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Abstract. This paper provides an overview of fuzzy systems from the
viewpoint of similarity relations. Similarity relations turn out to be an
appealing framework in which typical concepts and techniques applied
in fuzzy systems and fuzzy control can be better understood and inter-
preted. They can also be used to describe the indistinguishability inher-
ent in any fuzzy system that cannot be avoided.

1 Introduction

In his seminal paper on fuzzy sets L.A. Zadeh [14] proposed to model vague
concepts like big, small, young, near, far, that are very common in natural lan-
guages, by fuzzy sets. The fundamental idea was to allow membership degrees
to sets replacing the notion of crisp membership. So the starting point of fuzzy
systems is the fuzzification of the mathematical concept € (is element of). There-
fore, a fuzzy set can be seen as generalized indicator function of a set. Where
a indicator function can assume only the two values zero (standing for: is not
element of the set) and one (standing for: is element of the set), fuzzy sets allow
arbitrary membership degrees between zero and one.

However, when we start to fuzzify the mathematical concept of being an
element of a set, it seems obvious that we might also question the idea of crisp
equality and generalize it to [0, 1]-valued equalities, in order to reflect the concept
of similarity. Figure 1 shows two fuzzy sets that are almost equal. From the
extensional point of view, these fuzzy sets are definitely different. But from the
intensional point of view in terms of modelling vague concepts they are almost
equal.

In the following we will discuss the idea of introducing the concept of (in-
tensional) fuzzified equality (or similarity). We will review some results that on
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Two fuzzy sets that are almost equal.

Fig. 1. Two similar fuzzy sets

the one hand show that working with this kind of similarities leads to a better
understanding of fuzzy systems and that these fuzzified equalities describe an
inherent indistinguishability in fuzzy systems that cannot be overcome.

2 Fuzzy Logic

In classical logic the basics of the semantics part are truth functions for the
logical connectives like =, A, V, =, 4, ...
Since classical logic deals with only two truth zero (false) and one (true),

these truth functions can be defined in terms of simple tables as for instance for
the logical connective A (AND):

A:{0,1} x {0,1} — {0,1}

In the context of fuzzy sets or fuzzy systems this restriction of a two-valued
logic must be relaxed to [0, 1]-valued logic. Therefore, the truth functions of the
logical connectives must be extended from the set {0,1} to the unit interval.
Typical examples for generalized truth functions * : [0,1] x [0,1] — [0, 1] for
the logical AND A are:
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axf |name
min{a, 8} minimum
max{a+ 3 —1,0} Luksiewicz t-norm
a-f product
{mln{a,ﬂ} if max.{a,ﬂ} =1 drastic product
0 otherwise

The axiomatic framework of t-norms provides a more systematic approach
to extending A to [0, 1]-valued logics. A t-norm * is a commutative, associative,
binary operation on [0,1] with 1 as unit that is non-decreasing in its arguments.
The dual concept for the logical connective OR V are t-conorms. A t-conorm
* is a commutative, associative, binary operation on [0,1] with 0 as unit that
is non-decreasing in its arguments. A t-norm % induces a t-conorm % by a%f =
1—((1—-a)=*(1—p)) and vice versa.

In this paper, we will restrict our consideration to continuous t-norms. In
this case, we can introduce the concept of residuated implication. —, is called
residuated implication w.r.t. *, if

axf<y > a<f oy

holds for all a, 8,7 € [0, 1].
A continuous t-norm x has a unique residuated implication given by

a—. 8= \[{ e[0,1]|axX< B}
The biimplication w.r.t. to the (residuated) implication —, is defined by
a B = (= B)A(B =4 ).
The negation w.r.t. to the (residuated) implication —, is defined by
e = a =y 0.

The most common examples for t-norms and induced logical connectives are:

1. a*f = min{a, [}

[l ifa<p
a—f= {B otherwise
o = 1 ifa=p4
@ = min{a, } otherwise

e’

1 ifa=0
0 otherwise
2. axfB = max{a+ 3 —1,0}

a— f=min{l —a+ 3,1}
aef=1-la-f

a=1—«
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3.axf = a-p

(1 ifa<p
a—f= { g otherwise

B 1 ifa= ﬂ
aef)= mnfell otherwise

_J1ifa=0
T =10 otherwise

If [A] denotes the truth value of the logical formula A, then the truth func-
tions for quantifiers are given by

[(Ve)(A@)] = A[A@)] and  [(G2)(A@)] = \/[A@)]

T

It should be mentioned that these concepts of [0, 1]-valued logics lead to in-
teresting generalizations of classical logic from the purely mathematical point of
view. However, the assumption of truth-functionality, i.e. that the truth value
of a complex logical formula depends only on the truth values of its compound
elements, leads to certain problems. Truth-functionality implies a certain inde-
pendence assumption between the logical formulae. Like in probability theory,
independence is a very strong assumption that is seldom satisfied in practical
applications.

Already the simple example of three-valued Lukasiewicz logic illustrates this
problems. The third truth value w in this logic stands for undetermined. The
logical connective A is defined canonically by the following truth function:

AxB

BN
&

«:{0,u,1} x {0,u,1} — {0,u,1}

H =g 2 2 O00

—_ o O-=g O-=ao O
—_ g O 2 OO0 00

The following simple example shows the problem caused by truth function-
ality.

Proposition|Meaning [---]
A The German chancellor will be in Berlin| «
on 30 November 2010.
B It will rain in Berlin on 30 November| u
2010.
AANB |... U
AN=A ... 0
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A and B are independent (hopefully). A and —A are definitely not. So there
is no consistent way of assigning a truth value to a logical conjunction of two
statements based only on their truth values, since A, B and —A all have the truth
value undetermined, as well as the logical statement AAB, whereas AA—A should
be assigned the truth value false.

However, in applications of fuzzy systems like fuzzy control this problem
usually plays only a minor role, because certain independence assumptions are
satisfied there by the structure of the considered formal framework.

3 Similarity Relations

Before introducing the notion fuzzified equality or similarity, we briefly review
how mathematical concepts can be fuzzified in a straight forward way.

We interpret the membership degree u(z) of an element z to a fuzzy set p
as the truth value of the statement x is an element of pu.

wz) = [z €p]

When we want to consider the fuzzified version of an axiom A (in classical
logic), we take into account that axioms are assumed to be true, i.e. [A] = 1.
Also, axioms are very often of the form B — C. Using residuated implications,
we have

[B-C]=1 & [B]<[C]

Having these facts in mind, it is obvious how to interpret an axiom in a [0, 1]-
valued logic. As a concrete example, we consider the notion of equivalence rela-
tions.

| classical logic | fuzzy logic |
relation: fuzzy relation:
ECXxX E:X xX —[0,1]
(z,z) € E E(z,z)=1
(z,y) e E=(y,z) € E E(z,y) < E(y,z) (thus E(z,y) = E(y, z))
(z,y) e EA(y,2) € E= (z,2) € E E(xz,y) * E(y,z) < E(z, 2)

A fuzzy relation
E:XxX —1]0,1]

on a set X satisfying the three previously mentioned axioms is called an simi-
larity relation [15,11]. Depending on the choice of the operation *, sometimes
E is also called an indistinguishability operator [13], fuzzy equality (relation) [2,
7], fuzzy equivalence relation [12] or proximity relation [1].

A fuzzy relation E is a similarity relation w.r.t. the Lukasiewicz t-norm, if
and only if 1 — E is a pseudo-metric bounded by 1. A fuzzy relation E is an
similarity relation w.r.t. the minimum, if and only if 1 — E is an ultra-pseudo-
metric bounded by 1. Any (ultra-)pseudo-metric 6 bounded by 1 induces an
similarity relation w.r.t. the Lukasiewicz t-norm (minimum) by E =1 — 4.
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Extensionality in the context of similarity relation means to respect the sim-
ilarity relation: Equal (similar) elements should lead to equal (similar) results.
The classical property: € M Az =y = y € M leads to the following
definition.

A fuzzy set p is called extensional w.r.t. an similarity relation E, if

wz) * E(z,y) < ply)

holds.
Let E : X x X — [0,1] be an similarity relation on the set X. The extensional
hull ji of the fuzzy set p is smallest extensional fuzzy set containing p given by

ily) = \/ () * E(,y)).

zeX
yep & (FzeX)zeurz=y)

The extensional hull of an ordinary set is the extensional hull of its indicator
function and can be understood as the (fuzzy) set of points that are equal to at
least one element in the set.

As an example consider the similarity relation E(z,y) = 1 — min{|z — y|, 1}.
The extensional hulls of a single point and an interval are shown in figure 2.

LA

zo—1 To zo+1 a-—1 a b b+1

Fig. 2. The extensional hulls of the point o and of the interval [a, b].

Extensional hulls of points w.r.t.
E(:an) =1- IIllIl{|.’E - y|a 1}

always have a support of length two. In order to maintain the degrees of similarity
(and the membership degrees), when changing the measurement unit (seconds
instead of hours, miles instead of kilometers,. ..), we have to take a scaling into
account:

E(z,y) =1—min{c- |z —y|,1}

When we take a closer look at the concept of similarity relations, we can even
introduce a more general concept of scaling. Similarity relations can be used to
model indistinguishability. There are two kinds of indistinguishability, we have
to deal with in typical fuzzy control applications.
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Enforced indistinguishability is caused by limited precision of measurement
instruments, (imprecise) indirect measurements, noisy data, .. .

Intended indistinguishability means that the control expert is not interested
in more precise values, since a higher precision would not really lead to an
improved control.

Both kinds of indistinguishability might need a local scaling as the following
example of designing an air conditioning system shows.

temperature|scaling|interpretation
(in °C) |factor
<15 0.00 |exact value meaningless (much too cold)
15-19 0.25 |too cold, but not too far away from the desired temper-
ature, regulation need not be too sensitive

19-23 1.50 |very sensitive, near the optimal value

23-27 0.25 |too warm, but not too far away from the desired tem-
perature, regulation need not be too sensitive

> 27 0.00 |exact value meaningless (much too hot)

When we apply these different scaling factors to our temperature domain, this
has the following consequences, when we consider the similarity relation induced
by the scaled distance. In order to determine how dissimilar two temperatures
are, we do note compute their difference directly, but in the scaled domain, where
the range up to 15 is shrunk to a single point, the range between 15 and 19 is
shrunk by the factor 0.25, the range between 19 and 23 is stretched by the factor
1.5 and so on. The following table shows the scaled distances of some example
values for the temperature.

pair of | scal. transformed similarity
values |factor distance degree
(@,y) | ¢ |6(x,y) =lc-x—c-y[|[E(@y) =1-min{d(z,y),1}
(13,14) | 0.00 0.000 1.000
(14,14.5)| 0.00 0.000 1.000
(17,17.5)] 0.25 0.125 0.875
(20,20.5)| 1.50 0.750 0.250
(21,22) | 1.50 1.500 0.000
(24,24.5)] 0.25 0.125 0.875
(28,28.5)| 0.00 0.000 1.000

Figures 3 and 4 show examples of extensional hulls of single points.

The idea of piecewise constant scaling functions can be extended to arbitrary
scaling functions in the following way [4]. Given an integrable scaling function:
¢: R — [0, 00). If we assume that we have for small values ¢ that the transformed
distance between x and z + ¢ is given by

0z, z+e) ~ c- e,
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LAY

0 19 19.7 21 22.3 23

Fig. 3. The extensional hulls of the points 15, 19, 21, 23 and 27.

1+
0.751
0.257-

|

0 18 19 19 5 21. 8 22 523 24 35

Fig. 4. The extensional hulls of the points 18.5 and 22.5.

then the transformed distance induced by the scaling function ¢ can be computed

by
/zy c(s)ds|.

4 The Inherent Indistinguishability in Fuzzy Systems

In this section we present some results [4, 6,5] on the connection between fuzzy
sets and similarity relations.

Given a set A of fuzzy sets (’a fuzzy partition’). Is there an similarity relation
E s.t. all these fuzzy sets are extensional w.r.t. E?7 The answer to this question
is positive.

Ealz,y) = )\ (@) < py))

peA

is the coarsest similarity relation making all fuzzy sets in A extensional.

We go a step further and consider a given set A of normal fuzzy sets (that
have membership degree one for at least one point). Is there an similarity relation
FE s.t. all these fuzzy sets can be interpreted as extensional hulls of points?

Let A be a set of fuzzy sets such that for each p € A there exists z, € X
with p(z,) = 1. There is an similarity relation E, such that for all 4 € A the
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extensional hull of the point z, coincides with the fuzzy set p, if and only if

V (@) xv(@) < A (uy) & v(y))

zeEX yeX

holds for all u,v € A.

In this case, E = E 4 is the coarsest similarity relation for which the fuzzy
sets in 4 can be interpreted as extensional hulls of points.

If the fuzzy sets are pairwise disjoint (u(x) = v(z) = 0 for all z), then the
condition of the previous theorem is always satisfied. For the Lukasiewicz t-norm
this means

u(@) + v(x) < 1.

Let A be a non-empty, at most countable set of fuzzy sets such that each
€ A satisfies:

— There exists z, € R with p(z,) = 1.

— u (as a real-valued function) is increasing on (—oo, z,].
— p is decreasing on [z, —oc).

— p is continuous.

— u is differentiable almost everywhere.

There exists a scaling function ¢ : R — [0,00) such that for all p € A the
extensional hull of the point z, w.r.t. the similarity relation

/;c(s)ds ,1}

coincides with the fuzzy set p, if and only if
dv(zx)

dx

E(z,y) = 1— min{

dp(z)

min{u(z),v(z)} >0 = ‘ 7

holds for all u,v € A almost everywhere. In this case,

o if p(x) >0
0 otherwise

‘ dp(z)

¢: R —[0,00), mr—>{

can be chosen as the (almost everywhere well-defined) scaling function.

Figure 5 shows a typical example of a choice of fuzzy sets. For this kind
of fuzzy partition a scaling function exists, such that the fuzzy sets can be
represented as extensional hulls of points.

There is another explanation, why fuzzy sets are very often chosen as shown
in this figure. The expert who specifies the fuzzy sets and the rules for the fuzzy
system is assumed to specify as few rules as possible. When he has chosen one
point (inducing a fuzzy set as its extensional hull), taking the similarity relations
into account, this single point provides some information for all points that
have non-zero similarity/indistinguishability to the specified point. Therefore,
the next point must be specified, when the similarity degree (membership degree
of the corresponding fuzzy set) has dropped to zero.
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z T2 I3 T4 5 Te 7

Fig. 5. Fuzzy sets for which a scaling function can be defined.

5 Similarity Relations and Fuzzy Functions

If we assume that the fuzzy sets in fuzzy control applications represent (vague)
points, then each rule specifies a point on the graph of the control function. A
rule is typically of the form

If 1 is 1 and ... and x,, is pyp, then y is v.

where x1, ..., T, are input variables and y is the output variable and u1, ..., u,
and v are suitable fuzzy sets.

In this way, fuzzy control can be seen as interpolation in the presence of vague
environments characterized by similarity relations. A function f : X — Y is
extensional w.r.t. to the similarity relations £ and F on X and Y, respectively,
if

E(z,2") < F(f(2), f(2'))
holds for all z,z' € X.

Interpreting fuzzy control in this way, defuzzification means to find an exten-
sional function that passes through the points specified by the rule base. It can
be shown [10] that the centre of gravity defuzzification method is a reasonable
heuristic technique, when the fuzzy sets and the rules are ’well-behaved’. From
a theoretical point of view, we have to find a function through the given control
points that is Lipschitz continuous (w.r.t. the metrics induced by the equality
relations) with Lipschitz constant 1.

Since fuzzy controllers usually have multiple inputs, it is necessary to combine
the similarity relations to a single similarity relation in the product space. The
canonical similarity relation on a product space is given by [9]

B((zr..2y), @h02y)) = min (B, xl)).
In terms of fuzzy control this means that for a single rule, the membership
degrees of an input would be combined using the minimum.
Viewing fuzzy control in this way, the specification of (independent) fuzzy
sets respectively similarity relations means that the indistinguishabilities on the
different inputs are independent. Although this is an unrealistic assumption,
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fuzzy control works quite well. The independence problem is partly solved, by
using a fine granularity everywhere and specifying more rules.

Finally, we would like to emphasize that, even if the fuzzy sets are chosen
in such a way that they cannot be interpreted as extensional hulls of points,
similarity relations play an important role. We can always compute the coarsest
similarity relations making all fuzzy sets extensional. It can be shown under
quite general assumptions [6] that

— the output of a fuzzy system does not change, when we replace the input by
its extensional hull and
— the output (before defuzzification) is always extensional.

6 Conclusions

We have shown that similarity relations provide an interesting framework to bet-
ter understand the concepts underlying fuzzy systems and fuzzy control. They
can also be used to characterize the indistinguishability that is inherent in any
fuzzy system. Exploiting the ideas of the connection between fuzzy systems and
similarity relations further leads also to interesting connections to fuzzy cluster-
ing [3] and to understanding fuzzy control as knowledge-based interpolation [8]
which leads to a much stricter framework of fuzzy systems in which inconsisten-
cies can be avoided easier [5]

References

1. Dubois, D., Prade, H.: Similarity-Based Approximate Reasoning. In: Zurada, J.M.,
Marks II, R.J., Robinson, C.J. (eds.): Computational Intelligence Imitating Life.
IEEE Press, New York (1994), 69-80

2. Hohle, U., Stout, L.N.: Foundations of Fuzzy Sets. Fuzzy Sets and Systems 40
(1991), 257-296

3. Hoppner, F., Klawonn, F., Kruse, R., Runkler. T.: Fuzzy Cluster Analysis. Wiley,
Chichester (1999)

4. Klawonn, F.:Fuzzy Sets and Vague Environments. Fuzzy Sets and Systems 66
(1994), 207-221

5. Klawonn, F.: Fuzzy Points, Fuzzy Relations and Fuzzy Functions. In: Novék, V.,
Perfilieva, I. (eds.): Discovering the World with Fuzzy Logic. Physica-Verlag, Hei-
delberg (2000), 431-453

6. Klawonn, F., Castro, J.L.: Similarity in Fuzzy Reasoning. Mathware and Soft Com-
puting 2 (1995), 197-228

7. Klawonn, F., Kruse, R.:Equality Relations as a Basis for Fuzzy Control. Fuzzy Sets
and Systems 54 (1993), 147-156

8. Klawonn, F., Gebhardt, J., Kruse, R.: Fuzzy Control on the Basis of Equality
Relations — with an Example from Idle Speed Control. IEEE Transactions on
Fuzzy Systems 3 (1995), 336-350

9. Klawonn, F., Novédk, V.: The Relation between Inference and Interpolation in the
Framework of Fuzzy Systems. Fuzzy Sets and Systems 81 (1996), 331-354



12

10.

11.

12.

13.

14.
15.

Frank Klawonn and Rudolf Kruse

Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of Fuzzy Systems. Wiley, Chich-
ester (1994)

Ruspini, E.H.: On the Semantics of Fuzzy Logic. Intern. Journ. of Approximate
Reasoning 5 (1991), 45-88

Thiele, H., Schmechel, N.: The Mutual Defineability of Fuzzy Equivalence Rela-
tions and Fuzzy Partitions. Proc. Intern. Joint Conference of the Fourth IEEE
International Conference on Fuzzy Systems and the Second International Fuzzy
Engineering Symposium, Yokohama (1995), 1383-1390

Trillas, E., Valverde, L.: An Inquiry into Indistinguishability Operators. In: Skala,
H.J., Termini, S., Trillas, E. (eds.): Aspects of Vagueness. Reidel, Dordrecht (1984),
231-256

Zadeh, L.A: Fuzzy Sets. Information and Control 8 (1965), 338-353.

Zadeh, L.A.: Similarity Relations and Fuzzy Orderings. Information Sciences 3
(1971), 177-200



