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Summary: Fuzzy controllers can be interpreted as an interpolation technique
on the basis of fuzzy clusters of input/output pairs. It is therefore obvious that
fuzzy clustering algorithms are a promising tool for supporting the design of a
fuzzy controller when data of the process to be controlled are available.

This paper discusses the possibilities and limitations of fuzzy clustering for fuzzy
control.

1. Introduction

Most of the classical control techniques are based on a mathematical or
physical model of the process to be controlled, usually described by a set
of difference or differential equations. These techniques are applicable when
a suitable, not too complex mathematical description of the process can be
provided. But there is a great number of processes with parameters for
which no appropriate mathematical model is known. Nevertheless, many of
these processes can be controlled by a human operator.

The idea behind fuzzy control is to model the behaviour of a human operator.
Thus fuzzy controllers aim at determining a static control function on the
basis of linguistic if-then—rules. The control function assigns to each tuple of
measured input values (for example error and and change of error) a suitable
control or output value that forces the process in the direction of the desired
state. The control rules are of the form

If input, is A, and ... and input, is A, then output is B (1)

where A,,..., A,, B are linguistic expressions of the form approximately
zero, (negative) small, (positive) big, etc. that specify a vague description
of the value of the corresponding variable. These linguistic expressions are
represented by fuzzy sets.

In section 2 we will see that each fuzzy set can be interpreted as representing
a crisp value in a vague environment admitting some small error. In this
sense, the fuzzy sets are in some way fuzzy clusters. Section 3 gives a short
review of basic fuzzy control techniques in the light of the above mentioned
interpretation of fuzzy sets. Section 4 is devoted to the topic of generating
fuzzy sets automatically by fuzzy clustering from a data set. It will be
shown that fuzzy clustering can be useful for this task, but in many cases
fuzzy clustering will not meet the requirements needed for fuzzy control.



2. Interpretation of the Fuzzy Sets

The idea behind fuzzy sets is to extend the concept of membership to a set
to graded membership, i.e. not to restrict to the two membership degrees 1
(‘belongs to the set’) and 0 (‘does not belong to the set’). Therefore, from
a formal point of view, a fuzzy set p on the domain X is a generalized char-
acteristic function p : X — [0, 1], assigning to each z € X its membership
degree p(z) to the fuzzy set p, or, if p is intended to represent a linguistic
expression like approximately zero, the degree to which z satisfies the lin-
guistic expression associated with pu.

Although it is very appealing to interpret the value u(z) as the degree to
which z belongs to the fuzzy set y, there is a need for a concrete interpre-
tation of membership degrees. Otherwise it is impossible to assign suitable
membership degrees to elements or to compare or combine fuzzy sets speci-
fied by different people.

The approaches to the interpretation of membership degrees can be cate-
gorized into three types: uncertainty (for instance in the case when fuzzy
sets are seen as possibility distributions like in Dubois and Prade (1988)),
preference (as in Dubois and Prade (1993)), and similarity (see for example

Trillas and Valverde (1984) or Kruse et al. (1993)).

In this paper where we only consider fuzzy control we restrict ourselves to
the latter interpretation. In order to explain this interpretation of member-
ship degrees in terms of similarity or indistinguishability, let us consider the
following simple example.

Let § be a (pseudo—)metric on X. Then
Es: X x X —[0,1], (z,y)— 1—min{d(z,y),1}

is called an equality or similarity relation. The value Es(z,y) reflects the
similarity of  and y. Note that it might be reasonable to apply a scaling to
the metric §. For example, in the case of a discrete metric § which maps X
into the natural numbers, one could use ¢ - § instead of § where 0 < ¢ < 1
is a suitable scaling factor. Otherwise the corresponding similarity relation
would simply be the crisp equality.

Given a crisp element zo € X, one should take the similarity relation into
account and consider the ‘equivalence class’ of zy with respect to Fs, i.e. the
crisp set {zo} is extended to the fuzzy set

Py : X — [0,1], @+ Es(zo,z)

containing all elements that are similar to zo. In this way, under consid-
eration of the similarity relation Ej or its dual concept, the metric §, each
crisp value zo induces a fuzzy set or fuzzy cluster p,,. It is very important
to note that in the case X = IR and é(z,y) = |z — y| the fuzzy set u,, has
a triangular shape like those fuzzy sets that are commonly used in fuzzy
control.



Of course, the fuzzy sets appearing in fuzzy control are in general not so
simple that they can be considered to be of the form p,, with the standard
metric on the real numbers as the underlying metric. Usually a transforma-
tion of the real line is assumed. The transformation is induced by a scaling
function ¢ : IR — [0, co[ that assigns to each z € IR a scaling factor ¢(z) > 0.
The greater this scaling factor is, the stronger is the distinguishability of val-
ues in the neighbourhood of z. Therefore, the underlying metric is given by

the following formula.
y
/ c(s)ds

Note that generally in fuzzy control neither the scaling function ¢ nor the the
metric . or its corresponding similarity relation Ej, is explictly considered.
But it was shown by Klawonn and Kruse (1993) that in most cases an
appropriate metric or even a scaling function can be found so that the fuzzy
sets can be interpreted in the above mentioned way. The problem of finding

such a metric or scaling function for a given fuzzy partition, i.e. a family of
fuzzy sets is discussed by Hohle and Klawonn (1992) and Klawonn (1994).

Before we can relate these ideas to fuzzy control, we have to mention the
problem of aggregating similarity relations on different domains. Let §;
(z = 1,2) be a metric on X; and let Ej, denote its corresponding similarity
relation. When we consider the product space X; x X, we have various
possibilities to derive a similarity relation on X; X X, from Ej and Ej,. For
reasons of simplicity, we restrict ourselves to

be(z,y) =

E: (X1 x X,) x (X1 x X,) —[0,1],

((mla mz), (ylayz)) = min{E51 (mlayl)a E&z(m27y2)}‘
Note that E is induced by the metric

§((21,22), (y1,92)) = max{bi(z1,y1),d2(22,92)}

and that § is an ultrametric if §; and 5 are ultrametrics.

3. Fuzzy Control

Fuzzy controllers are used to describe static control functions that assign to
each tuple of measured input values of a process a suitable output value for
the control variable that forces the system in the direction of the desired
state. In order to achieve this, for each input variable and for the output
variable a fuzzy partition of the corresponding domain is specified, i.e. a
family of fuzzy sets for each domain has to be determined. A typical fuzzy
partition is illustrated in figure 1.

Each of the fuzzy sets is associated with a linguistic expression like approx-
imately zero, (negative) small, (positive) big, etc. These linguistic expres-
sions are incorporated in the control rules of the form (1) mentioned in the
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Figure 1: A typical fuzzy partition.

introduction.

For a given tuple (£1,...,¢&,) of measured inputs for each rule the ‘matching
degree’ is computed, i.e. if the fuzzy set y; is associated with the linguistic
expression A;, then the matching degree of rule (1) for the input (&1,...,&n)

o1 = min{p: (&), ., fn(n)}- (2)

The matching degree determines how strong the rule is applicable and effects
the output of the rule. Typically, the output of one rule is defined as the
fuzzy set min{y, a;} where u is the fuzzy set associated with the linguistic
expression B and a; is the value defined in equation (2). The output fuzzy
set of the system of rules is obtained by aggregating the output fuzzy sets
of the single rules by the maximum. In order to get a crisp output value
this fuzzy set has to be ‘defuzzified’ which is often done by the center—of
gravity—method that takes the value under the center of gravity of the fuzzy
set as output.

It would lead us to far to discuss here the details of the computations carried
out in a fuzzy controller and we refer for an overview to Kruse et al. (1993).
What is interesting from the viewpoint of cluster analysis is the following.

The fuzzy sets can be interpreted as fuzzy clusters, i.e. as representing crisp
values or prototypes with respect to an underlying similarity relation. If the
fuzzy set p; represents the value §;, then the rule (1) specifies the output for
the input tuple (£1,...,€.). Therefore, the rule base determines a partial
function that assigns an output value to some input tuples. In this sense,
fuzzy control can be interpreted as an interpolation method in the presence
of indistinguishability characterized by similarity relations. For details see

Klawonn and Kruse (1993).

Note that for each input domain and for the output domain we have a specific
similarity relation. Taking equation (2) into account, that determines how
the matching degree of an input tuple is calculated for one rule, one can
show that the similarity relation on the different domains are aggregated to
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a similarity relation on their product space as proposed at the end of the
previous section.

4. Fuzzy Clustering and Fuzzy Control

As we have explained in the previous section, the main ingredients for a
fuzzy controller are fuzzy partitions of the output and input domains and a
rule base. The fuzzy sets of the fuzzy partitions can be interpreted as crisp
values in the presence of indistinguishability or as fuzzy clusters. The rule
base corresponds to a partial function.

Although it is intuitively appealing to formulate the knowledge about the
operator’s behaviour in the form of if-then—rules involving linguistic expres-
sions like approximately zero and to model these expressions with fuzzy sets,
it is often very difficult to specify a suitable rule base and to determine ap-
propriate fuzzy sets. Even if the principal shape of the fuzzy sets is known,
it is not clear how to choose the exact values for the membership degrees.
Thus an automatic generation of the fuzzy partitions and the rule base from
data gained from observing the process and the operator’s behaviour is de-
sirable.

A fuzzy controller constructed in this way can be used to simulate the op-
erator’s behaviour for automatic control. But it can also be the basis of
understanding the operator’s control strategy in order to implement an im-
proved strategy in a fuzzy controller with modified fuzzy partitions and a
modified rule base.

It is near at hand to think of applying standard fuzzy clustering techniques
like the fuzzy c-means algorithm. For a description of the fuzzy c-means
algorithm see for example Bezdek (1973), Bezdek and Pal (1992), or Dunn
(1974).

The problem is that in most cases the data are better suited for regression
than for clustering as illustrated in figure 2, since the operator’s actions are
often more or less continuous distributed over the input domains.

There are, of course, exceptions, especially for chemical processes where the
operator’s action consists in adding half a ton of some liquid to the process.
Such drastic actions are usually carried out, when the operator observes that
a certain value exceeds or falls below some threshold. In this case, one may
obtain data that have the characteristics of those in the left side of figure 2.

One might ask the question, why we insist on a fuzzy controller, when a
regression technique might be applied easily. The reason is that although
it might be very simple to obtain a suitable control function by such a
technique, this function is difficult to interpret. This means, tuning and ad-
justments to changing parameters of the process are more or less impossible
using the regression function. Since the behaviour of a fuzzy controller be-
comes clear from its fuzzy sets and its rule base, such changes can be carried
out, when the control function is determined by a fuzzy controller.



Figure 2: Data that are better suited for regression (left side) and for clus-
tering (right side).

Therefore, usually some heuristic filtering has to be applied to the data that
extracts data in the form of those on the right side of figure 2 from data in
the form of those on the left side.

Another problem is caused by the fact that for each input and output do-
main a separate fuzzy partition is needed in order to formulate the control
rules in the form of (1). However, the data are in general observed in the
product space of all input spaces and the output space. Projecting the data
before applying fuzzy clustering will lead to severe problems, since (fuzzy)
clusters that do not interfere in the product space might melt together when
projected to some one—dimensional space so that the fuzzy clustering of the
projected data comes up with clusters that cannot be associated with (fuzzy)
clusters in the product space. On the other hand, applying a fuzzy clustering
algorithm in the product space and then projecting the fuzzy clusters may
yield projected clusters that strongly overlap. Nevertheless, although this
overlapping (i.e. fuzzy partitions with strongly overlapping fuzzy sets) is not
desirable, it is still possible to construct a fuzzy controller on the basis of
these fuzzy partitions, whereas the other method - first projecting and then
clustering — may lead to incoherent fuzzy partitions.

Again, some suitable preprocessing of the data that forces the (fuzzy) clus-
ters to be near the grid points in the product space, can help avoiding this
problem.

Another question is, whether the fuzzy c-means algorithm is really well-
suited for generating fuzzy partitions for a fuzzy controller. One of the
assumption of this algorithm is that for each element, the sum of its mem-
bership degrees to all (fuzzy) clusters is equal to one. This condition is very
appealing, since in fuzzy control it is very common to assume that for any
element, the sum of its membership degrees to all fuzzy sets of a fuzzy par-



tition is also one. However, in fuzzy control there is in general the stronger
assumption that usually the intersection of the supports of more than two
fuzzy sets of a fuzzy partition should be empty — a condition which is nor-
mally not guaranteed by the fuzzy c—means algorithm.

An alternative to the fuzzy c-means algorithm is the possibilistic approach
to fuzzy clustering proposed by Krishnapuram and Keller (1993). In oppo-
sition to the fuzzy c-means algorithm the requirement that the membership
degrees to all fuzzy clusters sum up to one for each element is given up in pos-
sibilistic clustering. But possibilistic clustering can tend to non—overlapping
fuzzy clusters. As a consequence for the corresponding fuzzy partitions,
there can be areas which are covered by no fuzzy set at all. This means that
for input values falling into such areas, no control action is specified which
may lead to difficulties in controlling the process.

5. Conclusions

The discussion of fuzzy clustering and fuzzy control has shown that there
are strong relations between these two fields. However, a lot of problems
arise, when fuzzy clustering has to be applied to fuzzy control. Some of
these problems can be overcome by some suitable filtering or preprocessing
of the data, but there are still unsolved problems. Nevertheless, there are
promising perspectives, even if one should not expect to generate an optimal
fuzzy controller from data by some fuzzy clustering technique. In any case,
it is reasonable to construct a rough design of a fuzzy controller by fuzzy
clustering. Improvements and tuning of such a fuzzy controller can be carried
out by hand or by other learning and optimization techniques in fuzzy control
(for an overview see Nauck et al. (1994)), especially since most of these
techniques do not learn from scratch but rely on some more or less well
working first model.
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