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Abstract— Learning a fuzzy classifier from data is a well-
known technique in fuzzy data analysis and many leaing al-
gorithms have been proposed, typically in the areaf neuro-
fuzzy systems. All learning algorithms require a nmber of pa-
rameters to be set by the user. These are typicallpitial fuzzy
partitions for all variables and sometimes also thenumber of
fuzzy rules. Especially, for neuro-fuzzy algorithns the initial
choice of parameters can be crucial and if ill-chan may lead to
failure of the learning algorithm. Recent trends indata analysis
show that automation is an important issue becausié helps to
provide advanced analytics to users who are no datanalysis
experts. In order to fully automate a learning algaoithm for
fuzzy classifiers we preferably need an algorithmhat can de-
termine a suitable initial fuzzy partition for the learning algo-
rithm to start with. In this paper we propose suchan algorithm
that we have implemented to extend the neuro-fuzzgpproach
NEFCLASS. NEFCLASS has recently been integrated it an
automatic soft computing platform for intelligent data analysis
(SPIDA).

I. INTRODUCTION

The design of a fuzzy system requires the defimitind
choice of a variety of parameters. When constrgctifiuzzy
system from data, the user is usually requiredotexify the
number of fuzzy sets and their initial shape farheaariable.
Without detailed knowledge of the data, this letma tedi-
ous trial and error strategy in finding the appraggr (num-
ber of) fuzzy sets.

When the notion of fuzzy sets was introduced by.L.A
Zadeh [[16]], his original intention aimed at madglhuman
expertise incorporating vague knowledge. In recesdrs,
another aspect of fuzzy system has become morenanel
important. Instead of modeling human experts, fugmtems
are used to extract knowledge from data. Stronghasip is
put on the interpretability of a fuzzy system leadnfrom
data, even for the sake of a certain loss of acguira ap-
proximating the data.

This paper looks at the problem of determiningahl@
initial fuzzy sets for fuzzy classifiers that aneated from
data by a learning process.

When a fuzzy system should be automatically contcl
from data, a number of parameters have to be fixed.
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We consider classification tasks of the followiogri. We
have a data set afdata
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Each datumg hasp real-valued attributes lying in the in-
tervalsly, ..., I, but we also allow for missing values in one
or more attributes indicated by the symbol ‘?’. @iogly,
any integer-valued attribute or even a categorattibute
can be encoded in terms of a real-valued attribute.

A class is assigned to each datum. We assume that w
havec classes that are numbefgd..,c}. C(x) denotes the

class assigned tq. A classifier is a mapping
K: |‘| (;00)-fa....d.

If a sufficient number of data is available, a sifisr will
be trained on the basis of one part of the datasétit is
then evaluated with respect to the misclassificaticounted
on the data not used for learning.

For a fuzzy classifier we have to specify suitahlezy

sets ,ul(j) ,ur(nj) on each intervall and a set of rules of the
|

form “If attribute j; is ,ul(j) and ... and attributg is ,ugj)

then class i&”, WherekD{], .,C } is the number of the cor-

responding class and thq(l) are fuzzy sets defined on the

ranges of the corresponding attribute. Note thatdeenot
require that all attributes occur in a rule. Isidficient that
the rule premise refers to a subset of the ateiut Of
course, in applications the fuzzy sets in the rw#ksbe la-
beled by suitable linguistic terms like, for exampsmall,
medium, large, etc.

p
Given a datumx O |_| (Ij D{?}) a single rule is evaluated
j=1
by computing the minimum of the membership degoées|
(in the rule mentioned) attribute values.xlfhas a missing
value, the membership degree to the correspondirgy fset
is assumed to be one [1].

For each class we determine a membership degrebyf
the maximum value of all rules that point to therespond-
ing class. The fuzzy classifier assignto the class with the
highest membership degree.

The evaluation of the rules in terms of a max-nmifer-



ence scheme could also be replaced by any othtbkii fuzzy sets satisfy typical restrictions, for instarthat they

combination of a t-conorm and a t-norm.
In order to specify a fuzzy classifier, we havel&ermine
e the number of fuzzy sets for each attribute,
¢ the shape of the fuzzy sets,
« the number of rules, we want to use and
e the structure of each rule.
Learning fuzzy classification rules from data candwne,

for example, with neuro-fuzzy systems like NEFCLASS ' ’ '

[10]. In order to derive a classifier the neuroZyzsystem
requires the specification of the number of fuzeyssfor
each attribute and initial fuzzy sets. This is ical design
factor and typically the user is responsible fas task. After
this step, based on these fuzzy sets, a rule basebe
learned and the fuzzy sets are then optimized.lliinaun-
ing of rules and fuzzy sets is carried out.

Although certain redundancies can be eliminatedha
pruning step, a bad choice of the initial fuzzyssedn slow
down the learning process significantly or eventthet train-
ing algorithm get stuck in a local minimum. By piging an
algorithm that generates suitable initial fuzzyssgtitomati-
cally from data we hope to address to issues.

are unimodal and that never more than two fuzzy eeér-
lap. A typical choice of fuzzy sets is depictedrigure 1.
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Figure 1: A typical fuzzy partition

In this case, fuzzy sety prevails for values less thaaq,
Mo for values betweer; andx,, k5 for values betweer,
andx, and y, for values larger thaxy,

The situation is different, if more than one atitibis con-
sidered. A fuzzy partition as shown in Figure luoes a
partition into disjoint intervals for one attributerom these
interval partitions we obtain a partition of theopuct space
of all attribute ranges into hyper-boxes. If allspible rules
are used and each rule is referring to all attebuthe result-
ing classifier will assign a class to each hypex-pg. If not

1. Neuro-fuzzy learning will hopefully improve and a| rules are used, class boundaries can be fouithihviy-

become faster.

per-boxes.

2. The learning algorithm to create a fuzzy classifier

from data becomes fully automatic and requires

no user intervention at all.
The algorithms for creating fuzzy partitions aresdxh on
prior work by Fayyad & Irani [5] (computation of bodary
points for non-fuzzy intervals) and Elomaa & RoUgj,
who provided algorithms for computing optimal (nozzy)
interval partitions if the problem is characterizggda small
low-dimensional data set (for subsequent improvemeee
[3] and [4]). Applications of these algorithms &reow from
the area of fuzzy decision trees [14],[17].
The new aspects described in this paper are
e the creation of fuzzy partitions based on intenpaiti-
tions

¢ anew heuristics to compute nearly optimal parigiéor
large data sets and/or many boundary points

« a method to reduce fuzzy partitions by considecog-
binations of attributes

« amethod to reduce fuzzy partitions for high-dinmenal
problems by considering pairs of attributes.

Il. DISCRETISATION ANDFUZZY PARTITIONS

Before we can create a fuzzy classifier by usingearo-
fuzzy learning procedure, we must specify fuzzytipans,
i.e. the number, shape and position of fuzzy detseach
attribute of a transaction. In the following we ddise in
detail how this can be done automatically.

When we consider a fuzzy classifier that uses ardingle
attribute then the classification will partitioretihange of the
attribute into disjoint intervals. This is at leaste, if the

A. Finding a Partition for a Fixed Number of Intervals

Having in mind the view of a classifier based appro
mately on a partition of the input space into hypexes, we
can see an analogy to decision trees. Standardialediees
are designed to build a classifier using binaryikattes or,
more generally, using categorical attributes witHfirdte
number of values. In order to construct a decisiee in the
presence of real-valued attributes, a discretisaticthe cor-
responding ranges is required. The decision tréethén
perform the classification task by assigning claste the
hyper-boxes (or unions of these hyper-boxes) indllgethe
discretisation of the attributes.

The task of discretisation for decision trees idgd by
the same principle as the construction of the datitree
itself. In each step of the construction of theisiea tree the
attribute is chosen for a further split that maxes the in-
formation gain which is usually defined as the exteed re-
duction in entropy.

Generalizing a method for binary splits by Fayyad a
Irani [5], Elomaa and Rousu [2] proposed a techmifpr
splitting/discretisation of a range into more tham inter-
vals.

The problem can be defined as follows, when dath wi
missing value in the considered attribute are singpored.
We consider a single attribujeand want to partition the
range into a fixed numbérof intervals. This means that we
have to specify-1 cut pointsTy, ..., Ti.q within the range.
The cut points should be chosen in such a waytheaen-
tropy of the partition is minimized. L&t and T, denote the
left and right boundary of the range, respectively.



Let us assume that (i =1,..., t) of then data fall into the
interval betweerl;; andT;, when we consider only thj¢h
attribute. Letk, denote the number of tg data that belong
to clasgy. Then the entropy in this interval is given by

contributes to the overall entropy, i.e., referrtogequations
(1) and (2), we determine for each interval theigal

AR ety o
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Based on these values, we enlarge intervals forhv3¢
is small and we shrink intervals with a high cdmttion to
the entropy. This scaling procedure is repeatei natfur-
ther improvements could be achieved within a firedhber
of steps.

If the number of intervals is fixed, we apply thegedure
of Elomaa and Rousu [2] otherwise we switch todheve
described scaling heuristics.
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The overall entropy of the partition induced by thet
points is then the weighted sum of the single ¢

t
E=Y1E
i=1

which should be minimized by the choice of the cut B- Determining the Number of Intervals
points. n is the number of data where attribute j does not Since we do not want to fix the number of intenialad-
have a missing value. vance, we have to define a criterion, how manyrvats a
If we sort the data with respect to the valueshimjth at- partition should contain. It is obvious, that tharepy (2)
tribute, it was proved in [2] that for an optimalliting we decreases with the number of intervalat least when we
only have to consider boundary points as cut points choose the optimal partition for eathTherefore, we start
We call a valueT in the range of attributa boundary with a binary split of two intervals and increabe humber
point, if in the sequence of data sorted by theealf attrib- of intervals as long as the new partition redubesentropy
utej, there exist two data andy, having different classes, compared to the previous partition by a certairc@etage or
such thaig < T <y, and there is no other datunsuch that the maximum number of intervals is exceeded.
X <z <Yy As long as the method based on the boundary points
In the following example (Figure 2) the boundarynt® seems computationally tractable, depending on tivaber

are marked by lines. b . . . .
1 mentioned in the previous subsection, we apply the

11 11 12
1 1 1

value:
class:

boundary point method otherwise we switch to theveb
described scaling heuristics.

Figure 7 illustrates the algorithm for this oversiitategy
that computes suitable partitions for single atiiéis.
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Figure 2: Boundary Points
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Note that it is allowed that different data miglavk the
same values in the considered attribute. Althoungh gitua-
tion seldom occurs, when the attribute is reallptcmious- 1.

valued, it is very common for integer-valued atités. From the partitions that we have a computed foh ese
When we have computed the boundary points, we C@fbute, we construct fuzzy sets in the followingyw We

construct the optimal discretisation minimizing () a assume that the partition intdntervals is defined by the cut
fixed number of intervals. If we have b boundaryng®and pointsTy, ..., Te1. To and T, denote the left and right bound-
want to split the considered domain into t intesyale have ary of the corresponding attribute range. Excepttie left
and right boundaries of each range, we use triangnem-
Bership functions, taking their maximum in the eerdaf an
interval and reaching the membership degree zetteeaten-
ciers of the neighboring intervals. At the left anght
boundaries of the ranges we place trapezoidal meshipe
remains a computationally tractable number forlsmafunctions. They are one between the boundary ofdhge
and the center of the first, respectively, laseiwal and
reach the membership degree zero at the centeheof t
neighboring interval. Figure 3 illustrates the domstion of
fuzzy sets from interval partitions.

FROM INTERVAL PARTITIONS TO FUZZY PARTITIONS

to evaluate( ] partitions. In the worst case, the numbe

of boundary pointd equals the number datel. But usually
we will haveb << n so that even in the case of large data s

)

b
values of t. Nevertheless, Ef

j is not acceptable in terms

of computation time, we apply the following heudst
method to find a partition yielding a small valwe {2).

We start with a uniform partition of the range wititer-
vals of the same length or intervals each contgittie same
number of data. Then we determine, how much edehvial
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Figure 3: Construction of fuzzy partitions fromental partitions

A. Partition Simplification

The construction of the fuzzy sets, respectivedydrscre-
tisation, was based on the reduction of entropg¥métion
gain, when each variable is considered independéditw-
ever, when attributes are correlated, we mighthérteduce
the number of intervals (fuzzy sets). In order taleate the
information gain of partitions for combinations wdriables,
we have to consider the partition of the productcspinto
hyper-boxes induced by the interval partitions faf single
domains.

In principle, we would have to apply (1) and (2)typer-
boxes instead of intervals and find the optimatipan into
hyper-boxes. In this case, we do not ignore datia missing
values, but assign them to larger hyper-boxes sparding
to unions of hyper-boxes. In Figure 4 such a lafyex is
shown, which is induced by choosing the secondhde)
intervals of attributey,, the first (of two) intervals of attrib-
utea, and a missing value in attribuag
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Figure 4: A box induced by a missing value

Unfortunately, the technique of choosing cut poiats
boundary points does not make sense in multi-dirmeab
spaces. Our heuristic method of minimizing the allezn-
tropy by scaling the intervals with respect to theitropy,
could be applied to the multi-dimensional case a$, wut
only for the price of an exponential increase ofmpata-
tional costs in terms of the number of attributése havet;
intervals for attributg¢ (j = 1, ...,p), we would have to com-

p
pute the entropy forﬂ

j=1
entropy value of one partition into hyper-boxes;luding
the hyper-boxes representing regions with missaiges. In
case of six attributes, each one split into thrgervals, we
would have to consider (3+1F 4096 hyper-boxes for the
evaluation of one partition.

Therefore, we do not try to find an overall optinpalrti-
tion into hyper-boxes, but instead try to simplifie parti-
tions that we have obtained from the single donpirti-
tions. Since the partitions are generated in anemental
way, we do not only store the resulting partitiobat also
partitions with fewer intervals. The underlying éés to
check, whether we can go back to a partition wéther in-
tervals for an attribute without increasing therepy signifi-
cantly, when we consider this attribute in conractivith
other attributes.

First of all, the attributes are sorted with resgeche re-
duction of entropy that their associated intervattitions
provide. For the comparison, required for the agrtiwe
have to take missing values into account. Eedenote the
overall entropy of the data set withdata. Assume that for
m data attributg has a missing value. Then the correspond-
ing entropy in terms of (2) would be

ton
=y -1

i=1 N~ M

(t i +1) hyper-boxes for the overall

LE;

if we simply ignore the data with missing values.

In the extreme case that all data except for one
missing value for attributg this entropy would reduce to
zero, although the actual information gain by krmmayattrib-
utej is almost zero. Therefore, we define

—-m: t
"oy n
iz~ m;

m;
E = E; + Y (Enmissing

n
L th: E; + 0 [E
= ni P .
n '=1| 1 n missing

EnmissingiS the entropy of the data with a missing value for
thejth attribute. If we assume that missing values ocan-
domly, EnissingWill coincide with the overall entropy of the
data set.

There are two strategies that we apply, dependinthe
number of data and the number of hyper-boxes tlaira
duced by the single domain partitions.

The first strategy (Figure 10) is chosen, if théadset is
not too large and the number of hyper-boxes isicelfftly
small. We start with the attribute whose partitieads to the
highest reduction of the entropy and examine thdbate,
which was second best in the entropy reductionc@rsider
the hyper-boxes that are induced by the partitibrthe
ranges of these two attributes. Assume that byneethod
considering only single attributes, we have fouhdt twe
should choosé intervals for the attribute that was second
best in the entropy reduction. We compare the (hipe)



entropies in connection with the best attributeemiive use
the partition this partition and the partition thet had com-
puted fort —1. If the partition witht —1 intervals does not
significantly increase the entropy, we prefer gnsaller par-
tition. We even examine the partitions with2,t —3 etc in-
tervals, until the increase in entropy seems nogptable.
After that, we examine the attribute that camedthir the
single domain entropy reduction in connection vtfta first
two attributes, where the second attribute migieaaly have
a reduced number of intervals. Then we add thetHoat
tribute etc.

Since this strategy means that we might have toidena
very large number of hyper-boxes for the last lattes to be
investigated, we apply our second strategy (Figdde when
the first one seems computationally unacceptablke faNow
the same principle as in the first strategy, buplyghe
method only to all pairs of attributes, where iclegair we
try to reduce the number of intervals of the attigwith the
lesser reduction of entropy.

Finally, Figure 6 shows how to combine the previouisty
troduced algorithms to obtain an overall strateggdmpute
suitable partitions for all attributes taking themrrelations
or dependencies into account.

IV. APPLICATION INNEFCLASS

We have implemented the described algorithms in the

neuro-fuzzy classifier NEFCLASS [8], [9]. NEFCLASS is
able to handle missing values, both numeric andbsjim
data in the same data set and to determine a asie-fully

automatically. The focus of the NEFCLASS learning algo

rithms is on creating small interpretable fuzzyerbhses.

The learning algorithm of NEFCLASS has two stages:

structure learning and parameter learning. Ruleiggire)
learning is done by a variation of the approacthang and
Mendel [15] which was extended to cover also syimbol
patterns [9] and to use a rule performance medsumaile
selection.

In parameter learning the fuzzy sets are tuned bgick-
propagation-like procedure that is based on a sirhplris-
tics instead of a gradient descent approach. A&aming
NEFCLASS uses pruning strategies to reduce the nuafber
rules as much as possible.

Implementing the algorithms described in this papas
the final missing piece that made NEFCLASS learnidly fu
automatic. The user now is no longer required twide any
initial parameters. Fuzzy partitions and rule base deter-
mined fully automatically. Parameters that contha learn-
ing process (learning rates, thresholds, rule lagrstrategy,
pruning strategy) can all be set to suitable vahmes a user
never needs to touch them.

By automating NEFCLASS to that extent it was possibl
to included it into the automatic intelligent datsalysis plat-
form SPIDA which automatically selects, configuresda
executes data analysis algorithms on behalf ofea [idl],
[12], [13].

As an example we apply NEFCLASS to the Wisconsin
Breast Cancer Data set. If we run NEFCLASS fully auto
matically, it creates between 1 and 3 fuzzy setsvpgable.

If only one fuzzy set is created that means thditjmaning

algorithm has decided not partition that particulariable
(mitoses) and the learning algorithm treats itdan’t care”.

The rule learning algorithms selects the best rplasclass
and determines the number of rules automaticaligh shat
all patterns of the training set are covered byeast one
rule. After training and exhaustive pruning is penfied (see
[8], [9]for a description of the NEFCLASS learningged

rithms). The data is randomly separated into tngjrsind test
sets. The results on the test sets are shown ifollesving

table. NEFCLASS generates the four rule shown bekingu
three variables. There are three fuzzy sets foroatli size
(Figure 5) and two fuzzy sets each for bland_chromeatd

bare_nuclei.

TABLE 1: CONFUSION MATRIX BREAST CANCER TEST DATA
(ERROR=4.17%)

orig \ pred benign malignant Sum
benign 234 7 241
malignant 8 111 119
Sum 242 118 360

The rules generated are:

Class malignant:

Ro: IF bare_nuclei is large and bland_chromatimige

R:: IF uni_cell_size is large and bland_chromatilaige

R,: IF uni_cell_size is large and bare_nuclei is sraatl
bland_chromatin is large

Class benign:

Rs: IF uni_cell_size is small and bare_nuclei is small
and bland_chromatin is small

uni_cell_size

sm md lg

0.0
1.0

T T T T
28 LY 6.4 82 10.0

Figure 5: Fuzzy sets for uni_cell_size

If we run NEFCLASS without the automatic partitioning
algorithms we have to specify a number of fuzzys det
each variable. If we choose two fuzzy sets perabédei we
achieve a test error of 8% with four rules using tvari-
ables. If we choose three fuzzy sets we obtainreor ef
5.14% with 18 rules using four variables.

e
V. CONCLUSIONS

We have shown how we can automatically determiie in
tial fuzzy partitions in the context of neuro-fuzlsarning.



Fuzzy partitions are created based on intervaltjpen$ and APPENDIX(ALGORITHMS)

we introduced a new heuristics to compute nearlym@  This section provides flow charts for the partitign algo-

order to achieve small fuzzy classifiers with iptetable

rule bases we developed a method to reduce fuztyiques

by considering combinations of attributes. If thigthod is
too complex to run due to high-dimensional problevesun

a simplified version by considering only pairs tifiautes.

We have implemented the algorithms into NEFCLASS

and shown on a small data set that by providintaklé ini-

tial fuzzy partitions we can achieve better resutthe sub-
sequent learning process.

Multidimensional Attribute Partitioning

Input: a
classified data

set with n
attributes
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Single Attribute Partitioning

Call Compute Partition (i)

ntropy of attribute
with i intervals

Yes
No

Store the partitions for 1 to i-1 intervals
Select the partition with i-1 intervals.

l

Figure 7. Algorithm to partition a single attribute (q islaéshold)

Compute Partition

Receive value for |

Compute the boundary
points of the attribute
(see Fayyad & Irani)

0. of boundary points

Compute the optimal
partition for i intervals
(see Elomaa & Rousu)

Call Interval Scaling
Heuristics (i)

Return the partition for i
intervals

Figure 8: Compute a Partition (N is a threshold)

Interval Scaling Heuristics

Receive value for i

Create i uniform intervals
such that each contains the
same number of data points;
Store this partition.

verall entropy of
attribute

Rescale the intervals: Intervals with a
high entropy are shortened, intervals
with a small entropy are lengthened

v

overall entropy of
attribute

E=E;
Store new partition

No

Return stored partition

Figure 9: Heuristics for computing a partitionhfte are too many bound-

ary points (J is a threshold)



Multidimensional Partition Simplification

Sort the attributes by their
entropy reduction (w.r.t. their
computed partition) in
decreasing order

Pair-by-Pair Partition Simplification

Create alist of all pairs of
attributes

i>no. of attributes

No

£ = overall entropy of
attributes 110 i

is the
partition of
attribute i
educible2

No

Return final

partitions

Reduce the partition
of attribute i

Figure 10: Algorithm for multidimensional partiti@mplification

(p is a threshold)

Return final
partitions

a = atuibute of pair |
with smaller entropy
reduction

is the
partition of
attribute a
educible2

E' = overall entropy of
attribute pair i

Figure 11: Algorithm for pair-by-pair partition sptification

(p is a threshold)



