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INTRODUCTION 

Many applications in science and business such as signal analysis or costumer 

segmentation deal with large amounts of data which are usually high dimensional in the feature 

space. As a part of preprocessing and exploratory data analysis, visualization of the data helps to 

decide which kind of method probably leads to good results. Since the visual assessment of a 

feature space that has more than three dimensions is not possible, it becomes necessary to find an 

appropriate visualization scheme for such datasets. 

In this work we will present two methods that visualize high-dimensional data on the 

plane. An algorithm will be presented that allows applying our method on larger data sets. 

 

BACKGROUND   

Mulidimensional scaling (MDS) provides low-dimensional visualization of high-

dimensional feature vectors (Kruskal & Wish, 1978; Borg & Groenen, 1997). MDS is a method 

that estimates the coordinates of a set of objects in a feature space of specified (low) 

dimensionality that come from data trying to preserve the distances between pairs of objects. In 

the recent years much research has been done (Chalmers, 1996; Faloutsos & Lin, 1995; 



  

Morrison, Ross, & Chalmers, 2003; Williams & Munzner, 2004). Different ways of computing 

distances and various functions relating the distances to the actual data are commonly used. 

These distances are usually stored in a distance matrix. The estimation of the coordinates will be 

carried out under the constraint, that the error between the distance matrix of the dataset and the 

distance matrix of the corresponding transformed dataset will be minimized. Thus, different error 

measures to be minimized were proposed, i.e. the absolute error, the relative error or a 

combination of both. A commonly used error measure is the so-called Sammon’s mapping. To 

determine the transformed dataset by means of minimizing the error a gradient descent method is 

used.  

Many modifications of MDS are published so far, but high computational costs prevent 

their application to large datasets (Tenenbaum, de Silva, V., & Langford, 2000). Besides the 

quadratic need of memory, MDS, as described above is solved by an iterative method, expensive 

with respect to computation time. Furthermore, a completely new solution must be calculated, if 

a new object is added to the dataset.  

 

MAIN FOCUS 

With MDSpolar and POLARMAP we present two approaches to find a two-dimensional 

projection of a p-dimensional dataset X . Both methods try to find a representation in polar 

coordinates ( ) ( ){ }nnllY ϕϕ ,,,, 11 Κ= , where the length kl  of the original vector kx  is preserved 

and only the angle kϕ  has to be optimized. Thus, our solution is defined to be optimal if all 

angles between pairs of data objects in the projected dataset Y coincide as good as possible with 

the angles in the original feature space X .  As we will show later, it is possible to transform new 

data objects without extra costs. 



  

 

 

MDSpolar 

A straight forward definition of an objective function to be minimized for this problem 

would be 
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where kϕ  is the angle of ky , ikψ  is the positive angle between ix  and kx . The absolute value is 

chosen in equation (1) because the order of the minuends can have an influence on the sign of the 

resulting angle. The problem with this notation is that the functional E  is not differentiable, 

exactly in those points we are interested in, namely, where the difference between angles iϕ  and 

kϕ becomes zero.  

We propose an efficient method that enables us to compute an approximate solution for a 

minimum of the objective function (1) and related ones. In a first step we ignore the absolute 

value in (1) and consider 
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When we simply minimize (2), the results will not be acceptable. Although the angle 

between iy  and ky  might perfectly match the angle ikψ , ki ϕϕ −  can either be ikψ  or ikψ− . 

Since we assume that ikψ≤0  holds, we always have ( ) ( )22
ikkiikki ψϕϕψϕϕ −−≤−− . 

Therefore, finding a minimum of (2) means that this is an upper bound for the minimum of (1). 

Therefore, when we minimize (2) in order to actually minimize (1), we can take the freedom to 

choose whether we want the term ki ϕϕ −  or the term ik ϕϕ −  to appear in (2).  Since 
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instead of exchanging the order of iϕ  and kϕ , we can choose the sign of ikψ , leading to 
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with { }1,1−∈ika . 

In order to solve this optimization problem of equation (3) we take the partial derivatives of E , 

yielding 
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Thus, on the one hand, neglecting that we still have to choose ika , our solution is described by a 

system of linear equations which means its solution can be calculated directly without the need 

of any iteration procedure. On the other hand, as described above, we have to handle the problem 

of determining the sign of the ikψ  in the form of the ika -values. To fulfil the necessary condition 

for a minimum we set equation (4) equal to zero and solve for the kϕ -values, which leads to 
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Since we only want to preserve the angles between data vectors, it is obvious that any solution 

will be invariant with respect to rotation of the dataset. Due to the representation in polar 

coordinates it is necessary to apply a preprocessing step in form of a translation that makes all 

components of data vectors non-negative. Reasons for that and further details are given in 

(Rehm, Klawonn, & Kruse, 2005). 

 



  

A Greedy Algorithm for the Approximation of MDSpolar 

As mentioned above, this solution describes a system of linear equations. Since the 

desired transformation is rotation invariant 1ϕ  can be set to any value, i.e. 01 =ϕ . By means of a 

greedy algorithm we choose { }1,1−∈ika  such that for the resulting kϕ  the error E  of the 

objective function (3) is minimal. For 2ϕ  the exact solution can always be found, since 12a  is the 

only parameter to optimize. For the remaining kϕ  the greedy algorithm sets ika  in turn either 1−  

or 1, verifying the validity of the result, setting ika  the better value immediately and continuing 

with the next ika  until all 1−k  values for ika  are set.  

 

A Generalized MDSpolar 

In certain cases the objective when transforming data is to preserve relations of feature 

vectors of the original feature space in the target feature space. Thus, feature vectors that form a 

cluster should be represented as exact as possible in the target feature space, too. The 

transformation of feature vectors with a large distance to the respective feature vector can have a 

lower accuracy. An approach to achieve this goal is the introduction of weights ikw  to our 

objective function 
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The main benefit of weights, indeed, is the ability to decrease the computational complexity of 

the algorithm. This is the case if weights are chosen in such a way, that for feature vectors with a 

certain (large) distance the respecting weights become zero. A weighting function can control 

this behaviour automatically. For an efficient implementation it is useful to sort the feature 

vectors by means of their length. Note that sorting can be carried out in less than quadratic time. 



  

Weighting functions should be decreasing and should lead to zero weights for proper feature 

vectors. Different weighting functions and further details can be seen in (Rehm, Klawonn, & 

Kruse, 2005). In this way, feature vectors can be grouped into suitable bins, reducing the 

complexity of our algorithm to )log( nnO ⋅ . 

 

POLARMAP 

As an extension of MDSpolar we propose in this work a method that learns a function f  

that provides for any p-dimensional feature vector kx  the corresponding angle kϕ  that is needed 

to map the feature vector to a 2-dimensional feature space. As for MDSpolar the length of vector 

kx  is preserved. With the obtained function also angles for new feature vectors can be computed. 

A 2-dimensional scatter plot might not be suitable, when visualising mappings for large datasets. 

With the computed function it is simple to produce information murals, which allow more 

comprehensive visualizations (Jerding & Stasko, 1995). 

Analogous to functional (1) we define our objective function E   as follows: 
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Since functional (6) is not differentiable, we propose analogous to the procedure for MDSpolar to 

minimise the following differentiable objective function 
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Albeit, f  might be any function, we discuss in this work the following type of function 

( ) xaxf T ~⋅=       (8) 



  

where a  is vector whose components are the parameters to be optimised and x~  is the feature 

vector x  itself or a modification of x . In the simplest case we use 
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where f  describes in fact the linear combination of x . Other functions f  are discussed in 

(Rehm, Klawonn, & Kruse, 2006). 

Replacing term f  by the respective function we obtain 
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For a better readability we replace ji xx ~~ −  by ijx~ and obtain 
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The derivative of E  w.r.t. a  can by easily obtained 
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which results in a system of linear equations in ( )Tpaaaa ,,, 21 Κ= . As mentioned already, 

angles computed by ( ) ( )ji xfxf − , might be positive or negative, while ikψ  is always positive 

by definition. Thus, in the case where 0~ <ij
T xa  holds,  E  might be minimal, but our original 

objective function E  might not be minimal. Hence, replacing ijx~  by ijx~−  in this case might 

lower the error. Consequently, finding the appropriate sign for ijx~  is a crucial step when 

minimizing E . 

Determining the sign for each ijx~  requires exponential need of computation time in the 

number of feature vectors. For real-world datasets this is unacceptable. When relaxing the  
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problem in favour to an approximation of the exact solution one can reduce the time complexity 

down to )log( nnO ⋅ . As for MDSpolar this can be achieved by means of introducing weights 

which is discussed in detail in (Rehm, Klawonn, & Kruse, 2006).  

 

Experimental Results 

Since a function is learned by POLARMAP it becomes possible to map new vectors in 

the target space. To demonstrate the power of POLARMAP, we applied it on the well known 

Wisconsin breast cancer dataset1 (Mangasarian & Wolberg, 1990). Each patient in the database 

had a fine needle aspirate taken from her breast. Resultant, nine attributes where determined and 

analysed to discriminate benign from malignant breast lumps. Figure 1 shows the Sammon's 

mapping of the dataset. The transformation of the Wisconsin breast cancer dataset with 

POLARMAP is shown in figure 2. The different classes are represented by different symbols. 

Both transformations are similar regarding the scattering of the different classes. Patients with 

benign lumps and those with malignant lumps can be almost separated linearly in both 

                                                           
1 The breast cancer database was obtained from the University of Wisconsin Hospitals, Madison from Dr. William 
H. Wolberg. 

Figure 2: POLARMAP on the Wisconsin 
Breast Cancer Dataset 

Figure 1: Sammon’s Mapping of the 
Wisconsin Breast Cancer Dataset 



  

transformations. Only few points can be found in regions where the opposite class mainly 

represented. 

For the transformation with POLARMAP, the dataset is split into a training dataset and a 

test dataset. The training dataset consists of 80% of each class. This part of the data is used to 

learn the desired coefficients. The test dataset, that contains the remaining 20% of the data, is 

mapped to the target space by means of the learned function. The mapping of the training dataset 

is plotted with the different symbols again, each for the corresponding class. The mapped feature 

vectors of the test dataset are marked with a small circle or a diamond, respectively. As the 

figure shows, the learned function maps the new feature vectors in an appropriate way.  

 

FUTURE TRENDS 

   

CONCLUSION 

In this paper we have described a powerful data visualisation method. Under the 

constraint to preserve the length of feature vectors, it was our aim to find a mapping that projects 

feature vectors from a high-dimensional space to the plane in such a way that we minimise the 

errors in the angles between the mapped feature vectors. The solution is described by a system of 

linear equations. To overcome the problem in high-dimensional feature spaces, that no 

differentiation between positive and negative angles can be made as for a 2-dimensional feature 

space, an algorithm is provided to obtain the desired signs for the angles. With the bin-algorithm, 

we presented an algorithm, that lowers the computation complexity down to )log( nnO ⋅ .  
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KEY TERMS AND THEIR DEFINITIONS 

Data Visualization:  Presentation of data in human understandable graphics, images, or 

animation. 

Visual Data Mining: Data mining process through data visualization.  The fundamental concept 

of visual data mining is the interaction between data visual presentation, human graphics 

cognition, and problem solving.  

Multidimensional scaling: Multidimensional scaling provides low-dimensional visualization of 

high-dimensional feature vectors. 


