Reducing the Number of Parameters of a
Fuzzy System Using Scaling Functions

Frank Klawonn
Department of Computer Science
University of Applied Sciences Braunschweig/Wolfenbuettel
Salzdahlumer Str. 46/48
D-38302 Wolfenbuettel, Germany
e-mail: f.klawonn@fh-wolfenbuettel.de

Abstract

Learning techniques are tailored for fuzzy systems in order to tune
them or even for deriving fuzzy rules from data. However, a compro-
mise between accuracy and interpretability has to be found. Flexible
fuzzy systems with a large number of parameters and high degrees
of freedom tend to function as black boxes. In this paper, we in-
troduce an interpretation of fuzzy systems that enables us to work
with a small number of parameters without loosing flexibility or in-
terpretability. In this way, we can provide a learning algorithm that
is efficient and yields accuracy as well as interpretability. Our fuzzy
system is based on extremely simple fuzzy sets and transformations
using an interpretable scaling functions of the input variables.

Keywords: fuzzy function approximation, alternating optimization, gradi-
ent descend

1 Introduction

When L.A. Zadeh [9] introduced the notion of a fuzzy set in 1965, his orig-
inal intention aimed at modelling human expertise. A fuzzy system was
considered as a framework to formalize knowledge incorporating vagueness.
However, later on, it turned out that for most of the applications it is not suf-
ficient to simply specify the expert knowledge in terms of ad-hoc fuzzy rules.
In order to design a system that performs well, it is necessary to choose and

tune a number of parameters like the shape and the location of the fuzzy
sets, the number of rules or suitable aggregation operations. Therefore, a
vast number of tuning methods, most of them based on neuro-fuzzy tech-
niques (for an overview see for instance [7]) or evolutionary algorithms (for
an overview see for instance [8]), have been designed for fuzzy systems.

In recent years, the emphasis in research has even been shifted further
from tuning to machine learning and rule or knowledge extraction from data
using fuzzy systems. One important aspect in this field of application of
fuzzy systems is to find a balance or compromise between accuracy and in-
terpretability [1]. A fuzzy system with a large number of parameters and a
high degree of freedom might be capable of fitting very well to a given data
set to which it should adapt. However, the price for the high accuracy might
result in a fuzzy system that is barely understandable any more. In this
case, where the fuzzy system simply functions as a black box, there are usu-
ally better and faster techniques for learning from data. On the other hand,
putting a strong emphasis on the interpretability of the resulting fuzzy sys-
tem, limiting the number of parameters and the degrees of freedom, might
lead to poor performance in terms of accuracy that is not acceptable for real
world applications.

The paper is organized as follows. In section 2 we briefly review the basic
terminology of fuzzy controllers or fuzzy rules for function approximation
that is needed for this paper. Section 3 takes a closer look at a certain
common way of adapting fuzzy sets and how this can be interpreted in terms
of scaling or transformations. Based on these ideas we develop an efficient
learning scheme for this kind of fuzzy system in section 4. A detailed example
is presented in section 5. Finally, in the conclusions we briefly outline, how
our ideas might be extended to fuzzy classifiers.

2 A simple fuzzy system

In this paper, we consider fuzzy systems suited for fuzzy control as well as
for function approximation or regression problems. We assume that we have
k continuous input variables X, ..., X; and one continuous output variable
Y. We assume that the fuzzy system uses rules of the following type:

R: If Xy is ,ugR) and ... and X} is ,uECR) then Y is ¢, (1)
ugR), ey /LECR) are fuzzy sets on the domains of the input variables X1, ..., X,

respectively. y(®) € IR is the crisp output value assigned to the rule R.
Technically speaking, we consider a simple Takagi-Sugeno controller with
constant output functions.

Qo aq a9 as a4

Figure 1: A uniform fuzzy partition.

Of course, in applications the fuzzy sets occurring in a rule as described
by (1) would be replaced by linguistic terms like approximately zero, small,
big etc.

Let R be a finite set of rules of the form (1). Then, for a given input
tuple (z1,...,xx), the output of this rule base is given by

.y
Hr\Z1;5 .- TE) " Y
Fola,....zy) = Sneplntn o) 2)
ZRGRMR(mla"'amk)
where
R R
pr(@ . m) = pP (@) 0. 0 pf™ () (3)

is the firing degree of rule R and ©® is an operation that corresponds to a
suitable t-norm like the minimum, the product or the Lukasiewicz t-norm.
Later on we will require that ® is differentiable almost everywhere — a con-
dition that is satisfied by the three above mentioned t-norms as well as by
most of the t-norms used in practical applications.

3 The idea of scaling and its interpretation

Since we restrict our considerations to fuzzy rules with a constant value in
the conclusion, we do not have to bother about the defuzzification problem.
The parameters that have to be specified are

(R)

e the fuzzy sets u,; ",
e the output values y® and
e the aggregation operation (t-norm) @.

It is very common to start with a uniform ”fuzzy partition” for each input
variable X; as it is shown in figure 1 and to adapt or tune the fuzzy sets —
their shape and location — later on.

Qo ap a9 as a4

Figure 2: A modified fuzzy partition.

Especially in control applications, the resulting fuzzy partitions very often
resemble the one shown in figure 2, at least in the case where the error and
the change of the error are used as input variables. The fuzzy sets around
zero (at the value ay in figure 2) are narrower than those further away from
zero. The reason for this phenomenon is that the controller’s actions must
be very precise around the working or set point where the error is already
small, whereas rough actions are sufficient, when the error is large. As long
as the error is large — the process is still far away from the desired state —
it is often sufficient to apply rough and strong control actions that drive the
process to the vicinity of the desired state. Once this vicinity is reached,
more careful actions have to be taken.

In order to better understand this phenomenon we take a look at a very
simple fuzzy system with just one input variable X. Figure 3 shows the
output function induced by the fuzzy system with the rules

Ri: If X is p@ then Y is . (i=0,...,5) (4)

The resulting function is — at least in this case with just one input variable
— piecewise linear. In the region where the fuzzy sets are narrower, we can
model greater variations of the output function than in the outer regions
where the fuzzy sets are wider.

The change from the uniform fuzzy partition in figure 1 to the non-
uniform fuzzy partition in figure 2 can be viewed in terms of modifying the
fuzzy sets. But it can also be seen as a piecewise linear transformation. We
obtain the same output function as in figure 3, when we use the uniform par-
tition from figure 1, the same set of rules (4), but apply the transformation
t(z) shown in figure 4 as a first step, before we hand the input value over to
the fuzzy system. We obviously have

pi(e) = pa(7) = p(t(z)) (5)

where the p; are the fuzzy sets from the non-uniform and the fi; from the
uniform fuzzy partition.

Figure 3: The piecewise linear function induced by a simple fuzzy system.

The transformation ¢ has also a very appealing interpretation. In those
regions where the graph of ¢ is very steep, i.e. ¢ where ¢ has a high value
for the derivative, the fuzzy sets p are narrower. This will occur in those
regions where the desired output has either strong variations or where a high
accuracy of the output function is required.

It should be noted that the fuzzy sets p; of the non-uniform fuzzy parti-
tion induced by the transformation ¢ via (5) are not necessarily of triangular
shape, even if we assume that we have a piecewise linear transformation. Fig-
ure 5 shows this situation. Of course, a piecewise linear transformation will
always lead to piecewise linear fuzzy sets. We can even drop the assumption
that the transformation has to be piecewise linear. All we need is that it is
continuous and non-decreasing. Even in this general case the fuzzy sets u;
induced by (5) will be continuous and unimodal.

It should be noted that the transformation ¢ must be non-decreasing.
But it is not required that the interval ranges of the original variable and the
transformed one are identical.

As mentioned before, the derivative of the function ¢, if it exists, plays an
important role. The slope of ¢ is inherited to the fuzzy sets yu that have the
same slope in terms of the absolute value. And the slope can be interpreted as
the accuracy needed in the region for approximating the considered function
or achieving the necessary precision for control actions in the corresponding
range. In this sense, the transformation ¢ carries out a scaling of the domain
of the input variable X. Ranges, where the function to be approximated
varies heavily or where a high accuracy is required, are stretched or enlarged
in order to specify the output more precisely. Regions where the function to
be approximated does not vary much or where a higher error can be tolerated,

Figure 4: The piecewise linear transformation ¥ = t(x) between a uniform
and a non-uniform fuzzy partition.

T
ﬂ(2)
= t(x)
ﬂ(l)
/NL(O) T
2)

Figure 5: A piecewise linear transformation & = ¢(z) inducing non-triangular
membership functions.

are shrunk and covered by a smaller number of fuzzy sets and rules. With
this idea of scaling in mind, we can also interpret the fuzzy rules (1) in the
sense of

R: If X; is approximatley ng) and ... and X} is approximately xECR)

then YV is y®). (6)

The values xER) represent those points where the corresponding fuzzy

sets in figure 1 have membership degree 1. The similarity between the actual
value z; of the variable X; and the specified value a:z(-R is then simply one

minus the distance between x; and ng) in the scaled or transformed domain,
i.e. the membership degree of z; to the fuzzy set ,uER)
(R)
i

corresponding to the
linguistic value approximately x; " is given by
i (ws) = max{l — |ti(a:) — ()], 0}

where ¢; is the corresponding transformation associated with ¢th domain.

A similar idea of scaling functions and an interpretation of fuzzy con-
trollers based on equality relations can be found [4, 5]. However, for our
purposes it is sufficient to understand the simple fuzzy systems we consider
here in the following way.

e For each input domain, we use a uniform fuzzy partition with trian-
gular membership functions. Only the number of fuzzy sets has to be
specified.

e In addition to these uniform fuzzy partitions, we need a suitable trans-
formation for each input domain. The derivative of each transformation
can be interpreted of how much accuracy is needed in the corresponding
point or how strong the function to be described varies in the vicinity
of this point.

e Furthermore, we need the fuzzy rules with the corresponding output
values.

The choice of the type of transformation or scaling function depends on
the application. As already mentioned, for many control applications high
accuracy in the vicinity of the set point of the system is needed, whereas pre-
cision is not extremely important far away from the set point. This means
that we should have high values for the derivative around the set point and
lower values further away. Therefore, sigmoidal functions seem to be a good

choice in this case. However, in other applications like general fuzzy regres-
sion techniques for data analysis, other transformations might be desired in
the form of polynomials or spline functions. Of course, in these cases we have
to make sure that the transformations are always non-decreasing.

In the following section we develop for this kind of fuzzy system a simple
and efficient scheme for learning from data.

4 The learning scheme

Let us assume we have a regression problem defined by a data set with n
measured points of an unknown function with k input variables:

D = {(1‘1,17 e axl,kayl)a s (xn,la e axn,kayn)}-

For each input variable we choose the number of fuzzy sets. We also have
to select which combinations of fuzzy sets will be considered as antecedents of
the fuzzy rules. In principle, we can of course take all possible combinations
into account. However, this can lead to a very high number of rules, when
we have more than just a few input variables.

We also have to choose k£ parametric transformation functions
T = ti(a:;agi), L al)),
one for each input variable. ‘

The aim is to choose the parameters 045-’) and the output values y® in
such a way that the given data set D is approximated as well as possible. As
an error measure we choose the most common approach, the sum of squared
errors. This means, we have to determine the values agz) and y in such a
way that

n

2
E = Z (FR (tl(:rjl; agl), . a:gll)), RS TAETS agk), e aé’?)) — yj) (7)

J=1

is minimized, where F is computed according to (2).

Unfortunately, minimizing (7) is a nonlinear optimization problem. We
propose to apply an alternating optimization scheme similar to the one that
is used in fuzzy clustering (see for instance [2]). We alternatingly consider
one set of parameters as fixed, while we optimize the other set of parameters.
Here, this means that we first fix the parameters 04;2) and optimize the output
values (), then we fix these optimized output values and optimize the Ozg-i)
values and continue alternatingly, until the process converges. It is well

known (see for instance [3] or in a more general framework [6]) and also
obvious from (2) that the regression function Fy is linear in the output
values) so that they can be computed directly by a standard least squares
approach. _

However, this simple solution does not work for the parameters 04;2) of
the scaling functions, since Fxz is non-linear in these parameters. Therefore,
we apply a gradient descend technique to optimize these parameters. Thus
we need the partial derivatives of (7):

OFE -
W = 2 Z (FR (tl(:ﬁjl; agl), cee 041(,11)), oo (@ agk), ce 042'2))) — yi)
@ j=1
0Fr
'W(lea c Tjk) (8)
@
where
0Fgr 0Fg 1 k
W(mla s 7zk) = 9 () <t1(1‘, O‘/g)a SRR a/]()ll))’ cee atk(xa O‘/g)7 T ag;?))
@ @
OFg . Ot (x;; agi), s a,(,?)
o7, (Ty,y ..., o) - WO () 9)
J
and _ .
Ifz- = t1($z, Oégz), ceey Ozgz))
This is the general form of the gradient. 88% depends on the choice of
8ti(xi;agi),...,a;?)

depends on the kind of the

()
J

the rules and the t-norm ® and PO
o
J

chosen transformation function. In order to optimize the parameters «
apply a gradient descend technique and compute
CIENG o
gmew = Ygola 10)
@

, wWe

(%

where 7 is the learning rate or the step size of the gradient method. We
apply this formula iteratively to all 045-1) for a fixed number of steps or until
convergence is roughly reached. Note that it is not necessary to fully iterate
the gradient descend scheme until final convergence is reached, since the
output values y*) are re-adjusted in the next step anyway. Therefore, it is
sufficient to get only close to the corresponding minimum by the gradient
descent technique.

In the following section we provide a concrete example where we use the
product t-norm and sigmoidal transformations.

5 An example

In this section we consider a more specific case. We choose the product t-
norm for the operation ®. This t-norm has two advantages. It does not
cause any problems with the partial derivatives and in the case, when we use
all possible combinations of fuzzy sets in the rule base, the denominator in
(2) is always one and can therefore be neglected.

Since we use uniform fuzzy partitions (after the transformations have
been applied), for any value of an input variable there are exactly two fuzzy
sets yielding non-zero membership degrees — except for the case that when we
go further to the left or to the right than indicated for the example in figure 3
or when we meet exactly one of the top points of the triangular membership
functions. In figure three we assume that the fuzzy sets p(® and p(V are
continued with membership degree one to the left and right, respectively. Of
course, also in the case that one of the fuzzy sets yields membership degree
one, all others yield membership degree zero. Let us neglect these extreme
cases for the moment. Let puei(ss) and firighi(2,;) denote the left and right
fuzzy sets, respectively, yielding a non-zero membership degree for the value
x in the fuzzy partition for the variable X;. Furthermore, let y(u1,..., pux)
denote the output value y specified in the conclusion of the rule with the
fuzzy sets pq,..., pr in the antecedent.

Then we obtain

0FRr
0x;

d .0 (T
(F1,....7 [ett(z:.,i) (T4)

Te) = d7;

Z Yy (Mc(a‘:l,n, ooy Hleft(E;,4)s - - - ,,uc(a‘:k,k))
ce{left, right}

k
: H Mc(is,s) (i‘s)

s=1,s#1

+d Mright(fi,i) (z;)
dl‘i
Z Yy (Mc(a‘:l,n, ooy Mright(Z;,4)s + + + s Nc(:f:k,k))
ce{left, right}
k
: H He(zos) (Ts)- (10)

s=1,s#1

Since the values z; are in any case transformed values, we can even as-
sume without loss of generality that neighbouring triangular fuzzy sets in our
uniform fuzzy partitions have a distance of one (between the points where

10

they reach the membership degree one). In this case the derivatives

d etz i) () g L Highiai (%)

become —1 and 1, respectively, so that (10) simplifies to
0Fx

O (jla s 7:%/9) = - Z Y (/'Lc(i“l,l)a <oy Mleft(Z;,4)s - - - nu’c(i‘k,k))
¢ ce{left, right}
k
H /’[/C(fszs) (55)
s=1,5#1

+ Z Y (:U’C(ij,l)a <o oy Mright(2,8)s + -+« » Mc(ik,k))
ce{left, right}

: H Mc(i’s,s)(js)' (11)

s=1,s#1

We still have to consider the above mentioned special cases where z;
yields only for one fuzzy set a non-zero membership degree — in this case
the membership degree to this fuzzy set must be 1. If Z; is left or right of
the left-most or right-most fuzzy set, then the derivative is zero. If z; hits
exactly the unique point of a triangular membership function where it yields
membership degree 1, then the derivative is not defined. In this case, we set
the derivative to zero, too.

Let us choose sigmoidal functions of the form

1
1+ e—b(z—a)

g(z) =
with parameters a and b for the transformations ¢;. It is easy to verify that

Wa) = o) (1—g(@) b

Wia) = @) (1 9) (@~ a)

holds.
Let us consider a concrete example of a function with two input variables

11

X; and X,. In this case (11) simplifies to
OFr

8—5:($1’ j2) = T Hileft(£2,2) (52) Y (Mleft(fm,l)a Nleft(:"cg,Q))
1
— Hright (& () (Mleft(ml, 1) Mright(:i‘z,Q))

+M1eft(m2,)(572) Y (Lhright(31,1)> Meft(32.2))
+Mr1ght (%2,2) () (Mrlght(ml, 1), /Lright(:ﬁz,Q))

0Fr . .

ﬁ(xl’ 5172) = —Mieft(z1,1) (Z1)-yY (Mleft (Z1,1)s Mleft(fcg,Q))

2

)-
+Mleft (%1,1 (il) Yy (/'Lleft (£1,1)> ,U/right(:f:g,Q))
— Mright(z1,1) (1) (,U/right(zh,l)aNleft(:‘tZ,Q))
+Mr1ght (21,1 (1) (Mrlght(mh 1)s Mright(:ig,Q)) .

We consider the function
y = f(x1,29) = 23 In(z; +2). (12)

We sample this function on a regular grid of 17 x 17 points in the rectangle
[0, 4] x [0, 4] and use these 289 points as the training set. We use five fuzzy
sets for each of the two input domains so that we have 25 rules all together.
Table 1 shows the mean square error after up to 500 iteration steps. The
first column of this table indicates the number of iteration steps that were
carried out, the second column contains the mean square error after the linear
regression step for the output value has been completed and the last column
contains the mean square error after the gradient descend method has been
applied to improve the parameters of the sigmoidal transformations. We have
chosen a very small learning rate of n = 0.001 in order to avoid overshoots.

The lower columns of table 1 show almost no improvements for the gradi-
ent descend method. Although the improvements in latter steps tend to be
smaller for the gradient descend step than for the linear regression step, the
gradient technique still contributes significantly to the improvements. The
difference in the numbers is caused by the fact the we do not show the results
after each iteration step, but after a greater number of iteration steps. So
the first column always indicates the error after the corresponding number of
iteration steps, whereas the second number shows the error after applying the
gradient technique directly after the corresponding regression step. Looking
at the first number in table 1 showing of the fuzzy system after applying
linear regression only, we can see the significant improvement of the system
after 500 iteration steps. Note that the linear regression will not lead to fur-
ther improvements, when the fuzzy sets (or the transformations determining
the fuzzy sets) are not changed.

12

mean square error
step | regression | gradient descent
1| 34.885 28.227
2 | 25.549 23.241
31 22.239 21.045
4 1 20.500 19.656
51 19.291 18.544
6 | 18.272 15.655
7| 13.876 12.096
8 111.173 10.174
9 |9.664 9.095
10 | 8.789 8.432
20 | 6.257 5.778
30 | 2.806 2.761
40 | 2.318 2.299
50 | 2.096 2.084
60 | 1.959 1.951
70 | 1.867 1.861
80 | 1.802 1.798
90 | 1.755 1.751
100 | 1.702 1.698
200 | 1.485 1.485
300 | 1.442 1.442
400 | 1.431 1.431
500 | 1.425 1.425

Table 1: Reduction of the mean square error.

a b
X, | 1.773 | 1.106
X, | 2.287 | 1.189

Table 2: The final parameters of the transformations.

13

Figure 6: The transformations (left) and the scaling functions (right).

The optimized parameters of the transformations are shown in table 2.
Initially the parameter a was set to a = 2 — the midpoint of the range
of the sampled function — and the parameter b as well to b = 2 for both
input variables. When we have no further information where the function to
be approximated has its strongest changes, placing the best approximation
quality somewhere in the middle of the ranges of the variables seems to be
a reasonable starting point — better than concentrating somewhere on the
boundary of the domain. Our rule of thumb is also that we increase the
parameter b with the extension of the interval from which the data come.
Another reasonable heuristic strategy would be to choose the mean value or
median of the data of the corresponding variable for a and the deviation for
b.

The transformations and the corresponding scaling functions (i.e. the
derivatives of the scaling functions) are plotted in figure 6.

The final result for the parameters of the transformation functions after
the alternating optimization has been carried out, fits perfectly to the inter-
pretation of the transformation functions in the sense of scaling that we have
explained in section 3. The variable X, occurs in the function (12) within
the logarithm. For larger values the logarithm is very flat, almost linear or
can even be considered as nearly constant on a larger interval for greater
values. Therefore, in order to increase the accuracy of our approximation, it
is important to concentrate on the highly non-linear part of the logarithm.
Therefore, the value a for the sigmoidal transformation of X, is biased to

14

Figure 7: The induced fuzzy sets for the variables x; (left) and z, (right).

output table fuzzy set no. for
fuzzy set no. for x; 1 ‘ 2 ‘ 3 ‘ 4 ‘ D
1 -0.397 | 0.787 | 4.238 | 11.701 | 34.146
2 -1.084 | 2.151 | 11.589 | 31.993 | 93.366
3 -1.385 | 2.747 | 14.807 | 40.878 | 119.296
4 -1.612 | 3.199 | 17.230 | 47.567 | 138.815
5 -1.955 | 3.880 | 20.899 | 57.696 | 168.374

Table 3: The output values for the rules.

the left side of the range. The second variable has a cubic influence on our
example function. The cubic function is very flat and almost linear for small
values and deviates stronger from a linear behaviour for larger values. There-
fore, the bias of the transformation of the second variable tends more to the
right side of the range. This can also been seen in figure 7, when we look at
the resulting fuzzy sets induced by the transformations. It is quite remark-
able that the seemingly small change of the fuzzy sets enables the system to
reduce the mean square error from almost 35 to less than 1.5.

The largest (absolute) error of 3.865 occurs at the very extreme data
point (4,4) where the correct output is 114.673. The output values for the
fuzzy rules with the fuzzy sets indicated in figure 7 numbered from left to
right are show in table 3.

15

6 Conclusions

We have proposed a very simple fuzzy system with a small number of pa-
rameters that can be trained efficiently and can also be interpreted easily.
The algorithm we have described is suited for regression problems in general,
where an understanding of the regression function in terms of fuzzy rules
is desirable. The regression problem can either arise from a control prob-
lem where sample data of the control function are available or in general
terms where a continuous variable has to be predicted on the basis of other
continuous variables. Depending on the regression problem suitable para-
metric transformations have to be chosen. As mentioned before, for many
control problems, sigmoidal transformations seem to be suitable. The uni-
modal derivative of a sigmoidal transformation will (hopefully) be adjusted
in such a way that its maximum will be placed in that region where highest
precision is needed. However, for other regression problems, transformations
with unimodal derivatives might not be sufficient. In this case one might
think of a sum of a few transformations of the form

t(x) = a(z +sin(bx)) (x > 0).

The combination of linear regression and a gradient descent method that
we propose has the advantage that the optimization process is strictly di-
rected. Of course, other techniques like evolutionary algorithms could also
be applied. But the usually lead to much higher computational costs. Espe-
cially, when we can keep the number of parameters of our transformations
small, our approach is quite efficient, even if we consider a fuzzy system
with a higher number of fuzzy sets. Increasing the number of fuzzy sets
and adjusting them directly would lead to an increase of parameters to be
optimized. In our case, the only additional parameters we have to consider,
when we increase the number of fuzzy sets, are the rule outputs. But these
are computed very efficiently by linear regression.

Further research will also concentrate on fuzzy classification systems. In
this case the output of the rules are not real values, but discrete classes.
Regression and gradient descent techniques are not well suited for classifi-
cation problems, since a typical error function will be the misclassification
rate. But we could still apply the alternating optimization scheme in the
following way. In order to determine the output values (classes instead of
real values) for the rules, we simply determine the majority class for which
the corresponding rule fires with the highest membership degree. The pa-
rameters of transformations cannot be learned by a regression technique, but
we could apply entropy minimization techniques similar as in decision trees
with continuous attributes in order to adapt the transformations.

16

Acknowledgements: The author is highly indebted to the anonymous
reviewers for their valuable comments.

References

[1] J. Casillas, O. Cordén, F. Herrera, L. Magdalena (eds.): Interpretability
Issues in Fuzzy Modelling. Springer, Berlin (2003).

[2] F. Hoppner, F. Klawonn, R. Kruse, T. Runkler: Fuzzy Cluster Analysis.
Wiley, Chichester (1999).

[3] V. Kecman, B.-M. Pfeiffer: Exploiting the Structural Equivalence of
Learning Fuzzy Systems and Radial Basis Function Neural Networks.

Proc. Second European Congress on Intelligent Techniques and Soft
Computing (EUFIT’94), Aachen (1994), 58-66.

[4] F. Klawonn: Fuzzy Sets and Vague Environments. Fuzzy Sets and Sys-
tems 66 (1994), 207-221.

[5] F. Klawonn, J. Gebhardt, R. Kruse: Fuzzy Control on the Basis of
Equality Relations — with an Example from Idle Speed Control. IEEE
Transactions on Fuzzy Systems 3 (1995), 336-350.

[6] F. Klawonn, R. Kruse: Techniques and Applications of Control Systems
Based on Knowledge-Based Interpolation. In: C.T. Leondes (ed.): Fuzzy
Theory Systems: Techniques and Applications. Academic Press, San
Diego (1999), 431-460.

[7] D. Nauck, F. Klawonn, R. Kruse: Foundations of Neuro-Fuzzy Systems.
Wiley, Chichester (1999).

[8] W. Pedrycz (ed.): Fuzzy Evolutionary Computation. Kluwer, Boston
(1997).

[9] L.A. Zadeh, Fuzzy Sets: Information and Control 8 (1965), 338-353.

17

