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Abstract

This papers aims at clarifying the meaning of different interpretations of
the Max-Min or, more generally, the Max-t-norm rule in fuzzy systems. It
turns out that basically two distinct approaches play an important role in
fuzzy logic and its applications: fuzzy interpolation on the basis of an impre-
cisely known function and logical inference in the presence of fuzzy informa-
tion.
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1 Introduction

This is a synthesizing paper which returns to the question, what is the role of the
Max-Min (Max-t-norm) rule in fuzzy logic from the viewpoint of logical inference.
We aim at demonstrating that two basic, more or less complementary approaches
in fuzzy logic and its applications can be distinguished, namely: fuzzy interpolation
of a fuzzily specified precise function and logical inference in the presence of fuzzy
information.

The first task is solved using the Max-t-norm rule which essentially leads to
search of a fuzzy set which is an image of some fuzzy relation. The whole procedure
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is quite reasonable and gives good results. However, it has to be stressed that it is
not a logical inference, i.e., a procedure aiming at the derivation of new facts from
some other known ones using formal deduction rules. No logical implication is inside
and thus, no modus ponens proceeds. This conclusion is based on the analysis of
the Max-t-norm rule as a logical inference which meets unsurmountable problems
(cf. [20]). We will return to this question later.

The second task leads to a set of logical deductions in many-valued logic. This
can be demonstrated to fulfill all the intuitive expectations about approximate rea-
soning and opens an extensive field for further study. The logical inference mech-
anism makes it, moreover, possible to provide interpolation in a similar manner as
Max-t-norm rule.

The paper is divided into 5 sections. In Section 2, the Max-Min interpolation
rule is analyzed in detail and given reasons for calling it “interpolation”. Section
3 focuses on the more general problem of how a function and a relation can be
described. We demonstrate that two possible ways exist. The first one leads to the
Max-t-norm (Max-Min) interpolation which described in Section 2. The second one
leads to logical description using the concept of implication. This second possibility
1s further discussed in Section 4 where logical inference and a problem of chaining
of rules are discussed. Furthermore, we consider also chaining of Max-t-norm rules
and show that this brings some problems making it somewhat dubious. Note that
chaining of rules is an important question for the design of (fuzzy) expert systems.

We will work with the following structure of truth values (membership degrees):

£ =([0,1],V, A, ®,—,1,0) (1)

where the operations V and A are the operations of supremum (maximum) and infi-
mum (minimum) respectively and ®, — are binary operations of Lukasiewicz mul-
tiplication (sometimes called also bold multiplication) and residuation (Lukasiewicz
implication), respectively, given by

a®b = 0V(a+b—-1) (2)
a—b = 1AN(1—-—a+bd), a,b € [0,1]. (3)

We also use the symbol 1 for an arbitrary t-norm.

The reasons for choosing (1 — 3) are manyfold and they were explained in [23,
13, 14, 21]).

We will also deal with a formal language J which is the classical first-order
language extended by symbols for truth values and some additional connectives (for
details see the previously cited works). By Fj; we denote a set of all well formed
formulas in the language J.

We will use the notation based on that introduced in [13]. For fuzzy sets we use
the greek symbols u,v.... Fuzzy sets are functions y : U — [0,1]. Occasionally,
we will write 4 C U to stress that p is a fuzzy set in the universe U. Explicitly, we
will write the fuzzy set y in the form

{u(@)/z |z e U}



where U is the universe and p(z) € [0,1] is the membership degree of z € U. By
F(U) = [0,1]Y we denote the set of all the fuzzy sets on U. By dom and rng we
denote the domain and range of the function in concern, respectively.

2 Max—Min Rule is Interpolation

Input-output behaviour of technical systems is described in terms of functions. A
typical example is the table based control, where a function is constructed that
assigns to measured inputs of actual process parameters a suitable control action as
output. However, the definition of a function point by point is often an intractable
task, especially since the precise values of the function are usually not known. Thus,
there is a need for other methods for specification of a function.

Our situation can be described as follows. We intend to find a function g : U —
V. However, for various reasons, we need not know this function completely but only
an approximation of it which is a function, say G. The question arises, how exactly
G is given and how well it fits the function g. A very usual situation, encountered
in fuzzy control (and other applications of fuzzy logic) is, that G is a fuzzy function
of type 2 (cf. [13]), sometimes called a fuzzy graph, i.e., it is a (classical, partial)
mapping

G:FU)— F(V).

Note that we explicitly allow G to be a partial mapping so that G may assign
an output fuzzy set only to some input fuzzy sets. Of course, we should assume,
that the fuzzy graph given by g covers g, i.e. dom(g) C Supp (Udom(G)) and
rng(g) C Supp (Urng(G)) where dom and rng denote the domain and the codomain
of a classical function. This situation is depicted on Fig. 1. The function G in
the picture is outlined by only few circles. However, it follows from the condition
on domain and range above that it covers the whole g. It is not intended that G
generalizes the mapping g defined on the power set of U which assigns to each subset
Up of U its image g(Us) = g(Uo) = {v € V | (Fu € Up)(g(u) = v)} to fuzzy sets.
G is understood as the extension of g to fuzzy points, i.e. to fuzzy sets of a certain
type. What we understand by a fuzzy point will be explained later on in detail.

Our problem now is to fit the function g by means of G in some way and to be able
to find a value g(zo) € V to the given argument zo € U by means of G. From the
mathematical point of view, interpolation is a possible approach. However, human
experts do usually not think in terms of mathematical interpolation techniques, for
example, those based on splines. It seems that two simple assumptions lead to a
more appropriate model for the way how a human expert considers an input—output
function of a technical system.

(1) For some representative inputs the output is at least approximately known. It
is sufficient to specify these inputs approximately.

(ii) For more or less similar inputs, the outputs are also similar.
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Figure 1: Schematic depiction of functions g and G.

Technically speaking, (i) means that G is described as a partial function assigning
output values only to certain inputs. It is not necessary to know precisely either
the input or the output values. It is sufficient to specify them only up to a certain
precision.

(i) states that a suitable interpolation in terms of some similarity has to be
carried out among these given points.

In both cases, (i) and (ii), it is assumed that there is a notion of (maybe graded)
distinguishability or indistinguishability of values. In (i), this indistinguishability
is connected to the sufficient but limited precision needed. (ii) requires the dis-
tinguishability in order to decide, whether a certain output can be classified as
appropriate or not.

It is clear that without additional information or assumptions, the partial func-
tion G given due to (i) cannot be extended to g defined for all inputs. To solve this
problem, we have to exploit the similarity stated in (ii) which enables us to describe
g imprecisely when the specified inputs are representative in the sense that they
cover the input space sufficiently dense with respect to the similarity in (ii). In the
following, we describe an intuitive approach to a model incorporating the ideas (i)
and (ii). It turns out that this leads to the Max-Min (Max-t-norm) rule.

In order formalize the idea of similar inputs and outputs, we use the notion of a
similarity relation. A similarity relation on the set U is a mapping £ : U x U —»
[0, 1] such that

(S1) E(z,z) =1,
(S2) E(z,2') = E(z',z), and

(S3) E(z,2') @ E(z',2") < E(z,z"), where ® is the Lukasiewicz multiplication
defined in equation (2),



hold. If the Lukasiewicz multiplication is replaced by an arbitrary t-norm, the more
general notion of an equality relation [6] or indistinguishability operator [25] is used.
The choice of the Lukasiewicz multiplication in (S3) implies that the concept of a
similarity relation is dual to pseudo-metrics. Thus a canonical interpretation of
similarity in the sense of ‘not being far away from each other’ with respect to the
corresponding pseudo-metric can be provided [7].

We stressed in the assumption (i) that the specified values do not have to be
precise. An intuitive approach to reflect this notion is to describe these imprecise
values by fuzzy sets, which are well suited for modelling of linguistic expressions
like ‘approzimately zo’. This expression is represented by a fuzzy set u € F(U)
where U is the underlying domain for the variable X. We also assume that there
is some zo € U such that u(zo) = 1. Usually, U will be a subset of the real line,
and in this case it is reasonable to assume that p is non-decreasing for z < zo and
non-increasing for z > o, implying that p is a convex fuzzy set. We will return
to this point later on in this section. At the moment, it is sufficient to understand
the fuzzy set p as a representation of the vaguely given value zy. The membership
degree u(z) is interpreted as the degree to which z can be identified with the value
Zo.

Let us now consider one simple statement

R = IF X is approzimately o THEN Y is approzimately yo. (4)

that assigns the (imprecisely known) value yo to the (imprecisely known) value o,
i.e., it determines the value of the function g in one (imprecisely known) point.

It will follow from the discussion below that (4) is an implication on the surface
implication form which, however, is not necessarily understood as a logical implica-
tion. Later on we will discuss in more detail different ways to describe function in
terms of logical implications and other statements.

The linguistic expressions ‘approzimately o’ and ‘approzimately yo’ are repre-
sented by the fuzzy sets p and v, respectively. Now assume that we are given the
input value z. What can we say about the output for z?

If £ = xo then the output is ‘approzimately yo’, which is represented by the fuzzy
set v. For ¢ # zo we have to take into account to which degree z can be identified
with #o. This degree is given by the membership grade p(z). What can be said
about the output in this case?

Since (4) is the only information we have, we derive for a given possible output y
that, if z is approximately zo then y can be accepted as output if it is approximately
yo. The truth degree of the statements ‘x is approzimately o’ and ‘y is approzimately
Yo' is determined by the fuzzy sets p and v, respectively. These two statements are
connected by a conjunction. From the view point of fuzzy logic, a natural model of
conjunction is the minimum or another suitable t-norm M. Therefore, the degree to
which y can be considered as an appropriate output for z is obtained using

p(z) Nv(y). (5)



Formula (5) can be interpreted in the following sense.
fl)~y «— zrRzoAY = Yo (6)

where ~ stands for (approximate) equality. In the crisp case, where a ~ b is either
true or false, (6) simply determines the partial function that is defined for the input
zo, yielding yo as output. But since we assumed that z, and yo are not precisely
known, a & b cannot be evaluated in terms of true and false alone, but in a graded
approach leading to the idea of a fuzzy equality for which a possible axiomatization
is given by the axioms (S1)—(S3). We will revisit this question again in the end of
this section.
We now extend our considerations from one statement of the form (4) to a set
of such statements
R; = IF X is approzimately m((,i) THEN Y is approzimately y((,i) (7)

?

for i € I. In the sense of the beginning of this section, (7) represents a fuzzy function
G, i.e., it can be considered as a tabular form of giving G.
Analogously with the interpretation of (4) in the sense of (6), we associate with
(7) the formula
fle)~y «— (Fel) (zrzo Ny~ yo). (8)

Since each statement R; determines the output (imprecisely) for one (vague) input
value, we have to check for the given input z all statements R; whether z fits to

‘approzimately ar:((f)’. If we can find some ¢ € I, for which z fits to ‘approzimately

m((,i)’, then we know that ‘approzimately y((,i)’ is a suitable output for . This justifies
the use of the existential quantifier in (8).
It follows from the theory of (fuzzy) logic, that the existential quantifier should

be interpreted by the supremum. Hence, given the input z, (8) leads to the output

v(y) =\ (6(z) N v(y)) . 9)

i€l

fuzzy set

This is exactly the Max-t-norm inference and in the case of I = min, the Max-Min
rule.

The advantage of using the imprecisely known values being represented by fuzzy
sets is the following. In the crisp case, (8) does determine only a partial function
without giving an additional information how the partial function G can be extended
to a function g. If we use the imprecise values, then the whole input space can be
covered by a finite number of rules (8) (i.e., the table specifying the function G is
finite) and thus, the extension to g is possible.

Concerning the form of (7), recall from [22] that a classical finite function can be
equivalently described either by a conjunction of (classical) implications or disjunc-
tion of conjunctions. But G is a classical function (of course, with fuzzy values) and
thus, the implication form of (7) is justified keeping in mind, however, that they are
not treated as implications.



So far we have considered rules of the form (7) which admit only one input
variable X. It is straightforward to generalize the proposed concepts to multi-input
systems using rules of the form

R; = |IF Xy is approzimately mgi) AND ... AND X, is approzimately m,(f)
THEN Y is approzimately y(()i). (10)

The conjunction in the premise of (10) can be evaluated by a suitable t-norm,
usually the minimum. The system of rules describes again a function in the same
way as (8), i.e.,

fz1,...,zn) xRy «— (Fel) (z; = mgi) Ao ANeg ez Ay zy((,i)). (11)

The Max-t-norm (Max-Min) rule was motivated in terms of interpolation on a
very intuitive basis. The fundamental assumptions for our considerations were that

o the fuzzy sets representing the linguistic terms appearing in the rules corre-
spond to imprecisely known values,

e the membership grade of the value = to the fuzzy set u that represents the im-
precisely known value zo corresponds to the degree to which z can be identified
with zg.

Looking at common fuzzy systems, especially controllers, these two assumptions
do not seem to be obvious, since expressions like ‘positive big’ and ‘negative small
are usually used instead of the considered linguistic terms ‘approzimately zo’. In
the following, we explain that in many typical applications it is really reasonable to
reinterpret the system in the sense we have proposed above. As a first step, we will
also provide a more rigorous approach to the interpretation of membership grades.

Consider the linguistic expression approzimately zo. If we are given a value
z and have to decide whether  could be accepted as approzimately o, we need
some distance or similarity measure , in order to evaluate, whether z and z, can
be identified. In the very common case where the domain U for the variable X
is a subset of the real line, there exists a canonical distance measure, namely the
standard metric on U, given by é(z,z') = |z — 2'|. From this distance measure we
obtain a similarity relation E on U defined by E(z,z') = 1 —min{|z —2’|,1}. Given
this similarity relation, a value z¢ induces the fuzzy set

22 (m) = E(mamo) (12)

of values that are similar to zo. Note that p,, is a triangular membership function
of the width two. Although such fuzzy sets are very common in fuzzy systems, they
are definitely too restricted to cover a sufficient large number of applications. The
similarity relation induced by the standard metric is generally not the best choice.
The idea to obtain a more appropriate similarity relation is to adjust the standard



metric to the problem to be considered. This adjustment is carried out on the basis
of a suitable scaling. Two different intentions are inherent in this scaling. First
of all, a normalization is one goal of scaling. Depending on the measurement unit
the standard metric has to be adjusted by a constant scaling factor ¢ > 0, i.e., we
replace the metric 6(z,z') = |z — 2’| by S(m,m') = |c-z — c¢- z'|. For instance, the
constant scaling factor transforming the unit hours to minutes is ¢ = 60.

The second and more interesting point of our scaling concept is the following.
Depending on the considered problem, there might be some ranges of the domain
U of the variable X where it is not very important to know the precise value of
X. This means that we do not have to distinguish very carefully between values
in such ranges. To express this phenomenon in terms of a non-uniform scaling,
we would choose a small scaling factor ¢ near zero for these ranges. Thus two
values z and z’ in one of these ranges might have a great distance with regard
to the standard metric, but have nevertheless a high degree of similarity given by
E(z,z')=1—min{|c-z — c- 2|, 1}.

On the other hand, for ranges where the considered system is very sensitive to
small changes a greater scaling factor is more appropriate, leading to a low degree
of similarity, even for values that are quite close to each other.

This idea of using different scaling factors can be generalized by assigning a
scaling factor ¢(z) > 0 to each z in the domain U [7]. The value ¢(z) is a measure
for the distinguishability in the neighbourhood of . In this case the modified
distance is given by

/z c(s)ds

N

§z,z') =

?

leading to the similarity relation

E(z,z')=1-— min{

,1}. (13)

From (13) we can derive the following lemma.

Lemma 1 Letc: R —> [0,00) be an integrable function and let E be the similarity
relation given by (18). Then for any imprecisely known value o € R the corre-
sponding fuzzy set ., (z) = E(z, o) is convez, piecewise differentiable, continuous,
and satisfies piz,(zo) = 1.

Most applications use the fuzzy sets with the properties described in Lemma 1.

The motivation of fuzzy sets as representations of imprecisely known values in
an environment whose indistinguishability is described in terms of scaling factors
is intuitively appealing. Nevertheless, we still have to prove that these ideas are
coherent with the use of fuzzy sets in applications.

For this, we recall the following theorem proved in [7]:

Theorem 1 Let (u;);.; be an at most countable family of fuzzy sets on R and let
(m(()i))iel be a family of real numbers such that ,uz-(ar:((f)) = 1 holds. Furthermore, let



the fuzzy sets p; be convex, precewise differentiable, and continuous. There exists

a scaling function ¢ : R — [0,00) such that each fuzzy set u; for i € I coincides
(1)

with the fuzzy set p_iy which 1s associated with the imprecisely known value xgy’ with
Zo

regard to the indistinguishability induced by c, if and only of

min{pi(2), pi(2)} > 0 = |ui(2)| = |uj(a)| (14)
holds almost everywhere for all 1,7 € I.

At first sight, condition (14) requiring that the absolute values of the derivatives
of two fuzzy sets have to be equal on the intersection of their supports, might look
technical. But it is, for example, implied by the very common requirement, that
the sum of the membership degrees of neighbouring fuzzy sets of a fuzzy partition
should add up to one. This can be guaranteed by taking a fuzzy partition which is
obtained by choosing crisp values z; < 3 < ... < z,, and defining the fuzzy set y;
for 1 <7 < n by a triangular membership function which takes its maximum at z;
and reaches the value zero at z; ; and z;,,, respectively.

Thus we cannot only interpret typical fuzzy partitions in terms of a similarity
relation induced by a scaling function; we provide also an explanation for reasonable
conditions for fuzzy partitions.

Let us now consider how the problem of interpolation can be solved in the frame-
work of indistinguishability induced by scaling functions. In order to describe the
function which we want to interpolate in our framework, we need a set of imprecisely
known values af:((,z) €U, (i € {1,...,k}), and the corresponding imprecisely known
output values y((,i) € V, where we assume that the domains U and V are real in-
tervals. In addition, scaling functions on U and V', which induce the corresponding
similarity relations, have to be specified. The scaling functions have to be chosen
in such a way that low scaling factors are assigned to values where the function
to be interpolated does not vary significantly. This reflects the idea that it is not
necessary to distinguish strictly between input values for which the output is more
or less identical. On the other hand, if the function to be interpolated is expected
to change rapidly in a certain range, then for this range a greater scaling factor has
to be specified, since it is important to distinguish well even between close input
values, because their corresponding outputs might differ considerably. In this way,
the similarity relations induced by the scaling functions characterize how precise the
values should be in different ranges in order to obtain an acceptable interpolation.

To be able to carry out the interpolation, in addition to the scaling functions
pairs of (imprecisely known) input-output values (m((,i),y((,i)) are needed.

Before we turn to the problem of choosing appropriate points for interpolation,
we justify the Max-Min rule in this stricter framework. Assume that we know the
scaling functions ¢ and d inducing the similarity relations £ and F' on the input
domain U and the output domain V. In addition, we have the imprecisely known
interpolation points ar:((,i with corresponding outputs y((,i), i.e., a partial fuzzy function
G is given. For each pair (z,y) we can determine to which degree it can be considered

as belonging to G.



The pair (z,y) belongs to the fuzzy function G if and only if there exists an

imprecisely known interpolation tuple (m((,i), y((,i)) with which (z,y) can be identified,

i.e., we have to look for the interpolation tuple (m((,i),y((,z)) which fits best to (z,y).

Since z should be identifiable with m((,i) and y should be identifiable with y((,z) it is clear
that the degrees of similarity between z and m((,i), and y and y((,i) should be aggregated
in a conjunctive manner, i.e., by a t-norm, for example the minimum. This means
that we obtain a degree of similarity of min{E(z, m((f)), F(y, y((,i))} between the pairs
(z,y) and (m((,i), y(()i)). Since we are looking for the best fitting interpolation point for
the pair (z,y), we finally obtain

max {min{ B(=,5), F(y,y5")} | (15)

as the degree to which (z,y) belongs to the imprecisely known partial function.
What can be said about the output for a certain input ? For each output y we

can determine the degree to which (z,y) belongs to the imprecisely known partial

function by equation (15). Thus, a description of the output fuzzy set is given by

pouta(y) = max {min{E(z, 2(), F(y,95”)} } . (16)

Remembering that the fuzzy sets of values that can be identified with the value m((,i)
and y((,z), respectively, are given by u;(z) = E(e, m((,z)) and v;(y) = F(y, y(()z)), equation

(16) can be rewritten in the form
Pout,s(y) = max {min{p;(z), vi(y)}} (17)

which is again the Max-Min rule.

In the above considerations, we gave lines how appropriate scaling functions can
be chosen. The interpolation points were assumed to be given. Now, we propose a
philosophy of selecting suitable interpolations points.

The case when a random sample of data is available will not be considered since it
then is usually more appropriate to apply a regression technique. We concentrate on
the case where a human expert has an idea of how the function should approximately
look like. Of course, it might be reasonable to specify as many interpolation points as
possible. However, we stick here to the philosophy that the expert tries to define as
few interpolation points as are necessary for a satisfactory description of the function.
This method frees the expert from specifying redundant knowledge and leads to
a very information compressed representation of the function to be interpolated.
Let us assume that the output y((,i) for the imprecisely known input m((,i) is given.
The similarity relation E induced by the scaling function ¢ on U enables us to get
information about the output corresponding to the value z, as long as E(z, af:((f)) >
0 holds. Thus the next imprecisely known interpolation points a:((,i_l) and a:((,i—l_l)
should be chosen such that E(m((f_l),m((f)) =0= E(m((f—l_l),m((f)) and E(m,af:((f)) > 0

(i-1) (i+1)

for all z; <z < zy If we follow this minimality philosophy, we obtain a

10



fuzzy partition from the imprecisely known values m((,i) that satisfies the condition
pi(z) + pipa(z) = 1 for all m((f) <z< a:((f—l_l)
for such typical fuzzy partitions in terms of a ‘lazy’ expert who specifies as few

interpolation points as necessary.

. Thus we can provide an interpretation

We have motivated the Max-Min rule as an interpolation technique based on
imprecisely known interpolation points. The similarity relations provide additional
information in the neighbourhood of the interpolations points. Therefore, it is pos-
sible to define a (fuzzy) output for any input, even if the input-output relation is
known only in the form of a partial function. In this sense, tolerating a certain
amount of imprecision provides a better framework for interpolation than insisting
on exact values, for which other assumptions have to be made in order to define a
reasonable interpolation function.

Let us return to idea of a fuzzy function G : F(U) — F(V), stated in the
beginning of this section and illustrated in figure 1. We emphasized that the ordinary
partial function G should only be defined for fuzzy points. Taking into account
the above considerations on similarity relations, it is clear that exactly those fuzzy
sets can be interpreted as fuzzy points that induced by a single element (and the
given similarity relation). In case, the similarity relation is not explicitly defined,
Theorem 1 provides the answer to the question whether the fuzzy sets can be seen
as fuzzy points.

We have restricted our considerations here to the simple case where the similarity
relation is induced by the standard metric and a non-uniform scaling. The notion of a
similarity relation is more general [24, 11]. Similar results about interpolation in the
more general framework of equality relations can be formulated [8, 9]. However, the
interpretation of similarity induced by a non-uniform scaling cannot be maintained.

3 General Problem of Description of a Function
or a Relation

3.1 General problem

The previous section provided a method for interpolating or specifying a function on
the basis of imprecisely known interpolation points and suitable similarity relations.
This section deals with a more general question how a function or even a relation
can be described.

We will discuss and examine different approaches to the problem. In order to
clarify the concepts behind these approaches, we first restrict our considerations to
the crisp case and discuss the fuzzy case later on.

Assume that we have an input domain U and an output domain V. We are
looking for a (crisp) relation R C U x V containing the pairs (z,y) € U x V such
that y is a suitable output for the input =.

Two types of information about the unknown relation R can in principle be

11



obtained. One possibility is that for some pairs (z;,y;) € U x V where ¢ € I we
know that they surely belong to R, i.e.

Uteou)} € B (18)
el
Note that we might even know a whole set of pairs that belong to R for sure. But
this set can be split into its element and it is therefore sufficient to assume that we
only specify single elements one by one as in equation (18).
The alternative to specification of pairs that surely belong to R is to find some
sets R; containing surely the relation R. Hence, we have

RC (R (19)
el
A possible way how to obtain the relations R; is to find some subsets S; C U XV, 1 €
I, which definitely contain no tuples of R. Hence, R is contained in the complement
R, = (U xV)—S5;of S,.

The two approaches (18) and (19) could be called lower and upper approzimation.
These two approaches are also discussed by Dubois and Prade [4] and Yager and
Filev [27] where they are the graph and the functional view or constructive and
destructive models, respectively. Our aim is to examine these approaches in the
view fuzzy sets induced by similarity relations.

The above considerations are very simple for the crisp case. But when we gener-
alize the description of a relation to fuzzy sets, we have to be aware of the distinction
between (18) and (19). Unfortunately, especially in the fuzzy control applications,
confusion is caused by misinterpretations (or missing interpretation). The trans-
fer function, or, in our terminology, the input-output relation is given in terms of
linguistic rules of the form

R=IFXis ATHEN Y is B (20)

where A and B stand for linguistic expressions like positive big or negative small that
are represented by fuzzy sets p4 and vg, respectively. The question of how such rules
should be interpreted is often not discussed in the applications. Recalling the above
considerations about the description of a crisp input-output relation, there are two
possible meanings for such rules, having consequences for the ‘fuzzification’ of the
rule.

We now turn to the fuzzy case where we want to describe a fuzzy relation p C
U x V instead of a crisp relation R C U x V. The relation p might be interpreted
as the representation of a crisp relation R C U x V taking some similarity relation
H on U x V into account. In the same way a single element induces a fuzzy set
with regard to a similarity relation (compare equation (12)), a crisp subset M of a
domain U is associated with the fuzzy set

uu(e) = \/ E(e,m) (21)



of elements that can be identified with at least one of the elements of U with regard
to the similarity relation E. Thus we would have

p(m,y) = \/ H((may)7(m07y0))

(z0,w0)ER

where 2 € U,y € V and R C U x V is an unknown relation. Of course, also other
interpretations of the fuzzy relation p are possible.

3.2 Lower Approximation

In this section, we can will discuss the relation between the rules of the form (20)
and the (unknown) fuzzy relation p. The first interpretation of such rules is in the
spirit of (18). The linguistics expressions A and B and their associated fuzzy sets 4
and vg represent imprecisely known values zo and yo with regard to the similarity
relations £ on U and F on V, respectively. Therefore, the rule (20) states that the
crisp tuple (zo,yo) belongs to the unknown crisp relation R. Since the zo and y, are
only indirectly determined by the fuzzy sets p4 and vg, instead of the crisp tuple
(zo0,yo) we can obtain only its corresponding fuzzy set with respect to the similarity
relation H on U x V.

It is necessary to make some assumptions about the connection between the
similarity relations E and F' on U and V, respectively, and the similarity relation
H on the product space U x V.

First of all, we require that the similarity relations E and F satisfy a weak
independence property, meaning that the similarity degree H((z,y), (z',y')) of the
tuples (z,y) and (z',y') depends only on the similarity degrees E(z,z’) between
and z’ and F(y,y’) between y and y', but not on the specific choice of z,z’,y, and
y'. In other words,

(H1) there is a function A : [0,1]> — [0, 1] such that
H((z,y),(",y") = h(E(z,2), F(y,y')
holds.
The function k should fulfill at least the following three axioms.
(H2) h(a,B) = h(B,a)
(H3) h(a,1) = a
(H4) a <v = h(a,B) < h(v,8)

The commutativity of h in axiom (H2) assumes that the similarity relation on the
product space is not affected by the order of sequence of the spaces U and V, i.e.,
E and F have the same influence on H.

13



(H3) is motivated by the assumption that

H((z,y),(2",y)) = E(z,2')

holds, stating that the similarity degree between the tuples (z,y) and (2, y) is equal
to the similarity degree of z and z’. Assuming E(z,z') = a, we therefore obtain

h(a,1) = h(E(z,z'), F(y,y)) = H((z,y),(z',y)) = E(z,z') = a.

The monotonicity condition (H4) is equivalent to the statement that the degree
of similarity between (z,y) and (z',y’) does not exceed the degree of similarity
between (z”,y) and (z",y’) if the degree of similarity between z and z' is less than
or equal to the similarity degree between z"” and z"'.

Proposition 1 Let E, F, and H be similarity relations on U,V , and U XV, respec-
tively.

(1)
Hi((z,y),(2,y") = E(z,2") ® F(y,y')
is a similarity relation satisfying the azioms (H1) - (H{).
(1)
Hy((z,y), («',y")) = min{E(z,2), F(y,y')}
is a similarity relation satisfying the azioms (H1) - (H{).
(i) If H fulfills (H1) - (H}), then

H, < H < Hy

holds.

PROOF: (i) and (ii) are easily proved by deriving the properties (S1) — (S3) for
Hyp and Hy, respectively, by taking into account that £ and F also have these
properties.

Assume H((z,y), (z',y')) = h(E(z,z'), F(y,y')). The left-hand part of (iii) is
proved by

H(y), (@y) > H((zy), () ® H((@y), (@)
W h(B(e,2), F(y,y) ® (E(=', '), F(y,y'))

) Be,2) ® Fly,y).
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For the right hand part of (iii) we have to show that h(a,3) < min{a, 3} holds.
(H4) and (H3) imply A(e,B) < h(a,1) = a. Making use of (H2) we obtain also
h(a,B) < 8. O

Proposition 1 has direct consequences for the interpretation of rules of the form
(20). The similarity relations E, F, and H are usually not explicitly given. We only
assume that the fuzzy sets p4 and vg represent the crisp values zo and yo with
regard to E and F'. We are interested in the fuzzy relation p which is induced by
the crisp relation R on U x V with regard to H. The rule (20) states implicitly
that (zo,y0) € R holds. Thus from (12) and (21) we can conclude that the fuzzy set
PR = I(zo,yo) dssociated with (zo,yo) (with respect to H) is contained in p, i.e.

pr < p. (22)

In order to determine pr we would have to know the similarity relation H. Assuming
that H satisfies the axioms (H1) — (H4), we obtain

pR(m,y) = H((m,y),(mo,yo))
= h(E(z, o), F(y,v0))
= h(p(z),v(y))

This means that pz(z,y) depends only on y(z) and v(y). Furthermore, from Propo-
sition 1 we derive

p(z) @v(y) < pr < min{u(z),v(y)}

Thus, one reasonable solution is to assume that

pr = min{u(z),v(y)} (23)

since the similarity relation Hy in proposition 1, which leads to (23), seems to be a
good choice, because it assumes that there is no interaction between the similarity
relations F and F.

Until now we have considered only a single rule of the form (20). If a set of such
Ri, 1 € I, is given, by (22) we obtain pg; < p for all 7 € I and therefore

Voer: < p

el
Assuming that [ is finite, (23) leads to
max {min{p;(2), vi(y)}} < p (24)

where p; and v; are the fuzzy sets associated with the linguistic expressions 4; and
B; occurring in the rule R;. One can see that (24) is again the Max-Min rule.
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3.3 Upper Approximation

The second interpretation of rules of the form (20) is in the spirit of equation (19).
Let us return, for a moment, to the crisp case and assume that the fuzzy sets p4 and
pug correspond to the crisp sets M4 and Ng, respectively. Then the rule might be
interpreted as follows. If the input belongs to M, then the output definitely has to
be chosen from N; but N might still contain some elements which are not suitable.
Therefore, the rule (20) states that the pairs in the set Sg = M x N, where N
denotes the complement of N, do not belong to the relation R. Equivalently, we
can say that R is contained in the set

Rr = (M xNY)UMxV) = {(z,y)eUxV |zeM=yec N} (25)

Thus, the linguistic IF-THEN rule (20) is understood as a logical implication. Note,
moreover, that this is the most general form of expressing that there is a dependence
between some phenomena.

Returning to the fuzzy case, where the linguistic expressions are represented by
the fuzzy sets pu4 and vg, respectively, we come to the world of fuzzy logic and
approximate reasoning discussed in the next section. Note that in this case, the
rules are interpreted on the basis of fuzzy implications yielding the fuzzy relation

pr(2,y) = 1a(2) = vay) = min{l — pa(e) + vs(y), 1} (26)

which contains the unknown fuzzy relation p, i.e., p < pgr.
If a set of rules R;, 2 € I, is given, then p < pg, holds for each 7 € I so that we
obtain
p < /\ PR;- (27)
el
This formula differs very much from the Max-Min rule. We will elaborate this case
more in details in the next section when dealing with the logical approach.

3.4 Defuzzification

The above discussed approaches lead to the output which is a fuzzy set. For real
applications it is necessary to determine one unique output value from the output
fuzzy set. This step is called defuzzification. A lot of defuzzification strategies are
available. Most of them are heuristic techniques leading, nevertheless, to satisfactory
results.

A problem connected with the heuristic defuzzification methods is that the as-
sumptions behind the respective heuristics are often not made explicit.

In most fuzzy control applications the idea is to determine the transfer function
which gives a single output to each input. Thus the rules are indeed supposed to
describe a (fuzzy) function. The Max-Min rule, most often applied in fuzzy control,
models, as shown above, a lower approximation. Therefore, a lower approximation
of a (fuzzy) function can be seen as the basic concept behind many fuzzy controllers.
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A

Figure 2: A fuzzy set causing difficulties for defuzzification.

Thus, a very common hidden assumption behind defuzzification strategies is that
the output fuzzy set represents at most one (fuzzy) output value. But then one
should be aware of the fact that it does not make sense to have an output fuzzy
set as it is shown in figure 2 which obviously stands for two (fuzzy) values. It
is not the responsibility of the defuzzification strategy to solve this problem by
determining a single output from this fuzzy set. In the strict interpretation of the
lower approximation of a fuzzy function, such an output indicates a contradiction
in the rule base.

Thus, either the rule base has to be changed, or the idea of a lower approximation
of a fuzzy function has to be given up, either by assuming a lower approximation of
a fuzzy relation or by considering an upper approximation. However, for an upper
approximation the Max-Min rule seems not to be appropriate.

If the aim of the rule base is the description of a fuzzy relation instead of a fuzzy
function, it should be taken into account for the defuzzification strategy. Then
defuzzification has two fulfill two tasks simultaneously:

¢ turning a fuzzy set into a crisp set,
e choosing one out of many (fuzzy) values.

If a lower approximation of a function is the intention, then the second task is super-
fluous. The basic defuzzification strategies are Center of Gravity method (COG),
Mean of Maxima (MOM) and Fuzzy Mean. All of them demonstrate that they are
indeed based on the assumption that the fuzzy set to be defuzzified represents only
one (fuzzy) value. Thus, the problem is, how to find a strategy that would best fit
the function g discussed in the beginning of Section 2.

Let us also remark, that the hidden assumption that the rules are intended to
describe a fuzzy function raised also confusion of the interpretation of the Max-Min
rule. Although the rules are stated as (a conjunction of) implications, they are
treated as a disjunction of conjunctions according to the use of the maximum and
the minimum. Recall once again that in classical logic, the description of a function
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(not of an arbitrary relation) using a conjunction of implications is equivalent with
the description using a disjunction of conjunctions.

A different situation is faced with the upper approximation leading to a logical
description — see the next section. A solution should be based on the assumption
that we are dealing with logical reasoning and, possibly, also that the output fuzzy
sets to be defuzzified represent linguistic expressions. Such an approach has been
presented, e.g., in [22]. A more formal possible approach has been outlined in [20].
As we will see in the next section, the approximate reasoning can be explained as
formal reasoning in a fuzzy theory BT given by fuzzy sets of special axioms that
are derived from the linguistic form of the rules R;, 2 € I. Then, the defuzzification
may be understood as finding a conclusion in 48T extended by additional fuzzy set
K of special axioms. Their formulation should be based on the properties of the
fuzzy theory BT and kinds of formulas in concern.

4 Logical Inference, Chaining of Rules

In the previous sections, we have discussed the way how a function can be described
and we demonstrated that the Max-t-norm procedure is a reasonable way of interpo-
lation when searching a functional value of an imprecisely specified function. In this
section, we will deal with a more general situation when making a logical inference.
Recall that this concerns the upper approximation of the fuzzy relation discussed in
Section 3.3.

4.1 Logical inference and inference in fuzzy logic

A logical inference, in general, is a procedure how to obtain new facts from some
other previously given facts. Such procedures are inherent to human mind and are
studied in logic since Aristoteles. Various formal methods have been developed,
especially in this century. Two things are common to all of them: they introduce
the concept of truth and falsity and the inference rule of modus ponens. What
is, however, mostly neglected, is the vagueness of facts that are dealt with. Truth
or falsity are always full, i.e., nothing between them is accepted. But vagueness
requires intermediate truth values.

A “fact”, which may be a property of objects ¢, leads to a question whether an
object z (taken from some universe of discourse) has, or has not, ¢. However, if ¢ is
vague then ¢(z) cannot be determined exactly. We thus naturally come to degrees
of truth and, finally, to fuzzy logic!).

Recall that logical inference in logic is formally a sequence of formulas By, ..., By,

1) One should realize, however, that this graded (fuzzy) approach (cf. [15]) is a possible but not
the only one mathematical model of vagueness. Though we identify fuzziness with vagueness in
this paper, it is only a working assumption. We by no means think that these two notions are
indeed equivalent.
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each of which is a logical or special axiom, or it is derived from some previous for-
mulas using a logical inference rule.
Logical inference rules can schematically be written as

A, ..., A,
B
where Ay, ..., A, are known facts and B is a new, derived fact. In modern logical
systems, A, ..., A,, B € Fj are formulas taken from a set F; of well formed formulas

in some formal language J. A typical and basic inference rule inherent to human
mind is the rule of modus ponens

A, A=>B
B

where A= B is an implication between two facts. It is a formal, most general ex-
pression of the dependence of the fact B on the fact A. It may be given by our
experience, knowledge, or stem from other source and, of course, it does not neces-
sarily mean a causal relation. In presence of vagueness, the situation is complicated
by the truth degrees.

Let A(z) € F; be a formula which represents the vague fact ¢. Obviously, A(z)
itself is not sufficient to characterize also the vagueness of ¢. To solve this problem,
we introduce the concept of evaluated formula.

A couple
[4; a]

where A € Fj and a € [0,1] is a (syntactic) truth degree is called the evaluated
formula. Let My be the set of all terms without variables of the language J. Then
the vagueness of ¢ is formally characterized by a set of evaluated formulas

A = {[A:[t]; ar] [t € My}

where A,[t] is a formula obtained from A by replacing all free occurrences of z by
the term ¢t. Thus, we naturally get from vagueness of logical facts to many-valued
logic which provides us with means for manipulation with evaluated formulas. Let
us remark, that the set of evaluated formulas {[A;; a;] | © € I} can be understood
also as a fuzzy set of formulas

{ai/A; |1 € I}.
A many-valued inference rule is a scheme

[A1; a1], ..., [An; an)
[B; b]

(28)

where B = r*¥"(A,,..., A,) is a formula syntactically derived from A,,..., A4, and
b= r*"(ay,...,a,) is its resulting evaluation. The functions r*¥*, »**™ must fulfil
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reasonable conditions (cf. [13, 14, 23]). For example, a many-valued rule of modus
ponens has the form

[4; a], [A=B; b]
[B; a® b]
The properties of inference rules have been extensively discussed in [14, 23].

Since in approximate resoning, we work with vague facts, an inference rule has
the following form

(29)

Ai, .. An
B

where A; = {[As;[t:i]; ay;] | ti € My} are sets of evaluated formulas. The B is a
resulting set of evaluated formulas

B={B(sl; \ (r*"(a,...,a)] | s € My}

t1,..tn€EMy

R: (30)

which is derived on the basis of an underlying many-valued inference rule (28).
For example, the rule of modus ponens has the form

A A=B {[Aaft]; ai |t € My}, {[Au[t]= By[s]; cu] [ £, 5 € My}
' B B {[Bylsl; VtEMv(a’t ® cis)] | s € My} ‘

Let us stress that the rule of modus ponens is not the only one inference rule
in fuzzy logic and approximate reasoning. Furthermore, unlike classical logic, there
may be various modifications of modus ponens. A very important rule having prac-
tical applications in decision making and fuzzy control is the following: Let [>(-) be
a special unary connective for the linguistic hedges with narrowing effect, for exam-
ple very, highly, eztremely and <(-) that with widening effect, for example more or
less, roughly, very roughly, etc. The effect of both connectives concerns truth values.
Without going into details, we may introduce their basic properties in the form of
additional schemes of logical axioms:

LHn Fp>(4)=A
LHw - A= < (4)

for every A € Fj. It can be immediately seen that the [> connective decreases truth
values and < increases them. More specific properties should be stated explicitly
for every concrete modifier.

Now we may introduce the rule of modus ponens with hedges

[>A; a],[A=B; b]‘

9B a® b (32)

TMPH :

Various other kinds of inference rules can be introduced in the logical system of
approximate reasoning. A list of some sound inference rules is given below:
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(a) Modus ponens with conjunction of implications

[Ax; a], [N (A= B;); b]

1< k<m.
By a® b srsm

Temp

(b) Modus ponens with conjunction of implications and hedges

[DAk; a], [/\Z(A1:>BZ), b]

1<k <m.
[<1Bk; a ® b]

TMPCH :

(c) The following rule is hidden behind the proposal of L. A. Zadeh to do inference

in the approximate reasoning:

[4; a],[AAB; b]
e [B; a A b
(d) Modus tollens
[—B; b],[A=B; |
TMT -

Recall from [14, 13] that a fuzzy theory T is a triple
T = (Ar, As, R)

where A, C Fy is a fuzzy set of logical axioms, As C Fy is a fuzzy set of special
axioms. Equivalently, A and Ag are sets of evaluated logical and special axioms,
respectively. The R a set of sound inference rules.

Now, let us turn to the approximate reasoning. The basic situation is defined by
specifying a linguistic description

R:{Rl,Rz,...,Rm} (33)
where each R;, 2 =1,...,m usually has the form
R;=IF X is A; THEN Y is B; (34)

and A;, B;, are certain linguistic expressions. We will often use the term syntagm
which is a well formed linguistic expression. In our case, we mostly mean syntagms
of the form

(adverb)(adjective).

A linguistic expression (syntagm) is in general a name of some fact (property)
and thus, via the above approach, each of R;, 2 = 1,...,m, is interpreted by a set
of evaluated formulas

R, = {[Ai.[t|=>Biy[s]; cis] | t,8 € My}, 1=1,...,m. (35)
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The linguistic description (33) represents the expert knowledge and from our point
of view, it can be considered as a set of linguistically expressed special azioms being
the basis of approximate reasoning at the given moment. In other words, (33) is
a theory of approximate reasoning. This theory is adjoined a certain fuzzy theory
ART of fuzzy logic in narrow sense given by a fuzzy set of special axioms

ABps =R, U---UR,, (36)

Then the basic task of approximate reasoning which is finding a conclusion from
(33) given a premise

zis A
translates to a set of deductions based on some of the inference rules listed above
(for example, the rule rcpp).

To end this section, we present a theorem demonstrating that fuzzy logical in-
ference can in principle give similar results as a fuzzy interpolation. Several papers
contain a proof that fuzzy controllers are universal approximators (cf. [1, 2, 10, 3]).
We prove analogous theorem (inspired by [3]) about the logical inference. Of course,
as all the cited theorems, it is only an existential result.

From now, we will work in a certain model of approximate reasoning whose
support is the set of real numbers . Let U C R be a measurable subset of the real
line and a,b € U. Put

Fy(a,b) ={p:U —[0,1] | p(z) >0 iff =z € (a,bd)}.

Let 4 C U and put
o (@) zde

o) =, e de o
where
Us={z €U |p(z)> A n¥)} (38)

If U, = 0 then (37) is not defined. The function D is a defuzzification function on
p. The formula (38) enables to filter uninteresting values obtained due to the use
of fuzzy implication (Lukasiewicz one).

Lemma 2 Let u € Fy(a,b), v € Fy(c,d) for somea<bceUCR, e<deVCR
where U,V are measurable and put v, = {l‘(m) — V(y)/y |y € V} forz € U. Then

z € (a,b) implies D(v,) € (c,d)
and D(v,) is not defined for z & (a,b).

PROOF: Let z ¢ (a,b). Then u(z) = 0 and so v,(y) = 1 for every y € V, ie.,
U,=0. Let z € U, y € (¢,d) and y' ¢ (¢,d). Then v(y) > 0 and v(y') = 0, i.e.,
vz(y') < vx(y) and we obtain U,, = (e¢,d) which gives the lemma. O

To simplify the notation and explanation, we omit unnecessary formal definitions
of terms and formulas in this restricted language (we work in a real line) and define
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logical inference as a procedure of finding a fuzzy set v, for the given z (taken as a
unit fuzzy singleton) from the set of implications

wi(z) — vi(y), 1=1,....m, zelUyeV (39)

using the formula

vo(y) = N (mi(z) = v;(y)) (40)

J€Ke
where K, = {j | p;(z) = Vi~, pi(z)}. This definition is based on the inference rule

remp in which the input element  (i.e., a term ¢o) represents a formula Ay ,[to] for
some 1 < k < m.

Theorem 2 Let U C R be compact. Then to every bounded continuous function
f:U — R and € > 0 there is a set of implications (89) such that

f(z) — D(va)| <€
for every ¢ € U where v, is a fuzzy set (40) and D is a function (37).

PROOF: Let a € U. Denote O, = {z € U | |z — a| < 8.} and Oy(a) ={y € R |
ly — f(a)| < €} where §, depends on e. The continuity of f can be written as

z €0, implies f(z)€ Oy

for every a,z € U. Then |J,cyy O, is a covering of U and since U is compact, there
is a finite subcovering {Ogi}1<i<m. Let the rules be given by

pi(z) — vi(y)

where p; € Fy(O,i) and v; € Fp(Oyaiy), 2 = 1,...,m.

Let ¢ € O, for some (and therefore all) j € K,. We have to prove that then
D(I/z) € O_f(aj)-

Let y € R and v;(y) = 0 for some j € K,. Then v,(y) = —p;(z) for every j € K,
(all p;(z) are equal). Otherwise v;(y) > 0, i.e., vx(y) > —pj(z) (for every j € K,).
Hence, Aycp vo(y) = ~p;(z) and

U ={y€R|v(y) > A\ vo(¥)} = [ Oy

yeER jEK,

by (40). Hence, D(v;) € Oy(,iy by Lemma 2. O
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4.2 Chaining of rules

In the control of complex systems, in expert systems, in practical everyday human
reasoning and in many other occasions, we may hardly manage with one inference
only. A realististic approximate reasoning deals with many vague statements, many
conditions and thus, chaining of rules is necessary. From the logical point of view,
it is the realization of a proof. Formally, the proof w of a formula A, is a sequence

w:= Ay, ..., A,

where each A; is an axiom (logical or special), or is derived from some previous
formulas in the proof using an inference rule. In fuzzy logic, we deal with evaluated
formulas and, hence, the proof is also evaluated. An evaluated proof (or shortly, a
proof) of a formula A from a fuzzy set Ag of formulas is a sequence of evaluated
formulas

w = [Ag; a1],. .., [An; an)
such that A, is A and each evaluated formula consists of A; and a; = Ar(4;) if A;
is a logical axiom, A; and a; = Ag(A;) if A; is a special axiom, or

[Ai; a;] = [P (Aiy, . A P (@, -5 00,)], 1,y in < 2

where r is an n-ary sound rule of inference. The a,, is the value of the proof w. We
usually write

a, = Val(w).
In the approximate reasoning, the concept of proof is analogous but, as we deal with

linguistic syntagms interpreted by sets of evaluated formulas, a proof in approzimate
reasoning is, in fact, a sequence

w = A1[A4],. .., A.[A,]. (41)
The linguistic terms A;, 1 = 1,...,n are not necessary during the proof and thus,

we will simplify (41) to a sequence of sets of evaluated formulas

w:=A,,...,A,. (42)

T

Each set of evaluated formulas
A= {(Alt) ] [t e My}, i=1,..m
in (42) consists either of

(a) [Aiax[t]; ai] where A;.[t] is an instance of a logical or a special axiom A(z),
and a;; = Ap(A;[t]) or a;x = Ag(A; [t]) respectively for all t € My .

(b) [A;z[t]; ait] where A; 4[t] = " (A}, 21 [t1]s s Ajoanltn)), 1 < g1, ydn <1 <

n is a result of an n-ary inference rule applied on formulas from A;,..., A,

preceding A,, and

a;; = \/{'I"sem(ajltl, .. ,ajntn) | ti,...,tn € Mv}
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Let us illustrate this formula on the simple proof in approximate reasoning consisting
of two implications:

A, A=B,B,B=C,C. (43)
After rewriting, we obtain
{[Aat]; ac] | t € My}, {[As[t]= By[s]; bes] | 2,5 € My}, (44)
{[Byls]; b = V (a:®bw) | s € My},
tEMV

{[By[s]=C:[ul; cou] | s,u € My},
{[Clul; V (bs ®cas)] |u € My},

GEMV

Note that C' can be obtained also by means of a proof

A, A=B,B=C,(A=B)=((B=C)=(A=()),(B=C)=(A=C),C.  (45)

It can be seen that proving in approximate reasoning is much more complicated
than in many-valued logic since we deal with sets of evaluated formulas. Hence,
fuzzy expert systems dealing with vague statements and making vague conclusions
based on sets of linguistic statements are more complicated than the standard ones
where only one weight interpreted as truth or uncertainty degreef) is considered.

Realize that the inference considered in most applications of approximate rea-
soning till now (e.g., in the fuzzy control) is a simple proof

A, A=>B,B.

As we have stated in other papers [14, 20], one formula may be proved by many
kinds of proofs which, in general, have different values. The supremum of all of them
is the provability degree in the given fuzzy theory (in our case, it is “ET). Given a
fuzzy theory T, we formally write

Tk, A

where a is a provability degree of A. Hence, finding a proof of A gives only a lower
estimation of the provability degree. It is our goal to reach the provability degree
since then we know that nothing better can be obtained. Formally, in approximate
reasoning we aim at obtaining a set

{[Byls); b] | *"T Fs, Bylsl, s € My}.

In [20, 21] we have demonstrated that if we confine ourselves to the linguistic
syntagms that are commonly used in approximate reasoning then the formula of

D) This depends on the nature of the statements. Realistic expert systems should deal both with
vagueness as well as with uncertainty. This task, however, seems to be far from the satisfatory
solution.
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approximate reasoning for IF-THEN statements considered as logical implications
gives us the provability degrees. We give analogous theorem for the case of chaining
of rules.

We say that two formulas A and B are independent if no variant of one is a
subformula of the other.

Let Fy be a set of evaluated formulas, which are mutually independent. We say
that Fy is directed, if:

(a) If [(Vz)A; a] € Fy and [A,[t]; b] € Fo, then a < b, where t € M.

(b) If A is a logical axiom then [A4; a] € Fy implies a = A (A).

Lemma 3 Let Fy be a directed set of independent evaluated formulas and let T =
{a/A|[A; a] € Fo}. Then there is a model D |= T such that

D(A)=a
holds for all [A; a] € Fy.
Lemma 4 Let a theory
T = {[A13 al], [A1:>A2; az]; ceey [An—1:>An; a’n]
be given where {[A1; a1],...,[An; an|} is a directed set of independent evaluated
formulas. Then
TF. A,
wherec=a; R -+ Q a,.
PROOF: By assumption, the formulas Ay, ..., A, are independent and so, there

is a truth valuation D such that D(A4;) = a; and D(4;) = a1 ®---®a;j, 7 =2,...,n.
Then
a; <D(Ai1=>4)=a1® Qa1 > a1 Q- Ba,

i.e., D = T!. On the other hand, there is a proof w of A, with the value Val(w) =
a1 ® -+ ® a,. The lemma then follows from the completeness theorem. O

Lemma 4 is the basis of the theorem below. Let S;,7 =1,...,n be disjoint sets
of syntagms of the form

[(linguistic modifier)](adjective)(noun),

where A; € S; be assigned the set A; = {[Au[t]; air] | t € My}. Note that A;(z),

1 =1,...,n are independent formulas and so are also all their instances.

D) This symbol means that D is a model of the theory T'. For the precise definition see [14].
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Theorem 3 Let a theory of approrimate reasoning be given by a linguistic descrip-
tion

T = {A;,IF A, THEN A,,...,IF A,_; THEN A,}

where A; € S;, 1 = 1,...,n are the above defined syntagms. Then the theory T 1is
assigned a fuzzy theory ABT given by the fuzzy set of special azioms

ABps = {au /A [th] |t € My} U

U{ ati—lti/(Ai—liAi)zi_l,zi [ti—l, ti] | t, € My,i=1,... ,'rL}
1=2

Then the conclusion A = A,, has the interpretation
A={a/At]| “PT by, A,lt],t € My}

where

a; = \/ (a, ® age, ® ar,_,t)-

t1,entn_1EMy

This theorem can be generalized also to the case when sets of linguistic implications
are considered at each i-th step.

When chaining the rules, the computational complexity significantly increases. If
we deal with modus ponens then our situation may be simplified by the properties of
the Lukasiewicz product ® since it is nilpotent (it pushes small values to zero). An-
other possibility is to defuzzify at each step. This means that each A; occuring in an
inference rule in the proof is replaced by a simple evaluated formula [A;,[t;o]; as,,| for
some term t; before further inference steps. Thus, instead of Card( My )? inferences
at each step we have to make only Card(My ) inferences.

4.3 Chaining of interpolations

Due to Sections 2 and 3, the fuzzy interpolation of an unknown functiong: X — Y
is to find a point yo &~ g(z) via the fuzzy function G : A — B where A C F(X)
and B C F(Y). This is given by

yo = D(J { G Au()/y |y e YY)

peA

where G(p) € B C F(Y) and D is a defuzzification function.

Let now a sequence of functions g; : Xo — Xy, ..., gn : Xn1 — X, be given.
Our task is to approximate an unknown value
y = h(zo) = gn(---g1(20) - --). (46)

Each function g; is approximated by a fuzzy function G; : A;_; — A; where

AZQF(XZ), izl,...,n.
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Let us denote
Qi(zio1) = Y Gilpima) (@) A pica(mio1) Jo; | 25 € X} | pios € Aia} (47)
where z;_; € X;_;. In analogy with Sections 2 and 3 it is natural to put

yo = D({@n(2n_1) | : € Supp(Qi(2i_1)), =1,...,n — 1}). (48)

For example, given g; : Xo — X1, g9 : X1 — Xo, Gy : Ag — Ay, Gy : 4] —
Ay, and A; C F(X;),1=0,1,2. Then

yo = D(U{Q2(21) | =1 € Supp(Q1(z0)}). (49)

In (49), @, are taken from the support of a fuzzy set
Q1 (o) = | J{{ Gr(mo)(@1) A po(®0) /2 | 2y € X1} | o € Ao}
and all of them determine the resulting fuzzy set to be defuzzified.

Proposition 2 Let A;,; 1 = 0,...,n be a fuzzy partition of X; and p; N u: # @ for
every Wi, s € A;. Furthermore, let every G; be an injection. Then the number of
different fuzzy sets occuring in @), is at least n + 1.

PROOF: Let there be just one po € Ag such that po(zo) > 0. Then Supp(Qo) =
Supp(p1) for some p; = Gi(uo) € A; and there is at least one pj # pi such
that pj(z1) > 0 for some z; € Supp(p1) due to the assumption. Repeating the
same argument and taking the assumption that G; is an injection we obtain the
proposition. a

Corollary 1 Let Card(A,) <n+1. Then yo = D(U A,).

The assumption p; N p: # 0 in Proposition 2 is natural to have covering of
the space X;. If some G; are not injections then this proposition in general is not
true and in specific cases, ,, may consist of significantly smaller number of fuzzy
sets. However, the danger of rapid increase of Supp(Q,) may drastically disqualify
chaining of interpolations since yo in (48) might be derived from a very wide fuzzy
set.

It seems more reasonable to defuzzify each fuzzy set Q;(z;_1) before following
step. Then z; ~ g¢;(---gi(zo)---) is a defuzzified value obtained in the previous
step. Validity of the resulting yo, however, decreases with the increase of n. We
may somewhat improve it when increasing cardinality of the sets A;, i.e., to make
the fuzzy partitions more dense. But then the design and all the computations are
more complicated.

Note that the situation in the chaining of interpolations is different in comparison
with the logical inference. For example, if we compare (43) with (49) then the
computational complexity is the same (without optimization) but the validity of the
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result in (43) is much higher since C is deduced using a sequence of precisely defined
inferences — evaluated proofs. In (49), a fuzzy set of elements with a high degree
of fuzziness is obtained carrying the information that the correct (searched) h(zo)
is somewhere in its support and we have to find yo as close to it as possible. Since
we propagate a mistake and increase vagueness, chaining of interpolations seems to
be somewhat dubious.

4.4 Interpolation and logical inference for fuzzy input

In fuzzy control and various other applications, the input z is crisp, interpreted as a
fuzzy singleton { 1/x0} or, in logical inference, as a unit evaluated formula [A,[to]; 1].
However, many other applications require one or more inputs to be fuzzy as well.
In this case, the difference between both approaches becomes more apparent.

Let the linguistic description (33) and (34) be given. Then the inference in fuzzy
logic is given by the formula

{[Are, [t]; ar] [t € My}, ([N (Ajalt]= Biy[s]); cul [ .5 € My}

[Byalsh Veensy (@ @ )] | 5 € My} (50)
Fuzzy interpolation leads to a formula
V' = { Vaer(#' () AV,uea(G(p)(y) A () jy | y € VY. (51)
To compare (50) and (51) we rewrite (50) as follows:
v = { Veev(#'(2) ® NiLi(pi(z) = vi(¥))) /y |y € V. (52)

Let p' = po for some po € A. If (51) were a logical inference, we would naturally
expect that v/ = G(uo).

Proposition 3 Let py, s € A be fuzzy sets and the height of pu; N py = c. Let
g =p1 and py Nps =0 for j =1,2.
(a) Using (51) we obtain
V' = G(p1) U G(pa)e € 1 (53)
where G(pz)e = { M2(¥) N cjy |y € V}.

(b) Using (52) we obtain
VIC:VL (54)

PROOF: (a) is obtained immediately after rewriting.
(b)

2

V (ma(2) @ A (ri(z) = vi())) = 1) AV (a(2) @ (p2(2) = 12(y))) < v1(y)

zclU 7=1 zclU
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holds for every y € V. O

On the basis of this proposition we can derive the following. Logical inference is
safe, i.e., it is not possible to get a fuzzy set v’ which would contain elements with
non-zero membership degree not belonging at the same time to the fuzzy set v;. If
p1 is normal and there is an z such that p;(z) = 1 and ps(z) = 0 then ' = v;. The
proper inclusion may in general occur due to the rule ropp. However, since more
proofs can be found, this result can be improved. For example, if we use the rule
ryp with the implication

IF X is A; THEN Y is B,

then v/ = vy. This is natural deduction when a set of special axioms (35) is consid-
ered.

In the case of fuzzy interpolation (51), some “additional” elements always belong
to v'. Note that this is correct when we do not consider (51) as the logical inference.
The procedure simply takes into account some environmental elements that might
also be function values of the (unknown) interpolated function g due to the width
of the input fuzzy set. In the logical rule of modus ponens, however, this is not
acceptable since it cannot give elements outside v, (i.e., elements  with membership
degree greater than v;(z)).

In the end, let us remark that if the input fuzzy sets u € A are mutually disjoint
then the fuzzy interpolation turnes to be a sound inference rule based on r¢ (cf.
[19]). However, this case is not very interesting.

5 Conclusions

In this paper, we have discussed the relation between fuzzy logical inference and
fuzzy interpolation. This topic has already been elaborated from various sides. Our
aim was to synthesize the results and state explicitly that there are two different
kinds of IF-THEN rules in fuzzy logic each of which having its justification and
place. However, they should not be interchanged since in general, they give dif-
ferent conclusions (though sometimes with similar effect). This concerns especially
the fuzzy interpolation represented by Max-t-norm rule which is widely used. By
misunderstanding, erroneous terms such as “Mamdani’s implication”, “Larsen’s im-
plication”, etc. appear in the literature. We hope, that now it is clear to the reader
that these are not implications, but they are justified from a different point of view
and can be used for the special but important task of interpolation of a function.
Let us stress that neither of the two methods is supreme. In principle, logical
inference is more general but also more complicated. It is more suitable for decision
situations but can be successfully used also for approximation of a function (inter-
polation). It is safer but, hence, requires in general more rules since it does not
interpolate from so wide fuzzy sets. Let us remark, however, that logical inference
has already been successfully used in the practice for control of plants. The results
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are satisfactory and the work with this approach appeared to be quite effective and

transparent.
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