way. Here we assume that
all attributes are continuous-valued and that we use as distance


5� � � � � ��� �* � � � 
 � � � � � � � � (8)

where � � is the object to be classified, � is an object from
the sample database, and � � and � �� is the � th attribute of
� , respectively � � . In order to keep the distance adaptation
interpretable, we allow for each object � � in the sample
database and for each of its attributes an individual scaling
in both directions. This means, for � and each of its attributes,
we have two scaling factors L 
 � �
 � � and L 
 � �
 � � . We define the scaled
distance of an object � � to � with respect to the � th attribute
by


 � � � � � � �E� �� � L 
 � �
 � � M J � � - � �� J if � �� � � �L 
 � �
 � � M�J � � - � �� J if � ���� � �
In the beginning all scaling factors are set to the value one.

Later on, when we adapt the distances, we do this by adapting
the scaling factors. When we try to adapt the distance measure,
i.e. the individual scaling factors for an object, for each of its
attributes we have to consider both the left and the right scaling
factor. Both of them are adapted individually.

When we want adapt the scaling factors for an object in the
sample database, for each of its attributes and both directions
(associated with the scaling factors L 
 � �
 � � and L 
 � �
 � � , respectively),
we check whether L 
 � � new �


 � � �
	 M L 
 � � old �

 � �

(and analogously for L 
 � �
 � � ) leads to a reduction of the mis-
classification rate. ���
	�� � is a learning rate. In case
of a reduction of the misclassification rate, we will modify
the corresponding scaling factor accordingly. In principle, we
could also check, whether increasing a scaling factor leads to
an improvement. However, as will be seen later on, preferring
the decrease of scaling factors will help us in interpretung the
nearest neighbour classifer, since attributes with (almost) zero
scaling factors can be neglected.

The concrete steps of our algorithm to construct a sample
database from our training set are the following ones:

First specify a tolerance bound for the misclassification rate
on the training set. Then:

1) Initialise the sample database randomly (stratified, i.e.
make sure that the classes are represented in the database
with the same proportions as in the training set.

2) Apply the above described scaling scheme to the objects
from the (random) sample database.

3) Evaluate the instances with the scaled distance in the
database. The fitness of an object � in the sample
database is defined by� � � �E� � correctly classified� > � incorrectly classified

where � correctly classified > � incorrectly classified

is the number of data in the training set for which
the corresponding object in the sample database is the
nearest neighbour.

4) Remove all objects from the sample database with a
fitness of zero.

5) Compute the confusion matrix, i.e. the matrix indicating
for each class how many of its objects are classified
to each other class, and determine which class is the
one with the highest misclassifictaion rate. If class L��
is wrongly classified in the majority of cases to classL � , remove an instance from class L � from the sample
database with a probability inversely proportional to its
fitness.

6) Pick an object randomly from the training set that
belongs to class LN� , but that is not contained in the
sample database and add it to the sample database,
unless this object has been removed from the sample
database in a previous step.

7) Carry out scaling with this new object.
8) If the specified misclassification rate for the training set

is still exceeded, repeat from step 3.

Note that we can also replace the misclassification rate by
an arbitrary loss function�

�
��� � � � ������� �� � L � � L � � is interpreted as the loss (of money) that will be
caused, when we classify an object from class L�� to classL � . We assume that

� � L
� L � � � holds for all classes. The
misclassification rate is based on the special loss function� � L � � L � ����� � if L �?� L �� otherwise.

In many applications, this symmetric loss function is not
realistic. Consider for example the case of an essential part
of an aeroplane. The classification task during maintenance is
to decide, whether this part will function until the next main-
tenance. If the part will function until the next maintenance,
but the decision is made that we exchange the part for a new
one already, the loss might be the costs to replace this part.
However, when misclassify the part into the category that it
will function, but it will fail in reality and its failure will cause
the aeroplane to crash, the costs will be much higher, including



not only the loss of the aeroplane, but also the death of the
passengers and the crew.

In order to incorprate such a loss function, we have to make
the following changes in the above algorithm.

� The specified tolerance bound refers to the expected loss,
not the misclassification rate.

� Define the fitness of an onject � in step 3 by� � � �E� � correctly classified� > sum of the losses of all objects misclassified by �
� Instead of computing the confusion matrix in step 5, we

compute the loss matrix. This means, instead of simply
counting for each entry ��� � � � in the matrix, how many
objects are classified from class L � to class L�� , we add
up the corresponding losses. Find the highest entry – the
greatest loss – in this matrix. If the highest loss is found
at the entry ��� � � � , then remove an instance from classL � from the sample database with a probability inversely
proportional to its fitness.

� In step 6, pick an object randomly from the training set
that belongs to class L�� , but that is not contained in the
sample database.

� Consider the sum of all losses divided by the number of
objects in the training set, instead of the misclassification
rate in step 8.

In order to demonstrate the performance of our nearest
neighbour classifier, we have carried out experiments with
three simple data sets from the UCI Machine Learning Repos-
itory (http://www.ics.uci.edu/ � mlearn/MLRepository.html),
namely the Iris and the wine data set. We have applied
10-fold (stratified) cross validation. This means, the data set
was partitioned into 10 equally sized subsets. The distribution
of the classes in each subset is the same as in the whole data
set. Then we take out one of the 10 subsets and construct our
nearest neighbour classifier based one the remaining 90% of
the data. After the classifier has been constructed, we test its
performance on the 10% of the data that were left out. This
procedure is applied to each of the 10 subsets. Table I shows
the average performance as well as the average size of the
sample database.

TABLE I

RESULTS

data set average database size average misclassification rate

iris 18.2 2.7%

glass 19.4 2.9%

VI. DERIVING FUZZY RULES

In addition to accuracy, interpretability is an important issue
for any kind of classification system [11]. Taking a closer
look to the distances, we can find the following. Most of the
scaling factors have been decreased to almost zero. Looking
at a typical sample database for the iris or the wine data, we

find scaling factor configurations where most of the scaling
factors have decayed to (almost) zero (here a scaling factor
less than � � � is considered as almost zero). Table II shows an
instance from the sample database of the wine data set.

TABLE II

AN INSTANCE FROM THE WINE SAMPLE DATABASE

attribute left scaling factor right scaling factor

Total phenols 0.3

Nonflavanoid phenols 1.0

Proanthocyanins 1.0 0.3

Colour intensity 0.3

OD280/OD315 1.0

Proline 1.0

We have only entered those scaling factors in the table
greater than � � � . The wine data set uses 13 attributes for
predicting the class. But this instance determines the dis-
tance/similarity on the basis of only 6 attributes. Note that
the scaling factors refer to normalised attributes.

Although looking at the scaling factors provides already
some interesting information, it might be desirable, to have
a simpler representation for non-expert users. For this we
use the very intuitive framework of fuzzy rules that is easily
understandable for a non-expert user. We make use of the cor-
respondence between nearest neighbour classifiers and fuzzy
classifiers that we have established in section III.

The only problem that occurs here is that equation (4)
applies only in the case, when the values 
 � � � 
 
 �� � � � � are
small enough. This can be avoided, by applying an additional
(suitably small) scaling factor to all objects and attributes
to guarantee for overall small distances. With this additional
scaling factor we obtain a one-to-one correspondence between
fuzzy rules and nearest neighbour classifiers. However, the
additional scaling factor would lead to very wide (triangular)
fuzzy sets. Therefore, for the visualisation and user friendly
interpretation of the nearest neighbour classifier, we propose
not to use the corrected fuzzy sets (incorporating the additional
small scaling factor), but to use the original ones just taking the
individual scaling factors L 
 � �
 � � and L 
 � �
 � � into account. Note that
this will show an effect only in the case of lower membership
degrees, i.e. when even the closest object in the sample
database is not very similar to the object to be classified.

In this way, we can construct suitable fuzzy sets for each
object in the sample database and each of its attributes. A fuzzy
set for an attribute of an instance is constructed by choosing
the membership degree one at the corresponding value of the
attribute and decreasing the membership degrees with a slope
proportional to the right scaling factor to the right and with a
slope proportional to the left scaling factor to the left.

Figure 2 shows the fuzzy sets associated with the attributes
Proanthocyanins and Colour intensity, respectively, of the
object described in table II. � 4 and

� 4 stand for the value
of the corresponding attribute of the considered object. We
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Fig. 2. Fuzzy sets induced by the scaling factors

can use these fuzzy sets and corresponding fuzzy sets for the
remaining four attributes in table II to construct a fuzzy if-
then rule for this object and all other instances in the sample
database. The conclusion part is the class of the corresponding
instance. In this way, we actually build a fuzzy rule base for
the classifier.

VII. CONCLUSIONS

We have demonstrated, how an interpretable adaptive near-
est neighbour classifier can be constructed by transforming
it into an equivalent classifier using fuzzy rules. We have
introduced a scheme for keeping the number of instances in
the sample database (or, equivalently, the fuzzy rules) small
as well as an adpation scheme for the distances of the nearest
neighbour classifier that correspond to the similarity degrees
and the shapes of the fuzzy sets.

Further research will concentrate on how we can enforce
that most of the scaling factors will decrease to zero-values
automatically, so that the corresponding fuzzy rules will use
only a small number of attributes.
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