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1 Introduction

Cluster analysis is an exploratory data analysis technique that is designed to
group data and to detect structures within data. Exploratory techniques are
applied as first steps in data analysis, immediately after elementary cleaning
and visualisation of the data has been carried out. This means that a specific
model for the data is not available at this state. However, exploratory methods
usually incorporate control parameters that influence the result of this early
data analysis step. Therefore, it is desirable to design methods that are robust
w.r.t. the variation of such control parameters. In this paper, we modify the
so-called noise clustering technique making it more robust against a wrong
choice of its main control parameter, the noise distance. Section 2 briefly
reviews the necessary background in fuzzy clustering. Section 3 introduces
our modified noise clustering approach including a computationally efficient
algorithm. We finish the paper by an example and some concluding remarks.

2 Objective Function-Based Fuzzy Clustering

Fuzzy clustering is suited for finding structures in data. A data set is divided
into a set of clusters and — in contrast to hard clustering — a datum is not
assigned to a unique cluster. In order to handle noisy and ambiguous data,
membership degrees of the data to the clusters are computed. Most fuzzy
clustering techniques are designed to optimise an object function with con-
straints. The most common approach is the so called probabilistic clustering
with the objective function
C n C
f = Z ujid;j constrained by Zuij =1 forallj=1,...,n (1)

i=1 j=1 =1

that should be minimized. It is assumed that the number of clusters ¢ is
fixed. We will not discuss the issue of determining the number of clusters
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here and refer for an overview to [2, 4]. The set of data to be clustered is
{z1,...,2n} C RP. u;; is the membership degree of datum z; to the ith
cluster. d;; is some distance measure specifying the distance between datum
x; and cluster i, for instance the (quadratic) Euclidean distance of z; to the
ith cluster centre. The parameter m > 1, called fuzzifier, controls how much
clusters may overlap. The constraints lead to the name probabilistic clustering,
since in this case the membership degree u;; can also be interpreted as the
probability that z; belongs to cluster ¢. The parameters to be optimised are
the membership degrees u;; and the cluster parameters that are not given
explicitly here. They are hidden in the distances d;;. Since this is a non-linear
optimisation problem, the most common approach to minimize the objective
function (1) is to alternatingly optimise either the membership degrees or the
cluster parameters while considering the other parameter set as fixed.

In this paper we are not interested in the great variety of cluster shapes
(spheres, ellipsoids, lines, quadrics,...) that can be found by choosing suit-
able cluster parameters and an adequate distance function. (For an overview
we refer again to [2, 4].) We only concentrate on the aspect of the member-
ship degrees. Interpreting the membership degrees in terms of probabilities,
u;; specifies the probability that datum z; belongs to cluster ¢, under the
assumption that it must be assigned to a cluster. As a consequence, we ob-
tain the following effect, which can lead to undesirable results. If we have, for
instance, only two clusters and a datum has approximately the membership
degree 0.5 to both clusters, it means either that the datum fits to both clus-
ters equally well (the datum is near the border between the two clusters) or
equally bad (the datum is noise and far away from both clusters).

In order to avoid this effect, possibilistic clustering was introduced [5],
dropping the probabilistic constraint completely and introducing an additional
term in the objective function to avoid the trivial solution u;; = 0. However,
the aim of possibilistic clustering is actually not to find the global optimum of
the corresponding objective function, since this is obtained, when all clusters
are identical. [6] describes an improved approach for the price of solving an
additional non-linear optimisation problem in each iteration step.

Noise clustering [3] is another approach extending probabilistic clustering.
The principle of probabilistic clustering is maintained, but an additional noise
cluster is introduced. All data have a fixed (large) distance to the noise cluster.
In this way, data that are near the border between two clusters still have a
high membership degree to both clusters as in probabilistic clustering. But
data that are far away from all clusters will be assigned to the noise cluster and
have no longer a high membership degree to other clusters. The crucial point
in noise clustering is the choice of the noise distance. If the noise distance
is chosen too small, most of the data will simply be assigned to the noise
cluster, if the noise distance is too high, the results are more or less identical
to standard probabilistic clustering.
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3 Noise Clustering with an Expected Fraction of Noise

The considerations in the previous section inspired the idea to introduce a
new parameter into noise clustering that specifies the number or the fraction
of noisy data expected or admitted in the data. At first sight, it seems that
this approach makes the situation even more complicated, since in addition to
the noise distance the additional parameter must also be specified. However,
it turns out that a very rough (usually much too large) estimation of the noise
distance in combination with a rough estimation of the number of noisy data
leads to very good clustering results.

The basis of noise clustering with a fixed number 0 < N < n of noisy data
is the following objective function

c+1 n c+1
f = Z Zu?jd’j constrained by Zui]- =1 forallj=1,...,n. (2)
i=1 j=1 =1
n
with the additional constraint Z Uet1,; = . (3)
Jj=1

Fig. 1. Detection of noise with modified (left) and standard (right) noise clustering.

We assume that cluster number (¢+1) is the noise cluster and therefore the
distance d¢41,; = dnoise is the fixed noise distance dpoise- In order to obtain an
analytical solution for the alternating optimisation scheme, we have chosen a
fuzzifier of m = 2. The constraint (3) reflects the requirement that N data are
accepted or considered as noise. In order to obtain the update equations for
the u;;, we must find the global minimum of this objective function satisfying
the constraints specified in (2) and (3), while we consider the distance values
d;; as fixed. Therefore, we compute the corresponding partial derivatives of
the Lagrange function

c+1 n n c+1 n
fL = Zzufjd” + )\j <1 — Zui]) + A| N - ZUCJrL]' . (4)
1 i=1

i=1 j=1 j= j=1
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afL — {2Uijd,’j—/\j 1f1§z§c} -0 (5)

We obtain auij 2Uijdnoise — /\j —Aifi=c+1

Writing down these equations and the constraints specified in (2) and (3),
we obtain the following system of (n(c+ 2) + 1) linear equations.

| Ui,1 | . | U1,n | . | Ue,1 | . | Ue,n |’U,c+1’1 | . -|uc+1,n|/\1 | . |/\n| A ||RHS|
2d; —1
2d; ., —1
2d, —1
2d,. —1
2dnoise -1 -1
anoise —1|-1
1 1 1 1
1 1 1 1
1 .. 1 N

Empty entries correspond to zeros. RHS stands for the right hand side of
the equation. An ad hoc solution of this equation would not be feasible for
large data sets. But we can see that the corresponding matrix is almost an
upper triangular matrix. Only the last (n 4+ 1) rows disturb the triangular
structure. We can use the equations with 2d,4ise to eliminate the coefficients
1 in the last row, thus replacing the last row by

1 1 n
— M +...+—y+——A =N
2dnoise ! 2dnoise " 2dnoise
or, equivalently,
AM 4.+ A+ 1\ = 2Ndnoise- (6)

From (5), we know

X

Uij 20; (fori<e¢) an Uet1,j S~ (7
The constraint in (2) together with (7) yields
A+HA N
— L= 1, (8)

2dn0ise i—1 Qdij
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so that we have
9 _ A
dnoise (9)
-
+ 25:1 E

Inserting (9) into (6) and solving for A, we obtain

Aj o= 1
d

noise

2Ndnoise — 2 Z?:l ﬁ

A = noise i=1 dij

1 n 1
" % Zj:l m+22:1 d:j

After having computed A\, we can use (9) to determine \q,...,A,. Now we

can directly compute the membership degrees w;; from (7).

For this new type of noise clustering, the update equations for the member-
ship degrees are no longer as simple as they are in probabilistic, possibilistic
or standard noise clustering. However, the scheme we have derived is com-
putationally efficient and is not significantly slower than the other clustering
algorithms. If we had simply solved the system of linear equations in a naive
way, the computation would not be feasible for larger data sets.

4 An Example

In this section we briefly illustrate with a simple data set, how our new al-
gorithm works. Figure 1 shows the result of applying the well known fuzzy
c-means clustering algorithm [1] with standard noise clustering on the right
hand side and with our new approach on the left hand side. In both cases the
cluster centres are positioned correctly and the data obviously belonging to a
cluster are assigned with the highest membership degree to the corresponding
cluster. The good result for standard noise clustering could only be obtained,
by tuning the noise distance manually, finally to a value of 1.7. The data as-
signed to the noise cluster with the highest membership degree are marked
as small vertically oriented rectangles. We can see that still some of the noisy
data are not assigned to the noise cluster with the highest membership de-
gree in the case of standard noise clustering. With our modification all noisy
data are assigned to the cluster. For practical purposes, we do not specify the
expected number of noisy data NV, but the expected percentage Poise Or frac-
tion of noisy data, so that the parameter N is determined by N = P—‘l‘(%& -n.
It should be noted that we can and should overestimate the percentage of
noisy data. The nature of fuzzy clustering is that zero membership degrees
nearly never occur. Therefore, even for a very large noise distance all data will
have at least a small membership degree to the noise cluster. And all these
small membership degrees contribute to the value of N of noisy data. Figure
2 (left) shows the clustering result with heavily overestimated noise where we
have assumed 60% noisy data: Ppese = 60. Even for this case, the clustering
result is still acceptable. In addition to the data that should be considered as
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noise, only data at the very boundary of the clusters are assigned to the noise
cluster. If we apply standard noise clustering and decrease the more or less
optimum noise distance of 1.7 in figure 1 to 1.6, the effect for the clustering
is disastrous as the right hand side of figure 2 shows.

5 Conclusions

We have introduced an extension of noise clustering that allows the speci-
fication of the fraction of expected noisy data. A very rough value for this
additional parameter frees the user from an accurate estimation of the noise
distance. Therefore, our approach can be seen as a further step for making
exploratory data analysis techniques more robust against tedious parameter
selections.

Fig. 2. Clustering result with heavily overestimated noise (left) and standard noise
clustering with a slightly decreased noise distance.
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