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Abstract

The aim of this paper is to show that a restriction of a logical
language to clauses like Horn clauses, as they are used in Prolog, ap-
plied to [0,1]-valued logics leads to calculi with a sound and complete
proof theory. In opposition to other models where generally the set
of axioms as well as the deduction schemata are enriched we restrict
ourselves to a simple modification of the deduction rules of classical
logic without adding new axioms.

In our model the truth values from the unit interval can be inter-
preted in a probabilistic sense, so that a value between 0 and 1 is not
just intuitively interpreted as a ‘degree of truth’.

Keywords: Prolog; [0,1]-valued logic; probabilistic logic; possi-
bilistic logic

1 Introduction

N. Rescher [23] pointed that there are at least three different approaches to
the field of many—valued logic, namely

o the metalogical viewpoint, which is mainly concerned with proof theo-
retic and algebraic aspects of logical systems as for example described
in [22],



e the semantical standpoint, from which N. Rescher’s book is written,
where the set of truth values is enriched with values like undetermined
or more abstract values like ‘0.5,

e and the practical view, which concentrates on applications of many—
valued systems for example in physics as indicated in [14].

In this paper we emphasize the semantical viewpoint and focus our atten-
tion to applications in the domain of approximate reasoning. We deliberately
restrict our investigations to [0,1]-valued logics, so that we are enabled to
provide probabilistic interpretations for our concepts.

In the field of approximate reasoning it is very common to attach a (truth)
value to a (logical) formula, expressing for instance a degree of truth, possibil-
ity, necessity, plausibility, or belief. This weighting or valuation of formulae
enforces an extension of the logical language in order to be able to express
the truth value attached to a formula. Although the definition of the notion
of a model or an interpretation (i.e. the semantical part) of such a language
is straight forward, the rules for logical deduction have to be modified and
new rules have to be added for the sake of completeness. Examples for such
extensions can be found in [21, 16, 17, 18, 19]. The completeness results of
these papers are obtained for the price of a complex deduction mechanism,
that guarantees completeness, but does not provide efficient methods for find-
ing proofs. Therefore, these approaches are very valuable from a theoretical
point of view, but are subject to limitations for practical applications.

Another problem for some applications is a missing interpretation for
the truth values between 0 and 1. It is often not enough to understand
truth values in an intuitive sense as degrees of truth, possibility, necessity,
plausibility, or belief. These notions without making more precise, what
the meaning of a certain degree of 0.8 is, and when we should attach this
degree to a formula instead of the degree 0.7, can cause undesired results in
applications or may even lead to the rejection of such approaches according
to the inherent arbitrariness in the choice of the numbers (degrees).

A simple way to overcome these problems is to interpret the unit interval
as an ordinal scale as proposed by Dubois and Prade in [5] for their possi-
bilistic logic. Disadvantages of such an approach are that values specified
by different persons cannot be compared and that the richer structure of the
unit interval is reduced to a linear ordering, although generally more than a
simple ranking is associated with numbers between zero and one.



In this paper we present the following approach. Asin many other models
for approximate reasoning on a logical basis, we consider the unit interval as
the set of ‘truth values’. In Section 2 a purely formal approach is described
without discussing an interpretation of the ‘truth values’. In order to avoid
a complicated proof theory we restrict our considerations to a subset of a
first order logical language. We only admit formula that are similar to Horn
clauses, so that we obtain a language suitable for ‘fuzzy’ Prolog including
some completeness results.

Section 3 is devoted to possible interpretations of the truth values. We
provide probabilistic models that can be used for an underlying semantics
of the truth values. It turns out that the probabilistic interpretation can
also be applied to possibilistic logic, so that the we obtain an equivalence
between fuzzy Prolog based on the Godel implication, possibilistic Prolog,
and a probabilistic model.

2 Extending Prolog to [0,1]-valued Logics

We consider a first order logical language L containing the logical connec-
tives —, a set @ = {®1,...,Dn} of binary connectives, and the universal
quantifier V. The set of truth values is the unit interval [0,1]. The valuation
function associated to the logical connective — is either

o =¥/ =min{l — Jo/+ [/, 1} (Lukasiewicz implication)

or

o =) = { Lo if o/ <[4 (Gédel implication)

/¢/ otherwise.

If — is intended to be the Lukasiewicz implication we write Ly, for L, in case
of the Godel implication we write Lg. For the connectives in @@ we only
assume that the corresponding valuation functions are continuous and non-
decreasing in both arguments. Examples for such operators are continuous ¢—
norms and t—conorms. For the universal quantifier we define /(Vz)(p(2z))/ =
inf, {/¢(2)/}.

The following definition describes a restricted subset of the logical lan-
guage L, which generalizes the notion of Horn—clauses for our purposes.



Definition 2.1 An implication clause is a closed well formed formula of the

form
(V21) ... (Vo) — ) (1)
or
(Va1) . .. (Vee) (), (2)
where ¢ is an atomic formula with no other free variables than zq,...,zx. @

15 a formula containing only connectives belonging to @ and no quantifiers.

A rule base in Prolog consists of rules and facts. Such a rule base is
interpreted as a set of axioms known to be true. Instead of a crisp set of
axioms (facts and rules) A C L as in classical logic or Prolog, we consider
a mapping a : L — [0,1] assigning to each logical formula ¢ € L a lower
bound a(y) for the truth value of ¢. For classical logic a would correspond
to the characteristic function of the given axioms. In practical applications
a(e) will in general only be specified for some ¢ € L, whereas for all other
1 € L the default lower bound zero is assumed, i.e. a(3)) = 0. Since we want
to restrict our considerations to implication clauses, we allow a lower bound
greater than zero only for implication clauses.

Definition 2.2 A mapping a : L — [0,1] is called regular, if only implica-
tion clauses belong to the support of a, i.e. a(p) > 0 implies that ¢ is an
implication clause.

Our intention is to keep the lower bounds specified by a out of the logical
language. For this reason, we also use only the classical deduction schemata,
i.e. modus ponens and substitution. Of course, we have to compute cor-
responding lower bounds for formulae involved in the deduction procedure.
This means that, instead of adding a new valid formula in each deduction
step as in classical logic, we improve the lower bound for a formula in a
deduction step. Formally, a deduction step derives from a : L — [0,1] a
mapping b : L — [0, 1], where b > a. This motivates the following definition
for the inference procedure.

Definition 2.3 Let a,b: Ly, — [0,1] be regular.

(1) b is directly derivable from a if



(a) there exists an implication clause (Vzi)...(Vag)(e — ) in Ly
such that

(al) Ifo is an implication clause with free variables 1, ..., z, and
w2 o # ¢, then a((Veq) ... (Va,)(Yo)) = b((Ve1) ... (Va, 1) (o).
a2
B(Var).. (Va)(®) = max{/(Ver)-. (Yor)(p)a (3
Ya((Var) .. (Vew) (g - )
La((Var) .. (Ve (@)
where the value [(Vzy)...(Ver)(p)/a is obtained by consider-

ing the Herbrand universe of Ly, and valuating atomic formu-
lae according to a,

holds or
(b) there ezists an implication clause (Vi1)...(Var)(x) and terms
tisy o stin (11,...1. € {1,...,k}) without free variables such that
for the formula X', which is obtained by substituting z;; (j =
1,...,7) by t;; in x and quantifying over the remaining free vari-
ables,
b(x') = max{a((Vz1)...(V2i)(x)), a(x)}- (4)
15 satisfied.
(i1) b is derivable from a (a <1 b) if there is a reqular sequence aq,...,an :

Ly — [0,1] where agyq is directly derivable from aj for each k €
{0,...,n — 1} and b < a,, holds.

(11i) The mapping th(® : Ly — [0,1] 4s given by

th(a)(go) = of the form (2)

sup{b(p) | a < b} if ¢ is an implication clause
0 otherwise.

We use the same terminology as in definition 2.3 for Lg. But we have to
replace (3) by
b((Vey)... (Ver)(v)) = max{ min {/(Vz1) ... (Vzr)(®)/a, (5)
a((Ve1)... (Ver)(p = )},
a((Ye1) ... (Yzu) (4)) }-



The application of modus ponens and the substitution of free variables
by other terms is formalized in (i)(a) and (i)(b), respectively, in the above
definition. (ii) describes the application of a finite number of deduction steps
of the form introduced in (i). Finally, (iii) specifies what can be obtained
from a if we allow an arbitrary number of deduction steps.

For the semantical or model-theoretic part of our [0, 1]—valued logic we
define accordingly to the interpretation of a as a specification of lower bounds
for the truth values the mapping Th(® that describes the consequences for
the lower bounds for all formulae induced by a.

Definition 2.4 Leta: L — [0,1]. Let /¢/1 denote the truth value the for-
mula ¢ obtains under the [0,1]-valued interpretation I. I is called compatible
with a if /¢/1 > a(p) holds for all p € L.

Th® : L — [0,1] denotes the infimum over all [0,1]-valued interpreta-
tions of L, that are compatible with a.

We write /¢/ instead of /¢ /1 if it is clear to which interpretation I we
refer.

Theorem 2.5 (Soundness of Ly) Let a : Ly, — [0,1] be regular. For all
closed formulae ¢ € Ly,
th®(p) < Th{¥(p)

holds.

Proof. We have to prove that direct derivability preserves compatibility.
Let I be an interpretation compatible with a and let b be directly derivable
from a.

Case 1. b is obtained from a by applying (3).

From the compatibility of the interpretation I with a and the monotonicity
of the valuation functions in @, we derive

[(Var)...(Var)(¥)/ = max{ [(Vai)...(Vax)(e)/
+/(Ve1) .. (Var)(e = ¥)/a — 1,
[(Va1) ... (Var)(4)/ }

max{ /(Vay)...(Yax)(¢)/a
/(Y2 ... (ar) (@ — $)a — 1,
/(Var).. (Vo) () o }

= b((Ve1)...(Vzr) ().

v
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Case 2. b is obtained from a by applying (4).
For the same reasons as in case 1, we obtain

/x| = max{/(Ve1)...(Vai)(x)/
> max{a((Vz;)... (Ver)(x)

/X' [}
), a(x)}.

Theorem 2.6 (Soundness of Lg) Let a : Lg — [0,1] be regular. For all
closed formulae ¢ € Ly,

th®(p) < Th{¥(p)
holds.

Proof. The proof is analogous to the proof of Theorem 2.5, except that we
have to consider equation (5) instead of (3) in case 1. O

Theorem 2.7 (Completeness of Ly) Let a : Ly, — [0,1] be regular and
let ¢ be an implication clause of the form (2). Then

th(®) () > Th) ().
holds.

Proof. Let U be the Herbrand universe of L;,. We show that the Herbrand
interpretation I induced by th(® is compatible with a. For implication clauses
x of the form (2) the definition of th(®) yields

/x/ > a(x).

Thus, we only have to consider implication clauses like (V1) ... (Var)(p —

) of the form (1) where

[(Va1) ... (Var) (o = ¥)/ < a((Vzi) ... (Var) (e — ¢)).

There exists a tuple u = (uy,...,us) € U such that

[(u) = $(u)/ < a((Vzi) ... (Var)(p = ¢)) (6)
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holds where ¢(u) and 9(u) are obtained by substitution of ,...,zx by
Uy, ..., Uk in @ and 1, respectively. By applying part (i)(b) of Definition 2.3
to the formula (V1) ... (Vzg)(p — ¥) by substituting @1, ...,z by w1, ..., uk
we derive b : Ly, — [0, 1] directly from a. Then we have

b(p(u) = ¢(u))

a((Vz1) ... (Ver)(p = 9))

[o(u) = P(u)/

min{l — /o(u)/ + /¢ (u)/,1}

L—/p(u)/ + /¢(u)/. (7)

1

\ARAVARY]

(7) implies
[e(u)] +b(p(u) = P(u)) — 1> [P(u)/.

According to the continuity of the valuation functions for the connectives in
@ and the definition of th(®) and /./ there exists ' : Ly — [0,1] directly
derivable from a such that

[e(u)/v + b(p(u) = P(u)) — 1> [¥(u)/ (8)
holds. Let b = max{b,b'}. Obviously, b is also derivable from a. Taking (8)

into account we get
Je(@)/s+ ble(u) = () = 1> [3(u)/.

Therefore, there exists b: Ly — [0, 1] directly derivable from b by Definition
2.3(i)(a) such that

b(¥(u)) = Je(u)/s+blp(u) = $(u)) — 1
)/-

This leads to the contradiction

J(u)/ = th@(p(u)) > b(y(u)) > [¥(u)/.



Theorem 2.8 (Completeness of Lg) Leta: L — [0,1] be reqular and let
1 be an implication clause of the form (2). Then

th(®) () > Th@) ().
holds.

Proof. The proof is analogous to that of Theorem 2.7 except for modifica-
tions induced by the differing valuation functions for the Lukasiewicz— and
the Godel implication. Note, that in the proof of Theorem 2.7 we only needed
the continuity of the valuation functions for the connectives in €, but not
for the Lukasiewicz implication. Therefore, the discontinuity of the Godel
implication does not lead to any problems. a

Theorems 2.5 — 2.8 show that what we can derive by the deduction steps
defined in Definition 2.3 coincides with what is deducible from a in the model-
theoretic sense of Definition 2.4. This result holds for Lj, as well as for L¢.
Note, that we allow an infinite number of deduction steps according to the
supremum in Definition 2.3. Therefore, it is possible that the value Th(a)(go)
can only be approximated (with arbitrary exactness) when we only allow a
finite number of deduction steps.

The possibility of an infinite number of deduction steps is also considered
in [16, 21]. But a number of additional axiom schemata and inference rules
is needed for the completeness results in these papers.

3 A Probabilistic Interpretation for Prolog
Extensions

The previous section was devoted to a purely formal approach to [0, 1]-valued
Prolog without giving an interpretation of the truth values. In the following
we provide a formal framework in which the truth values originate from
probabilities.

The probabilistic setting for our investigations is related to probabilistic
logic [15], but does generalize the assumption of probabilistic logic that the
probability for a formula plus the probability for its negation sum up to one
to the weaker requirement that the sum is at most one. This corresponds



to the idea that there are some ‘worlds’ in which the formula ¢ is known to
be true, some different ‘worlds’ in which the negation of ¢ holds, and other
‘worlds’ in which nothing is known about ¢.

Instead of the term ‘(possible) worlds’ we will use the notion of a (consid-
eration) context in the following, since our probabilistic model is motivated
by the context model [9, 6], which was introduced as an integrating model for
vagueness and uncertainty and later on also adopted for logical approaches

8]

Definition 3.1 Let L be the set of (closed) well formed formulae (wff’s) of
a first order predicate language L and let C = (C, A, P) be a probability space
with o-algebra A together with a mapping p: C — 2L s.t.

(1) for all c € C: TH(p(c)) = {p € L | p(c) Fr ¢} = p(c)
(i1) for allc € C: L ¢ p(c), (where L <> ¢ A =)
(112) forallp € L:{ce C |y € u(c)} € A

Then (C, u) s called a context evaluation of L.

TH(p(c)) denotes the set of (classical) logical consequences of the set p(c).

C can be understood as a set of contexts or possible worlds. p(c) rep-
resents the set of formulae that are known in context ¢ € C. It is assumed
that all possible deductions are carried out in ¢ (condition (i)), that u(c) is
consistent (condition (ii)), and that we can assign a number P,(p) (i.e. a
probability) to each formula ¢ € L due to the measurability condition (iii)
via

Pu(p) = P({c € C | p € p(c)}).

P, () is the probability for those contexts in which ¢ is known to be true.

In the same way as we have defined compatibility of (logical) interpreta-
tions with a mapping a : L — [0, 1], that specifies lower bounds for the truth
values (compare Definition 2.4), we introduce the notion of compatibility for
context evaluations.

Definition 3.2 Leta: L — [0,1].
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(i) A context evaluation (C,p) of L, where C = (C, A, P) is a probability

space, is compatible with a if
for all € L :a(p) < Pu(e)
(i) The mapping Th, : L — [0,1] is given by

Tha(p) = inf{P”(go) | ((C, A, P),u) is a context evaluation
compatible with a},

where inf() = 1.

Note, that Th, is not truth-functional.

3.1 A Probabilistic Interpretation for Prolog Based on
the Lukasiewicz Implication

The following theorem shows that the logic Lj, can be understood as a cau-
tious interpretation compared to the concept of context evaluations. In other
words, if we use the inference procedure for Lj,, which was introduced in
Definition 2.3, we obtain a sound but not complete proof theory for our
probabilistic interpretation.

Theorem 3.3 Let a : Ly, — [0,1] be regular. Let @ = {A,V} where we
associate the valuation functions

Jo Ag] = max{/e/+/$/—1,0}, and
JoV ] = max{/e/,[b/}

with A\ and V, respectwely. If ¢ is an atomic formula with free variables
Z1,...,Ty, then

O ((Var). . (Vea)(9) < Tha((Ves) ... (Van)(¢))

holds.
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Proof. By induction we prove that for any b such that a < b, and for all
atomic formulae with free variables yy, ..., yx

b((Vy1) - .- (Vyr)(¥)) < Tha((Vyn) ... (Vor)(¥)) (9)

holds.

By definition we have a < Th,, which gives us the basis for the induc-
tion. Now we have to consider a’ derivable from a in n steps and b directly
derivable from a’ and a context evaluation ((C A, P), ,u) compatible with a.

By the hypothesis of the induction we obtain that ((C, A, P), ,u) is also com-

patible with a’. For the induction step we have to prove that ((C, A, P), ,u)

is compatible with b. There are two possibilities of deriving b directly from

a'.

Case 1: bis obtained from a’ by substitution of quantified variables by terms
containing no free variables, for instance by replacing y; by the term ¢.

b((Vy1) - - (Vyic1)(VYira) - - - (Yur) (D (Y1, - - 5 Yim1, b Yt - - -, UR)))

=a'(Vy1) ... (Yye) (@ (y1, - - ¥%)))

For all other formulae b coincides with a’. Obviously,

a'((Vy1) - (V) (B (91, - - u))
< Pu({eeC (%) (Yum) @y, w))) € ple)})
< P”({ ceC |
(VY1) - - - (Vyi-1)(Vyiz1) - - - (Vo)
($(1,- - Yict, b Yirs, -, Yn)) € p(c)})

holds.

Case 2: b is obtained from a’ by the application of a deduction rule of the
form

(Vy1) - .- (Yyr) (x = ¥)),

where x and v contain at most yy,...,y, as free variables. Furthermore, 1
is an atomic formula, whereas ¥ can be composed of atomic formulae and
the connectives A and V. In the following, we use (Vy) as an abbreviation

for (Yy1) ... (Yyg).
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We carry out an induction on the number of connectives in x. For the
basis of the induction x is an atomic formula. Since (Vy)(x) together with

(Vy : (x — %)) implies (Vy)(v), we derive

Pu((Y9)(®)) > Pu({c€ C | ((Vy)(x)) € u(c) and ((Vy)(x — ¥)) € p(c)})
> Pu((Vy)(x)) + Pu((Vy)(x = 9)) — 1
> d((Vy)(x)) +a'((Vy)(x = ¢)) — 1 (10)
= b((Vy)(¥))

Now let x = x1 V x2 or x = x1 A X2- This implies
Pu(x) > max{P,(x1), Pu(x2)} or
Pu(x) > Pulx1) + Pu(x2) — 1, (11)

respectively. In the same way as in (10) we obtain

P.((Vy)(#)) = b((Vy)(¥)).

The following example shows that equality in Theorem 3.3 is not satisfied
in general, i.e. that the proof theory is indeed incomplete.

Example 3.4 Let Ly, be the propositional calculus induced by the proposi-
tional constants g, X0, and . a : Ly — [0,1] is given by

0.5 if ¢ = o
1 if ¢ = (o — x0) or © = (wo A X0 — Yo)
0 otherwise.

a(p) =

This implies th(®) (o) = 0, since the interpretation with /¢o/ = /x0/ = 0.5
and ¥ = 0 is compatible with a. For a context evaluation ((C, A, P),,u)
compatible with a we have

Pu($0) > P({c€ C o, (po = Xo),(po AXo = o) € u(c)})
P({ce C o€ p(c)})

0(900)
0.5,

AVARAYS
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since

P({c€C (o — x0) € n(c)}) = P({c € C'| (po Axo — tho) € u(c)}) = 1.
Therefore, Thy(1)e) > 0.5 holds.

3.2 A Probabilistic Interpretation for Possibilistic Lo-
gic and Godel Prolog

The incompleteness result of the previous subsection can be amended if we
restrict the set of contexts. We now allow only context evaluations that are
nested. This means that the contexts can be understood as a linearly ordered
set of more and more speculative contexts, where the set of true formulae in
a context becomes larger with the speculative level of the context.

Definition 3.5 A context evaluation ((C, A, P),,u) of a first order language
L is nested if there exists a subset Cy C C s.t.

(1) P(Co) =1

(i2) for all c,d € Cy: (,u(c) C u(d) or u(d) C ,u(c)).

If we consider nested context evaluations, we have to modify the notion
of Th,, i.e. which minimal restrictions are induced by a specification a : L —
[0, 1] of lower bounds for the probabilities for formulae.

Definition 3.6 Let a : L — [0,1]. The mapping Th®**? : L — [0,1] s
given by

Th{*(p) = inf{Pu(¢) | ((C, A, P),p) is a nested

context evaluation compatible with a}.

Before we proof that the proof theory for Lg is sound and complete
with respect to nested context evaluations, we make a short excursus to
possibilistic logic. The aim of this excursus is to show that nested context
evaluations provide an appropriate interpretation for possibilistic logic so
that our final result is the equivalence between possibilistic, nested context,
and the [0,1]-valued Goédel Prolog. In order to simplify and clarify the
necessary terminology for possibilistic logic, we give here slightly modified
definitions compared to the originals from Dubois, Lang, and Prade [3, 1, 2,

5].
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Definition 3.7 Let L be the language of a first order predicate logic. A
possibility measure I1 on L is a mapping 11 : L — [0,1] with the following
properties.

(i) TI(L) = 0
(i) TI(T) = 1

(iii) For all o,4 € L :T(y V ¢) = max{II(y), II(s))}

(iv) Go:p(z) €L = (3 : p(a)) = sup{li(¢(d)) | d € D} where D

1s the Herbrand universe of L.

(v) For all p,¢ € L :
(If (¢ <> %) is a tautology then, I1(p) = I1(v)) holds.)

II(¢) is interpreted as the degree to which ¢ is considered to be possible.
The corresponding necessity measure N is given by

N:L—[0,1], ¢—1-TI(-¢p)

where N(p) is understood as the degree to which ¢ is necessarily true.

N also satisfies conditions (i), (ii), and (v) of the above definition. The
axioms (iii) and (iv) have to be replaced by the dual axioms, i.e. V, 3, max,
and sup should be substituted by A, V, min, and inf, respectively. If N is
a necessity measure, the corresponding possibility measure is obtained by

II(p) =1 — N(-¢).

Definition 3.8 Leta: L — [0,1] be regular. The mapping
Th{P**) . [, [0, 1]

is defined by

Th*)(p) = inf{P,(¢) | C=(C, A, P) and

(C, ) is a context evaluation

compatible with a }

The following three theorems elucidate the connection between possibilis-
tic logic and nested context evaluations.
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Theorem 3.9 Let N be a necessity measure on L. Then there exists a nested
context evaluation ((C, A, P),,u) such that

N=P,
holds.
Proof. Define

p0,1] =25, am {peL|N(p)>a}
If N(¢) > a and N(p — 9) = N(—¢ V) > a hold, then

a < min{N(p), N(~p V )} = N(p A (m¢ V 9))

— N(p A9) = min{N(g), N(#)} < N($). (12)
According to the conditions (i), (ii), (iv), and (v) for necessity measures
we derive by exploiting (12) that TH(p(a)) = pu(a) holds and that p(a) is
consistent.
Let C =]0,1] and let P the probability measure which corresponds to the
uniform distribution on ]0,1]. Let C = (]0, 1], B(]o, 1)), P) where B(]0,1]) is
the Borel o—algebra on ]0,1]. For ¢ € L we have

{c€l0,1] | € plc)} = 10,N(¢)].

Therefore, (C, p) is a context evaluation of L. Since P(]O, 1]) = 1 and by the

definition of u, we obtain that (C, u) is nested.
Let ¢ € L.

Pu(p) = P({c €]0,1] | ¢ € p(c)}) = P(10, N(¢)]) = N(¢)

Theorem 3.10 Let ((C, A, P),,u) be a nested context evaluation of L. Then
P, s a necessily measure.
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Proof. Let Co C C such that P(Cy) = 1 is satisfied and for all ¢,d € Cy:
(,u(c) C u(d) or pu(d) C ,u(c)) holds. Since u(c) is consistent for all contexts
¢ € C and because u(c) contains at least all tautologies of L, we obtain
P,(L)=0and P,(T) = 1. Condition (v) for necessity measures is fulfilled
according to p(c) = TH(u(c)) (for all contexts ¢ € C).

For x € L we define Oy = {c € Co | x € p(c)}. Thus P,(x) = P(Cy) holds
because of P(Cp) = 1.

Let ¢,% € L. In case of C, € Cy, there exists a context ¢ € Cy with
@ € p(c) and ¥ & p(c). For any context d € Cy we have p(d) € p(c). Since
((C, A, P),,u) is nested, p(c) C u(d) follows and therefore also ¢ € p(d).
Thus, for the case C, € Cy the inclusion C, C C, holds. Analogously, we
obtain C, C Cy for the case Cy Z C,. In any case we have C, C Cy or
Cy C C,.

Without loss of generality let C, C Cy.

PueAy) = P({ceCol(pA9)€ ule)})
= P({c€Co|p € p(c) and ¢ € p(c)})
= P( N C¢)
= P(Clp)

= min{P(C,), P(Cy)}

Now we consider (Vz)(¢(z)) € L. Let U be the Herbrand universe of L. U
is a countable set. Let U = {u, | n € IN}. We define

holds. This implies

P(Cuayprep) = P(lim N ¢®) = lim P(C™)



= lim P(C;p(uO)/\.../\lP(un))

n—oo

= lim min{P,(p(u0)),. .., Pu(e(un))}

n—oo

— inf{P,(p(un)) | n € N}.

This proves that P, is a necessity measure. a

Theorem 3.11 Let a: L — [0,1] be regqular. If there is at least one nested
contezt evaluation compatible with a, then Th(P*®) is a necessity measure on

L.

Proof. According to Theorem 3.10 Th((lpc’ss) 1s the infimum of a set of neces-
sity measures, which is obviously also a necessity measure. a

In [4, 5] an interpretation of possibility theory and possibilistic logic on
the basis of consonant or nested worlds was already suggested and the par-
allels to Spohn’s generalized possible world model [25] were indicated by a
purely qualitative interpretation, i.e. the unit interval was only considered as
a linear ordering. Refraining from the rich structure of the unit interval by
concentrating on the linear ordering imposes two drawbacks for possibility
theory. On the one hand, the connection between possibility and necessity
measures is based on subtraction which is not a property inherent in linear
orderings. On the other hand, generally we associate a quantitative and not
only a qualitative ranking with numbers from the unit interval. The interpre-
tation of possibilistic logic in the light of nested context evaluations provides
a meaningful, quantitative interpretation of the numbers.

Now, after we have clarified the connection between possibilistic logic and
nested context evaluations, we can proof that nested context evaluations also
provide a model or interpretation for ‘Godel Prolog’, i.e. for Lg.

Theorem 3.12 Let a : Lg — [0,1] be regular. Let @ = {A,V} where we
associate the valuation functions min and max to A and V, respectively. If
@ 1s an atomic formula with free variables x4, ..., z,, then

BO((Va1) ... (Foa)()) = THE™(Y21) ... (Van)(¢)
holds.
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Proof. We again abbreviate (Vyi1)...V(yz) by (Vy).
As the first step of the proof we show by induction over the number of (direct)
derivation steps that

b((¥y)($(y))) < ThE™ () (+(y))) (13)

holds for all atomic formulae 1 with free variables yy,...,y, and for all b
with a < b.
The basis of the induction is given by a((Vy)(¥(y))) < Th poss) ((Vy)(¥(y)))-
Now let a’ be derivable from a in n steps. By the 1nduct10n hypothesis o
satisfies (13). We have to consider a nested context evaluation ((C, A, P),p
compatible with a (and according to a < a’ also compatible with a’) and
b: L — [0,1] directly derivable from a'.

There are two possibilities to obtain b from a'.
Case 1 can be treated analogously to case 1 in the proof of Theorem 3.3.
For the second case we have to replace the inequality (10) by

Pu((v)®) > Pu((¥9)00) A ((F)(x = 9)))
= min {P((V9)(0), Pl(W)(x = ¥} (14)
> min {a((¥y) (x)), @'((Y) (x — ¥))}

in case 2 of the proof of Theorem 3.3. (14) is satisfied, since ((C, A, P),,u)
is a nested context evaluation and therefore, by Theorem 3.10 a necessity
measure.

We also have to replace the inequality (11) by

Pu(x) = min{P,(x1), Pu(x2)}- (15)

Since ((C, A, P),,u) is nested, (15) is satisfied. All together we obtain

th(®((¥y)(¥)) < ThP*)((Vy)(¥)). (16)

The opposite inequality to (16) is also fulfilled, since the interpretation
(on the Herbrand universe) induced by th(® is by definition a necessity mea-
sure compatible with a, to which we obtain a corresponding nested context

evaluation by Theorem 3.9, so that this context evaluation contributes to the
infimum for Th{P°s*), O
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4 Conclusions

We have introduced extensions of Prolog to [0, 1]—valued logics. We carry out
these extensions on the basis of simple mappings a : L — [0,1] that can be
understood as ‘fuzzy’ Prolog programs. In opposition to other approaches, we
keep the truth values out of the logical language, so that we are able to define
simple inference mechanisms, which lead to the soundness and completeness
results presented in Section 2.

From the formal point of view these results are satisfactory, but they
do not provide any hints for the interpretation of the truth values from the
unit interval. To fill this gap of missing semantics for the truth values, we
introduced the notion of context evaluations based on the idea of a set of
consideration contexts or possible worlds weighted by a probability measure.

It turned out that the general idea of context evaluations provides an
interpretation of ‘fuzzy’ Prolog based on the Lukasiewicz implication with a
sound but incomplete proof theory. The restriction to nested context evalu-
ations yields an interpretation for a ‘fuzzy’ Prolog based on the Godel impli-
cation with a sound and complete proof theory. Nested context evaluations
are also a possible interpretation for possibilistic logic, so that we obtain the
equivalence of ‘fuzzy’ Prolog based on the Godel implication, possibilistic
Prolog, and the interpretation in the light of nested context evaluations.

We did not use the resolution principle [24] as the inference mechanism in
our extensions of Prolog. This would only make sense if the connectives in @
can be interpreted as conjunctions (i.e. if they are t—norms). Indeed, in this
case we would obtain the same results if we would use the resolution principle
modified with respect to the given lower bounds of the truth value. But even
in this case, the resolution principle would not yield a severe improvement,
since it is an efficient method for finding one proof, where we have to consider
all proofs due to the supremum in Definition 2.3 (iii).

The advantage of our approach to [0, 1]—valued extensions of Prolog com-
pared to other fuzzy Prolog systems [10, 13, 7, 12, 26] is the clearly defined
semantics of the truth values.
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