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Abstract This paper addresses the definition of independence con-
cepts in the context of similarity relations. After motivating the
need for independence concepts basic ideas from similarity rela-
tions and their connections to fuzzy systems are reviewed. Three
different independence notions are discussed and investigated in the
framework of similarity relations. The results show that there are
significant differences for independence concepts in a probabilistic
setting and in the framework of similarity relations.

1 Introduction

Similarity is a very fundamental concept used in approximate and cased-
based reasoning. There are many different ways to model similarity. In
this paper we mainly focus on similarity as a dual concept to the notion of
distance. When dealing with a real-valued attribute a distance function is
an elementary notion, easy to define and to comprehend. As long as only
a single variable is considered, the distance must take a context dependent
scaling into account. However, when attribute vectors are used, it is usually
not sufficient to aggregate the distances of the single attributes in an inde-
pendent fashion. The overall distance or similarity of two elements that are
described by the same vector of attributes, but with different values, cru-
cially depends on the interaction and dependencies between the attributes.
Within probability theory the notion of independence is a well defined and
experienced concept. In other fields, related to but different from prob-
ability theory, like possibility theory (Bouchon-Meunier et al., 2004; De
Cooman, 1997) or belief functions (Yaghlane et al., 2002) the definition of
independence becomes difficult.



In this paper, we discuss the notion of independence in the context of
distance-based similarity measures. To better illustrate the underlying ques-
tions and consequences, we use an interpretation of fuzzy systems based on
similarity relations. We show that the concept of independence for similar-
ity relations is crucial, but it is not at all obvious, how to define it. Certain
definitions lead also to unusual properties like asymmetric independence.

The paper is organized as follows. Section 2 motivates the use and im-
portance of independence considerations within modelling imperfect knowl-
edge, especially in combination with data available for training or tuning
model parameters. Section 3 briefly reviews basic ideas from similarity
relations and explains their connection to fuzzy systems. General consider-
ations about modelling independence under different aspects are discussed
in section 4. The application of the considerations to similarity relations is

investigated in section 5, before we come to the final conclusions in section
6.

2 Modelling Imperfect Knowledge Enhanced by Data

Classical two-valued logic and standard deduction system are designed to
model crisp facts and perfect knowledge. Although this is suitable for cer-
tain applications, in
knowledge-based systems it is very often desirable to include imperfect
knowledge. It would take too much space to discuss all facets of imperfect
and uncertain knowledge. A main characteristic is that numbers or weights
are assigned to propositions, events or statements. Of course, the meaning
of the numbers is crucial and determines how to operate with the imperfect
knowledge and the assigned weights or numbers. Probability theory pro-
vides the most popular model. It provides only an abstract framework that
leaves space for an interpretation. The frequentistic view of probabilities is
probably the most common one. The numbers or weights — in this context
they are called probabilities — represent relative frequencies of events in ex-
periments that are assumed to be be repeatable “arbitrarily often” in an
“independent” manner. Although this seems to be appealing and intuitive,
it has certain problems and limitations. Other interpretations in terms of
subjective probabilities within a framework of rational betting behaviours
(see for instance (O’Hagan and Forster, 2004)) or in a game-theoretic set-
ting (Shafer, 2006) put a stronger emphasis on the evaluation of knowledge
and experience that does not have to be based on observations in terms of
counting relative frequencies.

Other examples are belief functions within Dempster-Shafer theory
(Shafer, 1976) or within the transferable belief model (Smets and Kennes,



1994), possibility theory (Dubois and Prade, 2001) or preferences. In all
these models, the interpretation of the weights or numbers determines how
to operate with them. Fuzzy systems are an example where the the in-
terpretation of the weights — in this case degrees of membership — is not
straightforward in most cases and sometimes the choice of operations looks
very heuristic or even arbitrary.

Any interpretation of probabilities or degrees of membership makes cer-
tain assumptions about rational behaviour concerning the specification of
the weights. Here, the term weight is used, since, depending on the inter-
pretation, these numerical values might represent probabilities, confidence
or truth degrees and the term ”‘weight”’ is neutral without referring to a
specific interpretation. Even though the underlying justification for assum-
ing a certain rational behaviour might be plausible, in most cases human
experts are very often unable to specify the required weights in a consis-
tent way, when the application becomes more complex. Human experts can
often provide important prior or meta information on structures, dependen-
cies and qualitative judgements. However, when exact quantifications are
needed, the experts might not be able to specify unique values.

Therefore, it is very common to couple expert knowledge with data, so
that the structural model information is provided by the expert, whereas
the fine tuning of the model is carried out based on the available data. A
very common way to handle this estimation of the model parameters is to
formulate an optimization problem where the model parameters should be
determined in such a way that the model fits' best to the data. Figure 1
illustrates this approach. The model parameters must be tuned in such a
way that the given input data produce the desired output data with min-
imal error. Difficulties arise here, when there is no analytical or obvious
way to optimize the model parameters parameters in case of a large num-
ber of variables. For more complex models this is almost always the case.
Then parameter optimization can become an extremely complex or almost
impossible task.

It is interesting to note that at least certain models have found a way out
of this problem. Graphical models (for overviews see for instance (Borgelt
and Kruse, 2002; Cowell et al., 2003; Cox and Wermuth, 1996)) and specifi-
cally Bayesian networks describe the dependence or independence structure
of variables in the form of of an acyclic and directed graph. In this way a
probability distribution over a high-dimensional variable space can be de-
composed into a number of marginal and conditional distributions over low-

1Fitting the model should also include model validation by techniques like cross-
validation or the minimum description length principle (see for instance Griinwald
(2007)) in order to avoid overfitting.
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Figure 1. Open loop system for learning as an optimization problem.

dimensional spaces. Figure 2 illustrates the graphical structure of a Bayesian
network. Given the dependency or model structure, the parameters of the
Bayesian network are not learned according to the strategy illustrated in
Figure 1 to optimize the input-output behaviour? of the Bayesian network
with respect to the given data. Instead, the Bayesian network learns or es-
timates the low-dimensional probability distributions from the data. In this
sense, the dependence or independence structure of the Bayesian network
allows local computations of the parameters without taking their influence
on the whole model into account.
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Figure 2. A Bayesian network for local learning.

The graphical structure of the Bayesian network specifies (conditional)
independencies of variables. Therefore, using the information about inde-

2For a Bayesian network there are even no specific input or output variables, even
though it can be used in this way.



pendence or conditional independence can lead to efficient and simplified
parameter learning schemes. The remaining part of this paper explains
the difficulties that arise, when similar ideas are applied in the context of
similarity relations.

3 Similarity Relations and Fuzzy Systems

Here, we focus on a specific type of similarity relation. A very common
definition of a similarity relation s : X x X — [0,1] on a set X, where s(z,y)
expresses the similarity between elements x and y, requires the following
properties:

(a) Reflexivity: s(z,z) =1
(b) Symmetry: s(x,y) = s(y, )
(c¢) Transitivity: s(z,y) * s(y,2) < s(z, z)

where x is a suitable t-norm?®. Besides the name similarity relation (Zadeh,
1971; Ruspini, 1991), depending on the choice of the operation %, s is also
called an indistinguishability operator (Trillas and Valverde, 1984), fuzzy
equality (relation) (Hohle and Stout, 1991; Klawonn and Kruse, 1993), fuzzy
equivalence relation (Thiele and Schmechel, 1995) or proximity relation
(Dubois and Prade, 1994). Reflexivity is an obvious property. Symme-
try is very often, though not always, a canoncial property as well. Whether
transitivity is required for similarity relations is sometimes questioned (De
Cock and Kerre, 2003; Klawonn, 2003). However, in this paper we want
to focus on similarity relations that satisfy a specific type of transitiv-
ity, namely transitivity with respect to the Lukasiewicz t-norm defined as
ax 3 =max{a+  —1,0}.

A similarity relation with respect to the Lukasiewicz t-norm can be
viewed as a dual concept to a metric. In the following, we only consider
similarity relations with respect to the Lukasiewicz t-norm and will not
mention this fact explicitly each time. Such a similarity relation induces
a (pseudo-)metric ds(z,y) = 1 — s(x,y) bounded by one and vice versa,
any (pseudo-)metric J; bounded by one induces a similarity relation by
ss(xz,y) =1 —d(z,y). The restriction that the metric is bounded by one is
more or less neglectable, since any metric § can be bounded by one, simply
by defining §(z,y) = min{é(z,y), 1} without affecting small distances that
are usually of main interest.

A t-norm is an associative and commutative operation on the unit interval that is
nondecreasing in its arguments and has one as a unit element. For example, the
product or the minimum are t-norms.



When dealing with real numbers real numbers metric distances is an
elementary concept leading to the canonical metric §(z,y) = |z — y|.
Extensionality is a very simple concept to take similarity between ele-
ments into account during a reasoning process. Extensionality means that
similar elements should lead to similar results. The extensionality property
we need here, is the extensionality of sets. For an ordinary set M we have
the trivial property
reEMAMANz=y = ye M. (1)

When we replace equality by similarity, this simple property translates to:
If element x belongs to the set M and x and y are similar to a certain degree,
then y should also belong to M to a certain degree. Since similarity is a
matter of degree, the property that y belongs to M should also be a matter
of degree. Therefore, it is necessary to let M be a fuzzy set, i.e. elements do
not simply belong or do not belong to M, but have a membership degree
to M. A fuzzy set u: X — [0,1] is said to be extensional with respect to
the similarity relation s on X, if it satisfies

w(z) *s(z,y) < p(y)

for all z,y € X. This extensionality property is an extension of the simple
property (1) for equality to similarity relations. In the presence of a simi-
larity relation intending to model indistinguishability between elements, a
(fuzzy) set should be consistent, i.e. extensional with respect to the given
similarity relation. When we refer to an element z in the presence of a
similarity relation, we might actually refer to x or a similar element. The
(fuzzy) set of elements similar to z is the extensional hull of the set {z},
i.e. the smallest extensional fuzzy set containing z, i.e. the fuzzy set that
contains z and all elements similar to z:

pe(y) = s(z,y).

More generally, the extensional hull i of a fuzzy set w is the smallest exten-
sional fuzzy set containing u given by

iy) = \/ (@) *s(z,y))
rzeX
which can be read as
yep & FArxe X))z epuizry).

The extensional hull of an ordinary set is the extensional hull of its indicator
function and can be understood as the (fuzzy) set of points that are similar
to at least one element in the set.
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Figure 3. The extensional hulls of the point 2 and of the interval [a, b].

As an example consider the similarity relation s(z,y) = 1—min{|z—y|, 1}
on the real numbers. The extensional hulls of a single point and an interval
are shown in Figure 3.

It is noteworthy that these extensional hulls lead to triangular and trape-
zoidal fuzzy sets that are very common in fuzzy systems. Extensional hulls
of points with respect to the similarity relation

s(z,y) = 1 —min{|z —y|, 1}

always have a support of length two. In order to maintain the degrees of
similarity (and the membership degrees), when changing the measurement
unit (seconds instead of hours, miles instead of kilometres,...), we have to
take a scaling into account:

s(z,y) =1 —min{c- |z —y|,1}

When we take a closer look at the concept of similarity relations, we
can even introduce a more general concept of scaling. Similarity relations
can be used to model indistinguishability. There are two kinds of indis-
tinguishability, we have to deal with in typical similarity-based reasoning
applications.

Enforced indistinguishability is caused by limited precision of measure-
ment instruments, (imprecise) indirect measurements, noisy data, ...

Intended indistinguishability means that the human expert is not in-
terested in more precise values, since a higher precision would not
really lead to improved results.

Both kinds of indistinguishability might need a local scaling as the following
example of designing an air conditioning system shows.



temperature | scaling | interpretation
(in °C) factor
<15 0.00 | exact value meaningless (much too cold)
15-19 0.25 too cold, but not too far away from the de-
sired temperature, regulation need not be too
sensitive
19-23 1.50 very sensitive, near the optimal value
23-27 0.25 too warm, but not too far away from the de-
sired temperature, regulation need not be too
sensitive
> 27 0.00 | exact value meaningless (much too hot)

When we apply these different scaling factors to our temperature domain,
this has the following consequences, when we consider the similarity relation
induced by the scaled distance. In order to determine how dissimilar two
temperatures are, we do note compute their difference directly, but in the
scaled domain, where the range up to 15 is shrunk to a single point, the
range between 15 and 19 is shrunk by the factor 0.25, the range between 19
and 23 is stretched by the factor 1.5 and so on. The following table shows
the scaled distances of some example values for the temperature.

pair of scal. transformed similarity
values factor distance degree
(z,y) c | dzy)=lcz—c-yl|s(@y) =1-min{é(z,y), 1}
(13,14) 0.00 0.000 1.000
(14,14.5) | 0.00 0.000 1.000
(17,17.5) | 0.25 0.125 0.875
(20,20.5) | 1.50 0.750 0.250
(21,22) | 1.50 1.500 0.000
(24,24.5) | 0.25 0.125 0.875
(28,28.5) | 0.00 0.000 1.000

Figures 4 and 5 show examples of extensional hulls of single points.

The idea of piecewise constant scaling functions can be extended to ar-
bitrary scaling functions in the following way (Klawonn, 1994). Consider an
integrable scaling function ¢ : R — [0,00), where ¢ is a function ¢(z), not
a constant like ¢ before. If we assume that we have for small values € > 0
that the transformed distance between = and x + € is given by

0z,x+¢e) = c(z) ¢,
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Figure 4. The extensional hulls of the points 15, 19, 21, 23 and 27.
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Figure 5. The extensional hulls of the points 18.5 and 22.5.

then the transformed distance induced by the scaling function ¢ can be

computed by
Y
/ c(s)ds|.

This idea of scaling functions can exploited to derive a simplified learning
scheme for fuzzy rule-based systems (Klawonn, 2006). The fuzzy sets in the
body of a rule represent extensional hulls of single points and the fuzzy rule-
based system constructs an interpolating function based on these nodes or
sampling points, taking the underlying similarity relation into account. In
this sense, the body of a fuzzy rule is nothing else than a single value includ-
ing the similar values in terms of the similarity relation. Prototype-based
fuzzy clustering (for an overview see for instance (HOppner et al., 1999))
is based on very similar ideas. A cluster is represented by a single point —
the prototype — and the membership degree of a data point to the cluster
decreases with increasing distance to the cluster. Specialized algorithms as
proposed in (Klawonn and Kruse, 1997; Keller and Klawonn, 2000; Borgelt,

dz,y) =




2005) use even a scaling concept for the attributes. However, these scalings
are carried out more or less independently on the single variables. Some
fuzzy clustering algorithms (Gustafson and Kessel, 1979; Gath and Geva,
1989) take also dependencies between the variables into account and use
in addition to the scaling a rotation in order to compute similarities or
distances.

Considering fuzzy rule-based systems in the context of similarity-based
reasoning, a body of a rule represents a point in the — usually — multidimen-
sional input space. When a concrete (multidimensional) measured input is
given, the similarity of the measured value to the value representing the
body of the rule must be determined. This is usually done by first deter-
mining the membership degrees of each variable value to the corresponding
fuzzy set. These membership degrees correspond to the similarities of the
values of the single variables. In order to compute the overall similarity
degree — the degree to which the corresponding fuzzy rule is applicable —
these membership degrees are normally aggregated by a suitable operation,
usually a t-norm like the product or the minimum. In terms of the similar-
ity relations this means that the similarity relations on the single variables
are aggregated to an overall similarity relation on the product space of the
variables. This kind of aggregation requires an independence assumption
for the similarity relations, since it is assumed that the overall similarity
can be derived solely from knowing the similarity degree of each variable
without referring to single values.

In order to illustrate that this assumption is unrealistic in many cases, we
consider a typical control task. The aim is to balance an inverted pendulum
that is fixed on a cart that can be driven forward and backward to fulfil the
task (see Figure 6). As input variables we use the deviation of the angle of
the pendulum from the upright position e and the angle velocity Ae.

With this simple example, we can easily demonstrate the dependency
between the similarity relation on the variables e and Ae. Let us first con-
sider the situation on the left hand side of Figure 6. The inverted pendulum
is almost in an upright position. In this case, it is very important to have a
more or less precise value of Ae in order to know whether the inverted pen-
dulum tends to fall down to the right, will overshoot to the left or remain
more or less stable in its current position. This means that the similarity
relation on the domain of the variable Ae must be fine granular.

The situation on the right hand side of Figure 6 is completely different.
The inverted pendulum has fallen down almost completely and a strong
control reaction has to be carried out in order to get it closer to the upright
position. In this case, the actual value of Ae does not matter much at all.
This means that a very coarse similarity relation on Ae would be sufficient.
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Figure 6. Balancing an inverted pendulum.

In other words, the similarity on Ae depends on the value of the variable
e. When e is small, a refined similarity relation, distinguishing more between
values, is needed on the domain of the variable Ae than in the case, when
e is large.

Although this simple example clarifies in an intuitive manner that inter-
action between similarity relations should not be ignored, it does, however,
not provide a formal definition what dependence or independence of simi-
larity relations means. The following section discusses the notion of inde-
pendence from a more general point of view in order to apply it in Section
5 to the context of similarity relations.

4 Independence Concepts

In this section we take a more general view on the formal concept of inde-
pendence, before we apply it to similarity relations in the following section.
We consider the notion of independence in a more general framework of
product spaces. Independence involves (at least) two variables or domains.
The variables can be considered separately or in combination. Indepen-
dence intuitively refers to the property that it is sufficient to measure the
variables separately and then to combine the results of these marginal mea-
surements. For instance, in probability theory independence of two random
variables X and Y means the following. If we want to know the probability
P(X € A)Y € B) for two combined events, i.e. Borel-measurable sets A
and B, in the case of independence we can first compute the marginal prob-
abilities p4 = P(X € A) and pp = P(Y € B) and then combine these two
probabilities (by the product). However, when the variables are dependent,
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we cannot deduce the joint distribution Px y(X € A,Y € B) knowing only
pa and ppg for all Borel-measurable sets A and B.

The general view that we take here is the following. We have two sets,
each of them endowed with a structure for modelling uncertainty or simi-
larity. In the case of probability theory this structure would be a o-algebra
together with a probability measure. In the context of modelling similar-
ity it would simply be a similarity relation. We also consider the cartesian
product of these two sets. What would be the resulting structure on the
cartesian product when we combine the (marginal) structures on the two
sets in an “independent” manner?

Category theory provides one framework to formalize these ideas. A
formal introduction of the notion of a category would be far beyond the
scope of this paper. Therefore, we give a more informal description of the
underlying concepts. A category can be considered as a class of objects and
morphisms between the objects. Very often, the objects are sets with an ad-
ditional structure (for instance, algebraic structures like groups, topological
spaces, measure spaces or probability spaces). In this case the morphism
are structure preserving mappings between the elements, homomorphisms in
the case of algebraic structures, continuous mappings for topological spaces
or measurable mappings for measure spaces. Such categories are called con-
crete categories (Adamek et al., 1990). The product X = X; x X, together
with two projections (morphisms) 7; : X — X; (i = 1,2) of two objects X3
and X, in a category is characterized by the following property. For any
object Y and two morphisms f; : Y — X; (i = 1,2) there is a morphism
f such that the diagram in Figure 7 commutes, i.e. m; 0 f = f; (i = 1,2)
holds. It can be shown that the product or product space X in a category
is unique up to isomorphism in case of its existence.

Figure 7. The product space as a limit in a category.
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If product structures in the sense of category theory are available, one
possible definition of independence is the following. A structure (proba-
bility measure or similarity relation) on a product space is considered to
be composed of independent components, if the product of its projections
yields the same structure on the product space.

Y

A

X
Figure 8. Reconstructing the original structure from its projections.

Figure 8 illustrates this concept in the context of sets without struc-
ture. A subset of a Cartesian product space can be reconstructed by its
projections, if and only if it is a rectangle.

In the case of a probability measure on the product space X x Y, this
independence property is equivalent to P(A x B) = P(AxY) - P(X x B).

Another formalization of independence is the following one: No matter
at which point the projection is carried out, the projection will always be the
same. Figure 9 illustrates this idea for sets without structure. It means that
for a given subset S C X x Y of a product space, the sets {y € Y | (z0,y)}
are either empty or identical independent of the choice of xg. The same
applies to the projection sets {z € X | (z,90)}.

In the probabilistic setting, this means that P(Y|X = x¢) is independent
of the choice of z¢ and vice versa, P(X|Y = yo) is independent of the choice
of yo. In the case of probability this leads again to the classical definition
of independence.

Note that this definition contains two parts: P(Y|X = xo) does not
depend on any o means that Y is independent of X, whereas P(X|Y = yq)
is independent of the choice of yy says that X is independent of Y. In the
context of probability theory we can only have both properties or none of
the two properties. In the next section we will see that this is not the case

13



X
Figure 9. Projections at different positions.

Y

A

X

Figure 10. Deriving information from the projections.

for similarity relations.

Another possible notion of independence is the following one: The com-
plete information for every point in the product space can be reconstructed
from the projections. Figure 10 illustrates this idea for sets without struc-
ture.

In a probabilistic setting this can be viewed as a more general inde-
pendence concept, at least when cumulative distribution functions are con-
sidered. Using copulas® (see for instance (Nelsen, 1999)), arbitrary two-

1A copula is a cumulative distribution function C : [0,1]™ — [0, 1] with uniform distri-
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dimensional cumulative distribution functions can be constructed. In this
sense, independence would hold for any two cumulative distribution func-
tions.

5 Similarity Relations and Independence

Since fuzzy rule-based systems usually use multiple inputs, it is necessary to
combine the similarity relations on the single domains to an overall similarity
relation in the product space. The canonical similarity relation on a product
space — at least in the sense of category theory — is given by

! ! . !
s((z1,...,xp), (z7,...,T = min {s;(z;,z;)}-
(@), @) = _min {si(ai.ad)}
In terms of fuzzy rule-based systems this means that for a single rule, the
membership degrees of an input would be combined using the minimum.
Assume there is a similarity relation v (or any other structure) on a
product space X x Y with

mx(v) = s, wx(v)(z1,32) = \/ v((21,9), (22,9))
yey

7Ty(’l)) = i

where s and t are the projections of v onto X and Y, respectively. What is
the meaning of s and ¢ being independent?

The first definition of independence in the previous section based on
category theory means that s and ¢ are independent, if and only if v =
min{s, ¢t} holds.

The second definition was asymmetric and leads indeed to an asymmetric
property for similarity relations. To see this, consider the product space
[0.5,1] x [0.5,1] and the metric defined by the transformation

t(z,y) : [0.5,1] x [0.5,1] = [0.5,1] x [0.25,1], (z,y) — (z,xy)

The distance between two points (z1,y1) and (z2,y2) is the (product space
metric) distance between the transformed points

max{t(z1,y1), t(x2,92)}

e 5((w1,91), (72,92)) = max{|z; — z2|,|T1y1 — 272}
o (5)((1'1,1'2) = |.T,‘1 —11?2| = 6(74)(3:1,3:2)

butions on the unit interval as its one-dimensional marginal distributions.
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® dy(y1,y2) = [y1 — 2|

o 6 (y1,y2) = zlyr — ol
This example shows that the similarity relation (or, dually, the metric) on
X is independent of the similarity relation on Y, but not vice versa.

Finally, let us consider the last independence definition of the previous
chapter. For similarity relations this independence notion means that there
is a function

h:[0,1] x [0,1] — [0,1]
satisfying
h(1,1) = 1 and h(a,a’) *h(B,5") < h(axa',B*3")

such that
v((z,y), (2", 9) = h(s(z,2), t(y,y"))-
holds.

Although this independence notion is weaker than the first one, it does
not lead to independence in all cases as in the probabilistic setting with
copulas. Consider the product space [0.5,1] % [0.5, 1] and the metric defined
by the transformation

t(z,y) : [0.5,1] x [0.5,1] — [0.25,1], (=z,y)+— zy

The metric is
3((21,v1)s (72,92)) = 2191 — T292].

We obtain
0((0.8,0.5),(0.9,0.6)) = 0.14
0((0.8,0.8),(0.9,0.9)) = 0.17
0x(0.8,0.9) = 0.1
4y (0.5,0.6) = 0.1
0y (0.8,0.9) = 0.1

This example shows that we cannot reconstruct the first two different sim-
ilarity degrees (or, dually, the distances) in the product space based only
on the similarities in the projection spaces, since the latter ones are all
identical.

6 Conclusions

In this paper, we have discussed the need for independence concepts for
similarity relations and have investigated different approaches that lead to
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surprising and different results, especially when compared to the proba-
bilistic setting. Further research is needed to make use of the independence
concepts within applications of similarity-based reasoning. Especially, tests
for independence need to be developed outside of the scope of statistics.
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