

Abstract— Learning a fuzzy classifier from data is a well-
known technique in fuzzy data analysis and many learning al-
gorithms have been proposed, typically in the area of neuro-
fuzzy systems. All learning algorithms require a number of pa-
rameters to be set by the user. These are typically initial fuzzy
partitions for all variables and sometimes also the number of
fuzzy rules. Especially, for neuro-fuzzy algorithms the initial
choice of parameters can be crucial and if ill-chosen may lead to
failure of the learning algorithm. Recent trends in data analysis
show that automation is an important issue because it helps to
provide advanced analytics to users who are no data analysis
experts. In order to fully automate a learning algorithm for
fuzzy classifiers we preferably need an algorithm that can de-
termine a suitable initial fuzzy partition for the learning algo-
rithm to start with. In this paper we propose such an algorithm
that we have implemented to extend the neuro-fuzzy approach
NEFCLASS. NEFCLASS has recently been integrated into an
automatic soft computing platform for intelligent data analysis
(SPIDA).

I. INTRODUCTION

The design of a fuzzy system requires the definition and
choice of a variety of parameters. When constructing a fuzzy
system from data, the user is usually required to specify the
number of fuzzy sets and their initial shape for each variable.
Without detailed knowledge of the data, this leads to a tedi-
ous trial and error strategy in finding the appropriate (num-
ber of) fuzzy sets.

When the notion of fuzzy sets was introduced by L.A.
Zadeh [[16]], his original intention aimed at modeling human
expertise incorporating vague knowledge. In recent years,
another aspect of fuzzy system has become more and more
important. Instead of modeling human experts, fuzzy systems
are used to extract knowledge from data. Strong emphasis is
put on the interpretability of a fuzzy system learned from
data, even for the sake of a certain loss of accuracy in ap-
proximating the data.

This paper looks at the problem of determining suitable
initial fuzzy sets for fuzzy classifiers that are created from
data by a learning process.

When a fuzzy system should be automatically constructed
from data, a number of parameters have to be fixed.

Frank Klawonn is with Applied University of Braunschweig / Wolfen-
buettel, Department of Computer Science, Salzdahlumer Str. 46/48, D-
38302 Wolfenbuettel, Germany (e-mail f.klawonn@fh-wolfenbuettel.de).

Detlef D Nauck (corresponding author) is with BT Group, Chief Tech-
nology Office, Research and Venturing, Intelligent Systems Research Cen-
tre, Adastral Park, Orion Building pp1/12, Ipswich IP5 3RE, UK (e-mail
detlef.nauck@bt.com).

We consider classification tasks of the following form. We
have a data set of n data

{ } ().{?},,
1

1 ∏
=

∪⊆
p

j
jn Ixx �

Each datum xi has p real-valued attributes lying in the in-
tervals I1, …, Ip, but we also allow for missing values in one
or more attributes indicated by the symbol ‘?’. Obviously,
any integer-valued attribute or even a categorical attribute
can be encoded in terms of a real-valued attribute.

A class is assigned to each datum. We assume that we
have c classes that are numbered{ }c,,1� . C(xi) denotes the

class assigned to xi. A classifier is a mapping

() { }cI
p

j
j ,,1{?}:K

1

�→∪∏
=

.

If a sufficient number of data is available, a classifier will
be trained on the basis of one part of the data set and it is
then evaluated with respect to the misclassifications counted
on the data not used for learning.

For a fuzzy classifier we have to specify suitable fuzzy

sets)()(
1 ,, j

m
j

j
µµ � on each interval I j and a set of rules of the

form “If attribute j1 is)(
1

jµ and … and attribute jr is)(j
j r

µ

then class is k” , where { }ck ,,1�∈ is the number of the cor-

responding class and the)(j
iµ are fuzzy sets defined on the

ranges of the corresponding attribute. Note that we do not
require that all attributes occur in a rule. It is sufficient that
the rule premise refers to a subset of the attributes. Of
course, in applications the fuzzy sets in the rules will be la-
beled by suitable linguistic terms like, for example, small,
medium, large, etc.

Given a datum ()∏
=

∪∈
p

j
jI

1

{?}x a single rule is evaluated

by computing the minimum of the membership degrees of all
(in the rule mentioned) attribute values. If x has a missing
value, the membership degree to the corresponding fuzzy set
is assumed to be one [1].

For each class we determine a membership degree of x by
the maximum value of all rules that point to the correspond-
ing class. The fuzzy classifier assigns x to the class with the
highest membership degree.

The evaluation of the rules in terms of a max-min infer-

Automatically Determine Initial Fuzzy Partitions for
Neuro-Fuzzy Classifiers

Frank Klawonn and Detlef D Nauck

ence scheme could also be replaced by any other suitable
combination of a t-conorm and a t-norm.

In order to specify a fuzzy classifier, we have to determine
• the number of fuzzy sets for each attribute,
• the shape of the fuzzy sets,
• the number of rules, we want to use and
• the structure of each rule.

Learning fuzzy classification rules from data can be done,
for example, with neuro-fuzzy systems like NEFCLASS
[10]. In order to derive a classifier the neuro-fuzzy system
requires the specification of the number of fuzzy sets for
each attribute and initial fuzzy sets. This is a critical design
factor and typically the user is responsible for this task. After
this step, based on these fuzzy sets, a rule base can be
learned and the fuzzy sets are then optimized. Finally, prun-
ing of rules and fuzzy sets is carried out.

Although certain redundancies can be eliminated in the
pruning step, a bad choice of the initial fuzzy sets can slow
down the learning process significantly or even let the train-
ing algorithm get stuck in a local minimum. By providing an
algorithm that generates suitable initial fuzzy sets automati-
cally from data we hope to address to issues.

1. Neuro-fuzzy learning will hopefully improve and
become faster.

2. The learning algorithm to create a fuzzy classifier
from data becomes fully automatic and requires
no user intervention at all.

The algorithms for creating fuzzy partitions are based on
prior work by Fayyad & Irani [5] (computation of boundary
points for non-fuzzy intervals) and Elomaa & Rouso [2],
who provided algorithms for computing optimal (non-fuzzy)
interval partitions if the problem is characterized by a small
low-dimensional data set (for subsequent improvements see
[3] and [4]). Applications of these algorithms are know from
the area of fuzzy decision trees [14],[17].

The new aspects described in this paper are
• the creation of fuzzy partitions based on interval parti-

tions
• a new heuristics to compute nearly optimal partitions for

large data sets and/or many boundary points
• a method to reduce fuzzy partitions by considering com-

binations of attributes
• a method to reduce fuzzy partitions for high-dimensional

problems by considering pairs of attributes.

II. DISCRETISATION AND FUZZY PARTITIONS

Before we can create a fuzzy classifier by using a neuro-
fuzzy learning procedure, we must specify fuzzy partitions,
i.e. the number, shape and position of fuzzy sets, for each
attribute of a transaction. In the following we describe in
detail how this can be done automatically.

When we consider a fuzzy classifier that uses only a single
attribute then the classification will partition the range of the
attribute into disjoint intervals. This is at least true, if the

fuzzy sets satisfy typical restrictions, for instance that they
are unimodal and that never more than two fuzzy sets over-
lap. A typical choice of fuzzy sets is depicted in Figure 1.

Figure 1: A typical fuzzy partition

In this case, fuzzy set 1µ prevails for values less than x1,

2µ for values between x1 and x2, 3µ for values between x2

and x3, and 4µ for values larger than x3.

The situation is different, if more than one attribute is con-
sidered. A fuzzy partition as shown in Figure 1 induces a
partition into disjoint intervals for one attribute. From these
interval partitions we obtain a partition of the product space
of all attribute ranges into hyper-boxes. If all possible rules
are used and each rule is referring to all attributes, the result-
ing classifier will assign a class to each hyper-box [7]. If not
all rules are used, class boundaries can be found within hy-
per-boxes.

A. Finding a Partition for a Fixed Number of Intervals

Having in mind the view of a classifier based approxi-
mately on a partition of the input space into hyper-boxes, we
can see an analogy to decision trees. Standard decision trees
are designed to build a classifier using binary attributes or,
more generally, using categorical attributes with a finite
number of values. In order to construct a decision tree in the
presence of real-valued attributes, a discretisation of the cor-
responding ranges is required. The decision tree will then
perform the classification task by assigning classes to the
hyper-boxes (or unions of these hyper-boxes) induced by the
discretisation of the attributes.

The task of discretisation for decision trees is guided by
the same principle as the construction of the decision tree
itself. In each step of the construction of the decision tree the
attribute is chosen for a further split that maximizes the in-
formation gain which is usually defined as the expected re-
duction in entropy.

Generalizing a method for binary splits by Fayyad and
Irani [5], Elomaa and Rousu [2] proposed a technique for
splitting/discretisation of a range into more than two inter-
vals.

The problem can be defined as follows, when data with a
missing value in the considered attribute are simply ignored.
We consider a single attribute j and want to partition the
range into a fixed number t of intervals. This means that we
have to specify t-1 cut points T1, …, Tt-1 within the range.
The cut points should be chosen in such a way that the en-
tropy of the partition is minimized. Let T0 and Tt denote the
left and right boundary of the range, respectively.

Let us assume that ni (i =1,…, t) of the n data fall into the
interval between Ti-1 and Ti, when we consider only the jth
attribute. Let kq denote the number of the ni data that belong
to class q. Then the entropy in this interval is given by

�
�
�

�
�
�
�

�
⋅−= �

= i

q
c

q i

q
i

n

k

n

k
E log

1

 (1)

The overall entropy of the partition induced by the cut

points is then the weighted sum of the single entropies

i

t

i

i E
n

n
E ⋅=�

=1

 (2)

which should be minimized by the choice of the cut

points. n is the number of data where attribute j does not
have a missing value.

If we sort the data with respect to the values in the jth at-
tribute, it was proved in [2] that for an optimal splitting we
only have to consider boundary points as cut points.

We call a value T in the range of attribute j a boundary
point, if in the sequence of data sorted by the value of attrib-
ute j, there exist two data x and y, having different classes,
such that xj < T < yj, and there is no other datum z such that
xj < zj < yj.

In the following example (Figure 2) the boundary points
are marked by lines.

Figure 2: Boundary Points

Note that it is allowed that different data might have the

same values in the considered attribute. Although this situa-
tion seldom occurs, when the attribute is really continuous-
valued, it is very common for integer-valued attributes.

When we have computed the boundary points, we can
construct the optimal discretisation minimizing (2) for a
fixed number of intervals. If we have b boundary points and
want to split the considered domain into t intervals, we have

to evaluate ��
�

�
��
�

�

−1t

b
 partitions. In the worst case, the number

of boundary points b equals the number data n-1. But usually
we will have b << n so that even in the case of large data sets

��
�

�
��
�

�

−1t

b
 remains a computationally tractable number for small

values of t. Nevertheless, if ��
�

�
��
�

�

−1t

b
 is not acceptable in terms

of computation time, we apply the following heuristic
method to find a partition yielding a small value for (2).

We start with a uniform partition of the range with inter-
vals of the same length or intervals each containing the same
number of data. Then we determine, how much each interval

contributes to the overall entropy, i.e., referring to equations
(1) and (2), we determine for each interval the value

�
�
�

�
�
�
�

�
⋅−=��

�

�
�
�
�

�
⋅− ��

== i

q
c

q
q

i

q
c

q i

qi

n

k
k

nn

k

n

k

n

n
log

1
log

11

 (3)

Based on these values, we enlarge intervals for which (3)

is small and we shrink intervals with a high contribution to
the entropy. This scaling procedure is repeated until no fur-
ther improvements could be achieved within a fixed number
of steps.

If the number of intervals is fixed, we apply the procedure
of Elomaa and Rousu [2] otherwise we switch to the above
described scaling heuristics.

B. Determining the Number of Intervals

Since we do not want to fix the number of intervals in ad-
vance, we have to define a criterion, how many intervals a
partition should contain. It is obvious, that the entropy (2)
decreases with the number of intervals t, at least when we
choose the optimal partition for each t. Therefore, we start
with a binary split of two intervals and increase the number
of intervals as long as the new partition reduces the entropy
compared to the previous partition by a certain percentage or
the maximum number of intervals is exceeded.

As long as the method based on the boundary points
seems computationally tractable, depending on the number

��
�

�
��
�

�

−1t

b
 mentioned in the previous subsection, we apply the

boundary point method otherwise we switch to the above
described scaling heuristics.

Figure 7 illustrates the algorithm for this overall strategy
that computes suitable partitions for single attributes.

III. FROM INTERVAL PARTITIONS TO FUZZY PARTITIONS

From the partitions that we have a computed for each at-
tribute, we construct fuzzy sets in the following way. We
assume that the partition into t intervals is defined by the cut
points T1, …, Tt-1. T0 and Tt denote the left and right bound-
ary of the corresponding attribute range. Except for the left
and right boundaries of each range, we use triangular mem-
bership functions, taking their maximum in the center of an
interval and reaching the membership degree zero at the cen-
ters of the neighboring intervals. At the left and right
boundaries of the ranges we place trapezoidal membership
functions. They are one between the boundary of the range
and the center of the first, respectively, last interval and
reach the membership degree zero at the center of the
neighboring interval. Figure 3 illustrates the construction of
fuzzy sets from interval partitions.

Figure 3: Construction of fuzzy partitions from interval partitions

A. Partition Simplification

The construction of the fuzzy sets, respectively the discre-
tisation, was based on the reduction of entropy/information
gain, when each variable is considered independently. How-
ever, when attributes are correlated, we might further reduce
the number of intervals (fuzzy sets). In order to evaluate the
information gain of partitions for combinations of variables,
we have to consider the partition of the product space into
hyper-boxes induced by the interval partitions of the single
domains.

In principle, we would have to apply (1) and (2) to hyper-
boxes instead of intervals and find the optimal partition into
hyper-boxes. In this case, we do not ignore data with missing
values, but assign them to larger hyper-boxes corresponding
to unions of hyper-boxes. In Figure 4 such a larger box is
shown, which is induced by choosing the second (of three)
intervals of attribute a1, the first (of two) intervals of attrib-
ute a2 and a missing value in attribute a3.

Figure 4: A box induced by a missing value

Unfortunately, the technique of choosing cut points as

boundary points does not make sense in multi-dimensional
spaces. Our heuristic method of minimizing the overall en-
tropy by scaling the intervals with respect to their entropy,
could be applied to the multi-dimensional case as well, but
only for the price of an exponential increase of computa-
tional costs in terms of the number of attributes. If we have tj
intervals for attribute j (j = 1, …, p), we would have to com-

pute the entropy for ()∏
=

+
p

j
jt

1

1 hyper-boxes for the overall

entropy value of one partition into hyper-boxes, including
the hyper-boxes representing regions with missing values. In
case of six attributes, each one split into three intervals, we
would have to consider (3+1)6 = 4096 hyper-boxes for the
evaluation of one partition.

Therefore, we do not try to find an overall optimal parti-
tion into hyper-boxes, but instead try to simplify the parti-
tions that we have obtained from the single domain parti-
tions. Since the partitions are generated in an incremental
way, we do not only store the resulting partitions, but also
partitions with fewer intervals. The underlying idea is to
check, whether we can go back to a partition with fewer in-
tervals for an attribute without increasing the entropy signifi-
cantly, when we consider this attribute in connection with
other attributes.

First of all, the attributes are sorted with respect to the re-
duction of entropy that their associated interval partitions
provide. For the comparison, required for the sorting, we
have to take missing values into account. Let E denote the
overall entropy of the data set with n data. Assume that for
mj data attribute j has a missing value. Then the correspond-
ing entropy in terms of (2) would be

�
=

⋅
−

=
t

i
i

j

i E
mn

n
E

1

if we simply ignore the data with missing values.
In the extreme case that all data except for one have a

missing value for attribute j, this entropy would reduce to
zero, although the actual information gain by knowing attrib-
ute j is almost zero. Therefore, we define

missing
1

missing
1

1
E

n

m
En

n

E
n

m
E

mn

n

n

mn
E

j
t

i
ii

j
i

t

i j

ij

⋅+⋅⋅=

⋅+⋅
−

⋅
−

=

�

�

=

=

Emissing is the entropy of the data with a missing value for
the jth attribute. If we assume that missing values occur ran-
domly, Emissing will coincide with the overall entropy of the
data set.

There are two strategies that we apply, depending on the
number of data and the number of hyper-boxes that are in-
duced by the single domain partitions.

The first strategy (Figure 10) is chosen, if the data set is
not too large and the number of hyper-boxes is sufficiently
small. We start with the attribute whose partition leads to the
highest reduction of the entropy and examine the attribute,
which was second best in the entropy reduction. We consider
the hyper-boxes that are induced by the partition of the
ranges of these two attributes. Assume that by our method
considering only single attributes, we have found that we
should choose t intervals for the attribute that was second
best in the entropy reduction. We compare the (hyper-box)

entropies in connection with the best attribute, when we use
the partition this partition and the partition that we had com-
puted for t –1. If the partition with t –1 intervals does not
significantly increase the entropy, we prefer this smaller par-
tition. We even examine the partitions with t –2, t –3 etc in-
tervals, until the increase in entropy seems not acceptable.
After that, we examine the attribute that came third in the
single domain entropy reduction in connection with the first
two attributes, where the second attribute might already have
a reduced number of intervals. Then we add the fourth at-
tribute etc.

Since this strategy means that we might have to consider a
very large number of hyper-boxes for the last attributes to be
investigated, we apply our second strategy (Figure 11), when
the first one seems computationally unacceptable. We follow
the same principle as in the first strategy, but apply the
method only to all pairs of attributes, where in each pair we
try to reduce the number of intervals of the attribute with the
lesser reduction of entropy.

Finally, Figure 6 shows how to combine the previously in-
troduced algorithms to obtain an overall strategy to compute
suitable partitions for all attributes taking their correlations
or dependencies into account.

IV. APPLICATION IN NEFCLASS

We have implemented the described algorithms in the
neuro-fuzzy classifier NEFCLASS [8], [9]. NEFCLASS is
able to handle missing values, both numeric and symbolic
data in the same data set and to determine a rule-base fully
automatically. The focus of the NEFCLASS learning algo-
rithms is on creating small interpretable fuzzy rule bases.

The learning algorithm of NEFCLASS has two stages:
structure learning and parameter learning. Rule (structure)
learning is done by a variation of the approach by Wang and
Mendel [15] which was extended to cover also symbolic
patterns [9] and to use a rule performance measure for rule
selection.

In parameter learning the fuzzy sets are tuned by a back-
propagation-like procedure that is based on a simple heuris-
tics instead of a gradient descent approach. After learning
NEFCLASS uses pruning strategies to reduce the number of
rules as much as possible.

Implementing the algorithms described in this paper was
the final missing piece that made NEFCLASS learning fully
automatic. The user now is no longer required to provide any
initial parameters. Fuzzy partitions and rule base are deter-
mined fully automatically. Parameters that control the learn-
ing process (learning rates, thresholds, rule learning strategy,
pruning strategy) can all be set to suitable values and a user
never needs to touch them.

By automating NEFCLASS to that extent it was possible
to included it into the automatic intelligent data analysis plat-
form SPIDA which automatically selects, configures and
executes data analysis algorithms on behalf of a user [11],
[12], [13].

As an example we apply NEFCLASS to the Wisconsin
Breast Cancer Data set. If we run NEFCLASS fully auto-
matically, it creates between 1 and 3 fuzzy sets per variable.
If only one fuzzy set is created that means the partitioning
algorithm has decided not partition that particular variable
(mitoses) and the learning algorithm treats it as “don’t care”.
The rule learning algorithms selects the best rules per class
and determines the number of rules automatically, such that
all patterns of the training set are covered by at least one
rule. After training and exhaustive pruning is performed (see
[8], [9]for a description of the NEFCLASS learning algo-
rithms). The data is randomly separated into training and test
sets. The results on the test sets are shown in the following
table. NEFCLASS generates the four rule shown below using
three variables. There are three fuzzy sets for uni_cell_size
(Figure 5) and two fuzzy sets each for bland_chromatin and
bare_nuclei.

TABLE 1: CONFUSION MATRIX BREAST CANCER TEST DATA

(ERROR = 4.17%)

orig \ pred benign malignant Sum
benign 234 7 241
malignant 8 111 119
Sum 242 118 360

The rules generated are:
Class malignant:
R0: IF bare_nuclei is large and bland_chromatin is large
R1: IF uni_cell_size is large and bland_chromatin is large
R2: IF uni_cell_size is large and bare_nuclei is small and

bland_chromatin is large
Class benign:
R3: IF uni_cell_size is small and bare_nuclei is small

and bland_chromatin is small

Figure 5: Fuzzy sets for uni_cell_size

If we run NEFCLASS without the automatic partitioning

algorithms we have to specify a number of fuzzy sets for
each variable. If we choose two fuzzy sets per variable we
achieve a test error of 8% with four rules using two vari-
ables. If we choose three fuzzy sets we obtain an error of
5.14% with 18 rules using four variables.

V. CONCLUSIONS

We have shown how we can automatically determine ini-
tial fuzzy partitions in the context of neuro-fuzzy learning.

Fuzzy partitions are created based on interval partitions and
we introduced a new heuristics to compute nearly optimal
partitions for large data sets and/or many boundary points. In
order to achieve small fuzzy classifiers with interpretable
rule bases we developed a method to reduce fuzzy partitions
by considering combinations of attributes. If this method is
too complex to run due to high-dimensional problems we run
a simplified version by considering only pairs of attributes.

We have implemented the algorithms into NEFCLASS
and shown on a small data set that by providing suitable ini-
tial fuzzy partitions we can achieve better results in the sub-
sequent learning process.

REFERENCES

[1] M. Berthold, K.-P. Huber: Tolerating Missing Values in a Fuzzy
Environment. In: M. Mares, R. Mesiar, V. Novak, J. Ramik, A. Stup-
nanova (eds.): Proc. Seventh International Fuzzy Systems Association
World Congress IFSA'97, Vol. I, pp 359–362, Academia, Prague
(1997).

[2] T. Elomaa, J. Rousu: Finding Optimal Multi-Splits for Numerical
Attributes in Decision Tree Learning. Technical Report NC-TR-96-
041, Department of Computer Science, Royal Holloway University of
London (1996).

[3] T. Elomaa, J. Rousu: General and Efficient Multisplitting of Numeri-
cal Attributes. Machine Learning 36, pp 201–244, Kluwer (1999).

[4] T. Elomaa, J. Rousu: Efficient Multisplitting Revisited: Optima-
Preserving Elimination of Partition Candidates. Data Mining and
Knowledge Discovery 8, pp 97–126, Kluwer (2004).

[5] U.M. Fayyad, K.B. Irani: On the Handling of Continues-Valued At-
tributes in Decision Tree Generation. Machine Learning 8, pp 87–102
(1992).

[6] Detlef Nauck, Frank Klawonn, and Rudolf Kruse: Foundations of
Neuro-Fuzzy Systems. Wiley, Chichester (1997).

[7] L.I. Kuncheva: How Good are Fuzzy If-Then Classifiers? IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: 30, pp 501–509
(2000).

[8] D. Nauck: Fuzzy data analysis with NEFCLASS. Int. J. Approximate
Reasoning 32, pp 103–130, Elsevier (2003).

[9] D. Nauck, Neuro-fuzzy learning with symbolic and numeric data, Soft
Computing 8(6) pp 383–396, Springer (2004).

[10] D. Nauck, F. Klawonn and R. Kruse R: ‘Foundations of Neuro-Fuzzy
Systems’, Wiley, Chichester (1997).

[11] D. Nauck, M. Spott and B. Azvine, ‘SPIDA – A Novel Data Analysis
Tool’, BT Technology Journal 21(4), pp 104–112, Kluwer, Dordrecht
(October 2003).

[12] D.D. Nauck, M. Spott, B. Azvine: Fuzzy methods for automated
intelligent data analysis. 13th IEEE Int. Conf. Fuzzy Systems
(FuzzIEEE 2004), Volume 1, pp. 487–492, Budapest (2004).

[13] M. Spott, D.D. Nauck: On Choosing an Appropriate Data Analysis
Algorithm. 14th IEEE Int. Conf. Fuzzy Systems (FuzzIEEE 2005), pp
597– 602, Reno (2005).

[14] Y. Peng, P. Flach. Soft Discretization to Enhance the Continuous
Decision Tree Induction. In: C. Giraud-Carrier, N. Lavrac and S.
Moyle (eds): Integrating Aspects of Data Mining, Decision Support
and Meta-Learning, pp 109–118. ECML/PKDD'01 Workshop Notes,
September 2001.

[15] L.-X. Wang, J.M. Mendel, Generating fuzzy rules by learning from
examples, IEEE Trans. Syst., Man, Cybern. 22(6) pp. 1414–1427
(1992).

[16] L.A. Zadeh, Fuzzy Sets. Information and Control 8 (1965), 338-353.
[17] J. Zeidler et al.: Fuzzy Decision Trees and Numerical Attributes. Proc.

Fifth IEEE Int. Conf. Fuzzy Systems (FuzzIEEE 2005), pp 985–990,
IEEE, New Orleans (2005).

APPENDIX (ALGORITHMS)

This section provides flow charts for the partitioning algo-
rithms. For explanations please see the previous sections.

Multidimensional Attribute Partitioning

Input: a
classified data

set with n
attributes

Call Single Attribute
Partitioning for Attribute i

?
1

Tt
n

i
i <∏

=

Call Pair-by-Pair
Partition

Simplification

Call Multidimensional
Partition

Simplification

Output final partitions
for all attributes

i=0

i=i+1

i > n?

No

Yes

Yes

No

Figure 6: Main algorithm for attribute partitioning (T is a threshold)

Single Attribute Partitioning

i=1

i=i+1

E = overall entropy of
attribute (1 partition)

Call Compute Partition (i)

E‘ = entropy of attribute
with i intervals

E-E’>q?

Store the partitions for 1 to i-1 intervals.
Select the partition with i-1 intervals.

Return

Yes

No

E = E’

Figure 7: Algorithm to partition a single attribute (q is a threshold)

Compute Partition

Receive value for i

Compute the boundary
points of the attribute
(see Fayyad & Irani)

Return the partition for i
intervals

Compute the optimal
partition for i intervals

(see Elomaa & Rousu)

Call Interval Scaling
Heuristics (i)

Yes

No

?
1

N
i

b
<��

�

�
��
�

�

−

b = no. of boundary points

Figure 8: Compute a Partition (N is a threshold)

Interval Scaling Heuristics

Receive value for i

Create i uniform intervals
such that each contains the
same number of data points;

Store this partition.

j < J?

j = 1

Rescale the intervals: Intervals with a
high entropy are shortened, intervals
with a small entropy are lengthened

E = overall entropy of
attribute

E‘ = overall entropy of
attribute

E’ < E?

Decrease scaling effect

j = j + 1

Return stored partition

E = E’;
Store new partition

Yes

No

Yes

No

Figure 9: Heuristics for computing a partition if there are too many bound-

ary points (J is a threshold)

i=0

i=i+1

i > no. of attributes

E’-E<p?

Return final
partitions

Multidimensional Partition Simplification

No

Yes

Yes

Reduce the partition
of attribute i

is the
partition of
attribute i
reducible?

E‘ = overall entropy of
attributes 1 to i

Yes

No

E = overall entropy of
attributes 1 to i

No

Sort the attributes by their
entropy reduction (w.r.t. their

computed partition) in
decreasing order

Figure 10: Algorithm for multidimensional partition simplification

(p is a threshold)

i=0

i=i+1

i > no. of pairs

E‘ = overall entropy of
attribute pair i

E’-E<p?

Return final
partitions

Pair-by-Pair Partition Simplification

E = overall entropy of
attribute pair i

Reduce the partition
of attribute a

is the
partition of
attribute a
reducible?

a = attribute of pair i
with smaller entropy

reduction

Yes

No

Yes No

Yes

No

Create a list of all pairs of
attributes

Figure 11: Algorithm for pair-by-pair partition simplification

(p is a threshold)

