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Abstract

This paper describes techniques for deriving fuzzy classification rules based on
special modified fuzzy clustering algorithms. The basic idea is that each fuzzy
cluster induces a fuzzy classification rule. The fuzzy sets appearing in a rule
associated with a fuzzy cluster are obtained by projecting the cluster to the one—
dimensional coordinate spaces. In order to allow clusters of varying shape and size
we derive special fuzzy clustering algorithms which are searching for clusters in the
form of axes—parallel hyper—ellipsoids. Our method can be applied to classification
tasks where the classification of the sample data is known as well as when it is not
known.
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1 Introduction

Fuzzy systems provide the possibility to transform linguistic descriptions into a mathe-
matical framework in which suitable computations for processing data and formal infer-
ence can be carried out (see f.e. [7]). However, the acquisition of knowledge is often a
very tedious task and the translation of linguistic rules to the framework of fuzzy sets, i.e.
the choice of adequate fuzzy sets, is also a severe problem. In many cases no structural
knowledge about the data is available, so that neither linguistic rules nor a fuzzy system
can be specified.

Our aim is to reverse the procedure of acquiring linguistic classification rules and
translating them into a fuzzy system. We start from a set of data (real vectors) which
have to be classified. The goals are the construction of a fuzzy system for the classification
task and the automatic generation of linguistic rules for classification. The principle idea
is to apply fuzzy clustering to the data and to derive fuzzy sets and finally linguistic rules
from the fuzzy clusters.

In section 2 we briefly review basic fuzzy clustering techniques and introduce a special
modifications of fuzzy clustering algorithms which are adapted to rule induction. Section
3 discusses the connection between fuzzy clusters and fuzzy rules. Section 4 is devoted



to unsupervised and supervised classification where the classification of the sample data
is unknown or known in advance, respectively.

2 Fuzzy Cluster Analysis

Nearly all fuzzy clustering algorithms try to find an adequate prototype for each fuzzy
cluster and suitable membership degrees for the data to each cluster. Usually, the cluster
algorithm aims at minimizing the objective function

J(X,U,v) = ii(uik)mdz(vi;mk) (1)

i=1 k=1
under the constraints
zn:uik > 0 forall i € {1,...c} (2)
k=1
and .
ug =1 for all k€ {1,...n}. (3)
i=1

X ={z1,...,z,} C IR? is the data set, c is the number of fuzzy clusters, u;, € [0, 1]
is the membership degree of datum =z, to cluster z, v; € IR? is the prototype for cluster 2,
and d(v;, zx) is the distance between prototype v; and datum z;. The parameter 1 < m
is called fuzziness index. For m — 1 the clusters tend to be crisp, i.e. either u; — 1 or
w — 0, for m — oo we have u; — 1/c. Usually m = 2 is chosen.

The objective function (1) to be minimized uses the sum over the quadratic distances
of the data to the prototypes weighted with their membership degrees. (2) guarantees
that no cluster is completely empty, (3) ensures that for each datum its classification
can be distributed over different clusters, but the sum of the membership degrees to all
clusters has to be 1 for each datum.

Differentiating (1) one obtains

U = 1 and v; = —Zzzl(uik)mmk (4)
: e (d(vier)) et ’ > k=1 (Uik)™
Sin (Fs) her i)

as a necessary condition for (1) to have a (local) minimum. The equations in (4) are
therefore used for updating the membership degrees u;; and the prototypes v; in an
iteration procedure until the difference between the matrix (ul™) and the matrix (ugd)
in the previous iteration step is less than a given tolerance bound e.

The most simple fuzzy clustering algorithm is the fuzzy c-means (FCM) (see f.e. [1])
where the distance d is simply the Euclidean distance. It searches for spherical clusters
of approximately the same size.

Gustafson and Kessel [3] and Gath and Geva [2] designed fuzzy clustering methods
that are looking for hyper—ellipsoidal clusters of varying size. We refer to the correspond-
ing algorithms by the abbreviations GK and GG, respectively. In both cases, in addition
to the prototypes v; and the membership degrees u;; for each cluster 7 a (positive defi-
nite) covariance matrix C; is calculated. The GK replaces the Euclidean distance by the
transformed Fuclidean distance

& (vi,z1) = (pidet C;)/P(zk — &) C ™ (21 — ), (5)
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whereas the GG is based on normal distributions and uses the distance

& (vi, z1) = Mexp ((mk )T ci))

(6)

Pi 2
Z::l (wir)™

where p; = : 7 so that in both cases for each cluster a matrix inversion
Z]‘=1 Zk:l(ujk)m

and a determinant has to be computed in every iteration step. For the GK the size of
of each cluster has to be specified implicitly in advance by the value p;, whereas in the
GG the sizes the cluster need not be known in advance.

For our purpose to generate rules from data by fuzzy cluster analysis the FCM is too
restrictive, since it concentrates on spherical clusters of approximately the same size. As
we will see in the next section, the GK and the GG cause trouble, since they are looking
for clusters in the form of arbitrary hyper—ellipsoids, whereas for rule induction it would
be more advantageous to have axes—parallel hyper—ellipsoids. This means that we have
to restrict the matrices C; appearing in the GK and the GG to diagonal matrices. Since
in the derivation of the GK and the GG (fuzzy) covariance matrices are needed, one
does in general not obtain a diagonal matrix. Therefore, it is necessary to derive new
formulae for updating the matrices C; that induce the transformation of the Euclidean

distance via (5) and (6). We obtain

) _ (pillacs Xk (wik)™ (Tho — via) )7 RO P (wir)™
v ZZ:l(uik)m(mku - 'U'L'u)z v ZZ:l(uik)m(mku - 'U'L'u)z

as the updating schemes of the modified versions of the GK and GG, respectively, where

C

cl(j) denotes the vth diagonal element of the diagonal matrix C; and z3, and v;, are
the ath coordinates of the vectors z; and v; (see [6] for details). Note that neither the
inverse nor the determinant of a matrix has to be computed so that the corresponding
algorithms are much simpler and faster than the original GK and GG.

3 Fuzzy Clusters and Fuzzy Rules

The principal idea of inducing classification rules based on fuzzy cluster analysis is the
following. Each fuzzy cluster is assumed to be assigned to one class for classification.
The membership grades of the data to the clusters determine the degree to which they
can be classified as a member of the corresponding class. With a fuzzy cluster that is
assigned to the class C we associate a linguistic classification rule in the following way.
The fuzzy cluster 7 is projected into each single dimension leading to a fuzzy set on the
real numbers. The correct, but computationally inefficient method of projecting a fuzzy
cluster would lead to the fuzzy set

1
o (y) = sup —— |z =(21,...,%-1,Y,it1,...,2p) € IRP
c (M) m—1
j=1 dz('u]',z)

as the vth projection of cluster 7. Therefore, we use an approximation of this fuzzy set by
projecting only the data set and computing the convex hull of this (discrete) projected
fuzzy set or approximating it by a trapezoidal or triangular membership function as for
instance proposed in [8].



To these fuzzy sets we assign suitable linguistic labels like approximately zero or
positive small etc. (for example, one could assign the linguistic label approximately zq
where zg is the value where the fuzzy set has its maximal membership degree).

The premise of the corresponding classification rule is the conjunction of these lin-
guistic labels, the conclusion the class to which the cluster is assigned. The problem that
arises is that the premise of the classification rule in the form of a conjunction leads to
the Cartesian product of the corresponding one-dimensional fuzzy sets as the description
of (a part of) the corresponding class. Unfortunately, the Cartesian product of projec-
tions is in general larger than the original fuzzy set (cluster) so that we have to accept a
certain loss of information. As mentioned above, the FCM is very limited according to
the restriction to spherical clusters of approximately the same size. On the other hand,
the hyper—ellipsoidal clusters produced by the GK and the GG can result in misleading
rules, since the projection of a hyper—ellipsoid may cause a strong loss of information.
Therefore, we developed the modifications of the GK and GG in the previous section
that are looking for hyper—ellipsoidal clusters with varying sizes whose axes are parallel
to the coordinate axes. The advantage of these fuzzy clustering techniques is the greater
flexibility compared to the FCM, the small loss of information when projected compared
to the GK and GG and a simpler computation than for the GK and GG, since matrix
inversion can be avoided.

4 TUnsupervised and Supervised Classification

Our algorithms can be used for two types of classification tasks. In the case that the
classification is not known in advance, we apply our modified version of the GK or
the GG to the data and find out the optimal number of clusters by applying a suitable
validity measure as it was already proposed for the GG in [2]. The number of cluster then
coincides with the number of classes. The classification rules are derived as described in
section 3.

When the classification for the given data set is known, we start the fuzzy clustering
algorithm with the number of clusters equal to the number of classes. To each cluster
the class of the prototype or the class of the datum with the highest membership degree
is assigned. We then determine for each cluster the rate of misclassifications. For each
cluster in which the rate of misclassifications exceeds a given upper bound, a new proto-
type in the neighbourhood of the original prototype of the cluster is introduced. After
that we apply the fuzzy clustering algorithm again with increased number of clusters,
i.e. the original number of clusters plus the number of newly introduced prototypes. As
initialization the result of the clustering with the lower number of clusters incorporat-
ing the additional prototypes is used. We iterate this procedure until the number of
misclassifications is small enough for each cluster.

5 Conclusions

The advantage of fuzzy clustering over hard classification techniques is the information
inherent in the membership degrees so that we are able to judge how well the system is
able to classify a datum. Another advantage is the possible use of intermediate classes
in the case of classes in the form of real numbers. In this way our technique can be used



to construct a fuzzy controller from data, since a fuzzy controller can be viewed as an
interpolation technique for vague inputs and outputs [5, 4].
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