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Abstract: The aim of this paper is to introduce a fuzzy control model
with well-founded semantics in order to explain the concepts applied in
fuzzy control. Assuming that the domains of the input— and output vari-
ables for the process are endowed with equality relations, that reflect the
indistinguishability of values lying closely together, the use of triangular
and trapezoidal membership functions can be justified and max—I1 infer-
ence where I is a t—norm turns out to be a consequence of our model.
Distinguishing between a functional and a relational view of the control
rules it is possible to explain when defuzzification strategies like MOM
or COA are appropriate or lead to undesired results.
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1 Introduction

The basic techniques of fuzzy control were already known in 1974 [18, 21], but due
to the large number of successful applications of fuzzy controllers in recent years,
especially in Japan, the interest of both practitioners and theorists in fuzzy control
is growing. In opposition to classical control theory which is usually based on a
mathematical model of the process the idea of fuzzy control is to simulate a human
expert by translating linguistic if~then control rules into a control function. As a
result of a benchmark found in the community of specialists in adaptive control this
methods appeared to have positively surprising properties of robustness and can
compete with advanced control methods such as supervised adaptive control [1].

In order to understand how and why fuzzy control is an appropriate control
technique, it is necessary to provide a well-founded semantic background for the
applied concepts, enabling us to explain what the specific fuzzy sets mean, where
they come from and how we have to operate with these fuzzy sets. Some of the
concepts applied in fuzzy control are based on a very intuitive understanding of
fuzzy set theory without the use of a clear model which motivates and justifies these
concepts. As a well known example consider the defuzzification method center of



area in the classical max—min controller, which gives good results due to its good
interpolation properties but which cannot be justified in a logical calculus. So there
is a need to provide underlying semantics.

One way to attack this problem is to use methods of approximate reasoning.
Generally, approaches to the foundations of fuzzy control interpret the control rules
as inference rules leading to a conjunctive combination of the rules and, in case of a
possibilistic interpretation of the fuzzy sets, resulting in the use of the Godel-relation
for the inference procedure [2, 14]. The interpretation of the rules and the fuzzy sets
is a crucial point for providing a semantic background for fuzzy control. Since there
are various interpretations for the rules as inference schemes [3] and for the origin
of the fuzzy sets [5, 6, 13], the appropriate model has to be chosen carefully.

An alternative approach not based on inference methods applied in approximate
reasoning is to embed fuzzy control in the classical interpolation and approximation
theoretic approaches [4]. From this view fuzzy control helps to define the input—
output function by using additional expert information such as linguistic rules, ap-
proximate input—output tuples etc. This area of ‘knowledge based interpolation’ is
yet not developed.

In our approach we will also interpret fuzzy control rules as a (partial) specifi-
cation of a control function or, more generally, of a control relation which has to
be approximated or interpolated on the basis of control rules. We assume that the
domains of the control variables are endowed with equality relations reflecting the
fact that values that are lying closely together cannot be very well distinguished.
Assuming this indistinguishability as the only source where fuzzyness comes into our
model we are able to explain the meaning of triangular or trapezoidal membership
functions and can elucidate the use of max—min inference or, more generally, max—I1
inference where M is a t—norm.

The paper is organized as follows. In section 2 we will give the formal defini-
tion of an equality relation, motivate and explain the use of equality relations with
examples, and introduce modified definitions which respect the equality relations
for concepts like singletons, subsets, functions, and relations. In section 3 the ideas
of section 2 are applied to fuzzy control explaining why triangular and trapezoidal
membership functions play a special role in fuzzy control not only because of their
simplicity and how the max—min inference rule can been seen as a consequence of
our fuzzy control model. Section 4 is a discussion about appropriate defuzzifica-
tion rules showing that the application of the center-of-area or the mean—of-max
method reflects a functional view of the the specified fuzzy control strategy that has
to be taken into account for the design of the rules.

2 Equality relations

Equality relations [8, 10| reflect the idea that objects cannot always be well dis-
tinguished, wherefore they are also called indistinguishability operators [11, 20].
Throughout the rest of this paper let M denote a t-norm (see f.e. [12]).



Definition 2.1 An equality relation on a set X (with respect to the t-norm M) is a
mapping F : X x X — [0, 1] satisfying the following axioms

(i) E(z,z)=1 (total existence)
(i) E(z,y) = E(y,z) (symmetry)
(ii) E(z,y)NE(y,z2) < E(z,2) (transitivity).

The value E(z,y) is to be understood as the degree to which z and y are equal or
indistinguishable. The total existence corresponds to the statement that z is equal
to z to the degree 1. Total existence is not always required [10]. In the case of
E(z,z) < 1 the value E(z,z) would be interpreted as the degree to which z exists
in X or belongs to X, i.e. E(z,z) reflects a membership degree. Of course, an
equality relation should be symmetric. Interpreting the ¢t-norm M as a conjunction,
transitivity can be read as if  is equal to y and y is equal to z then  must be equal
to z.

The most simple example of an equality relation is the one induced by the crisp
equality on X

1 fz=y
E(z,y) = { 0 otherwise.
Example 2.2 Let aM 3 = a* 8 = max{a+ § — 1,0} be the t—norm that leads to
Lukasiewicz logic [7]. Let (X, §) be a metric space. The metric § induces an equality

relation Es : X x X — [0,1] on X by
Bs(z,y) = 1 - min{d(z,y), 1}

E5 obviously satisfies the axioms of total existence and symmetry. Ej is also tran-
sitive since

Es(z,y) * Es(y, 2) max {1 — min{é(z,y),1} + 1 — min{é(y, 2),1} — 1,0}

< max{l — min{é(z,y) + I(y, 2),1},0}
= 1—min{d(z,y)+ (y, 2), 1}
< 1—min{é(z,=2),1}

Es(z, z).

Although equality relations reflect the intuitive idea of indistinguishability, we
still have to justify the use of the values E(z,y) by a concrete interpretation of these
values not only in terms of ‘degree of equality’ without specifying what a degree of
0.9 means. The following two examples motivate the use of equality relations in
connection with the t-norms A = min and *, respectively.

Example 2.3 Assume X is a set of objects which can only be observed through
milky glasses of a thickness ranging from 0 to 1 (for this interpretation of vague



data see also [14]). Let z,y € X be two objects. We observe the isolated object z
through a milky glass of thickness a. After that we observe the isolated object y
through a milky glass of thickness a. If we cannot decide wether we have observed

different objects # and y or twice the same object x, then we say that z and y are
a—-indistinguishable (a € [0,1]). Define

E(z,y) = sup{l — a | z and y are a—indistinguishable},

where sup@ = 0. Obviously, E(z,z) = 1 and E(z,y) = E(y,z) hold. Let z and y
be a—indistinguishable and let y and z be S—-indistinguishable. Let ¥ = max{a, 3}.
Since v > a holds, # and y are y-indistinguishable. The same argument applies
to y and z. This means that if we observe z, y, and 2z through a milky glass of
thickness v we can neither distinguish z from y nor y from z, which implies that we
cannot distinguish z from z (except in the case when we have to deal with Poincaré’s
paradox [19],i.e. A= B, B = C, but A # C, which we will not consider here). In

other words,  and z are y—indistinguishable. Therefore, we obtain

E(z,z) = sup{l—~| =z and z are y-indistinguishable}

Vv

sup{l — v | z and y are y-indistinguishable and
y and z are y—indistinguishable}

Vv

sup {1 — max{a,3} | z and y are a—indistinguishable and

y and z are B-indistinguishable}
= sup{min{l —a,1 — B} | =« and y are a—indistinguishable and
y and z are B-indistinguishable}

= min{E(z,y), E(y,2)}

which means that E is an equality relation with respect to the t—norm A.

Example 2.4 Assume X is a set of objects which are characterized by what we
can see on their surfaces. The shape of the surface and the size of the surface is for
all z € X the same, for example a square of length 1. (The objects in X could be
sheets of paper.) We call z and y a—indistinguishable (a € [0, 1]) if there is an area
of measure a in the unit square such that if we can only observe this area of the
corresponding squares of z and y we cannot distinguish these squares. Define

E(z,y) = sup{a | z and y are a-indistinguishable}.

Obviously, E(z,z) =1 and E(z,y) = E(y,z) hold. Let z and y be a—indistinguish-
able and let y and z be B-indistinguishable, i.e. there are areas A and B of measure
a and (3, respectively, in the square such that we cannot distinguish z from y, y
from z, respectively, if we only observe the respective areas of the corresponding
squares. The intersection of the two areas A and B has at least measure a + 3 — 1.
Since we cannot distinguish z from z if we can only observe the area A N B of the
corresponding squares, z and z are (a + 8 — 1)-indistinguishable. Therefore, we
obtain



E(z,y)* E(y,z2) = sup{max{0,a+ 3 —1}| =z and y are a—indistinguishable
and
y and z are B-indistinguishable}

AN

< sup{y | z and z are y-indistinguishable}
= E(z,2)

which means that F is an equality relation with respect to the t—norm x.

Examples 2.3 and 2.4 motivate the transitivity condition for equality relations
with respect to the t—norms A and *. But in fact, for fuzzy control this transitivity
condition is not needed except that we will require that concepts like subsets have to
be extensional, and the transitivity reflects the extensionality of equality relations.

When we consider sets endowed with equality relations we have to take into
account that all concepts regarding these sets have to respect the equality relations,
a property called eztensionality. For example, if z and y are equal to some degree
greater zero but we know a subset such that = belongs totally and y does absolutely
not belong to this subset, then we could use this subset to distinguish = and y
contradicting the assumption that # and y are equal to some degree greater zero.
Therefore, if z belongs to a certain degree to a subset also y has to belong in some
way to this subset.

Definition 2.5 Let E be an equality relation on X. A fuzzy set p: X — [0,1] is
extensional if

p(z) N E(z,y) < ply)
holds for all z,y € X.

p(z) is the membership degree of z in u. If E is the equality relation induced
by the crisp equality then any fuzzy set in X is also extensional. The extensionality
condition for fuzzy sets reflects the above described idea of respecting the equality
relation.

Special subsets of a set are those sets called singletons containing only one ele-
ment.

Definition 2.6 Let E be an equality relation on X and let zo € X. The singleton
induced by z, is the extensional fuzzy set u,, where

Kz (m) = E(ma mo)'

According to the transitivity of the equality relation p,, is extensional. In fact,
Kz, 18 the smallest extensional fuzzy set p in (X, E) satisfying p(zo) = 1. The gen-
eralization of definition 2.6 to extensional fuzzy sets induced by a subset is straight-
forward.
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Figure 1: The singleton induced by z,.

Definition 2.7 Let E be an equality relation on X and let M C X. The fuzzy set
pyr nduced by M is given by

pa(z) = sup{ E(m, z) | m & M}.
pur 1s also called the extensional hull of M.

Again, due to the transitivity pps is extensional and pps is the smallest exten-
sional fuzzy set containing M.

Example 2.8 Let X =R andlet § : R xR — R, (z,y) — |z — y| be the standard
metric on IR. Consider the equality relation Ej (with respect to the t-norm x), that
was defined in example 2.2. The singleton p,, induced by zo € IR is a triangular
function (see figure 1), i.e.

:u’mo(m) =1- min{|m0 - m|7 1}

In order to obtain triangular functions with other slopes than 1 we can consider the
metric &, where d.(z,y) = c- §(z,y), (¢ > 0).

Let a,b € IR. The extensional fuzzy set pj,3 induced by the set [a,b] is the
trapezoidal function (see figure 2)

1 ifa<z<b
Plag(z) =4 max{l —a+ 2,0} ifz<a
max{l —z +5,0} ifb<e

Definition 2.9 Let Fi,..., E, be equality relations on Xi,...,X,, respectively.
The equality relation £ = E; x ... X E, on the cartesian product X; x ... x X, is
given by

E((z1,--.y2n), (Y1,---,yn)) = Er(z1,y1) N ... 1N Ep(2n, yn).
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Figure 2: The fuzzy set induced by |a, b).

It is easy to verify that F is an equality relation on X; x ... x X,,.

If X and Y are endowed with equality relations and R is a fuzzy relation (a
fuzzy subset of X x Y'), then we should expect that if the pair (z,y) belongs to R
to a certain degree and z’ is equal to z to some degree, then also the pair (z’,y)
should belong to R to a certain degree. The same argument should apply when
we exchange the roles of X and Y. This motivates the following definition, which
requires a relation to be extensional.

Definition 2.10 Let E and F be equality relations on X and Y, respectively. A
relation on (X, E)x (Y, Z) is a mapping (fuzzy relation) R : X xY — [0, 1] satisfying
the extensionality axioms

(1) R(z,y) N E(z,2') < R(z',y)

(i) R(z,y) M F(y,y') < R(z,y').
A mapping or morphism f : X — Y (in the classical sense) is an ordinary
relation f C X x Y with the additional properties (i) if (z,y) € f and (z,y') € f

then y = y' is implied and (ii) for each z € X there exists a y € Y such that
(z,y) € f. Translating these ideas to the concept of equality relations we obtain

Definition 2.11 Let E and F be equality relations on X and Y, respectively. A
morphism from (X, E) to (Y, F') is a relation ¢ on (X, E) x (Y, Z) such that

(i) elz,y)Ne(z,y) < Fly,y') (singleton property)

(i) sup{ep(z,y)|yeY}=1 (total definiteness)
hold.

A morphism corresponds to a mapping from X to Y that respects the equality
relation. The value ¢(z,y) can be interpreted as the degree to which ¢ maps z onto

Y.



3 Equality relations and fuzzy control

In ordinary fuzzy control the considered data are fuzzy but the environment is crisp
whereas in our approach we have ordinary tuples in a fuzzy environment (expressed
in terms of equality relations). This idea is well known in quantum physics, where
also the problem arises that one cannot speak of two different points if the distance
between these points is less than € [17].

We consider the following control problem. We have n input variables &1, ..., &,
with ranges X, ..., X,, respectively, and for reasons of simplicity, one output or
control variable n with range Y. The control task consists of specifying appropriate
output values n = y for given (measured) crisp inputs & = zi,...,& = 2, such
that our plant operates in the intended way.

We assume that the sets Xy,...,X,, and Y of possible values for the variables
are endowed with equality relations Ei,..., E,, and F, respectively. If the sets
Xi1,...,Xn, and Y are intervals, the equality relations reflect the fact that in general
we are not interested in 100 percent exact values or are not able do distinguish
between values that are very close together. For the case of Xy,..., X, and Y being
intervals, the equality relations could be generated by metrics é. as in example 2.2.
Note, that there is an implicit independence assumption for the indistinguishabilities
of the input variables when we consider the product space X; x ... x X,, and endow
it with the induced equality relation, i.e. we assume that the indistinguishability
of any two values m§1),m§2) € X, is independent of the value of the variable ¢; €
X; (j # 7). This is obviously not a severe restriction. But even if we assume
interacting indistinguishabilities between domains X; and X;, we may consider the

space Xz-(i’j) = X, x Xj instead of the spaces X; and X;, where an appropriate equality

relation on Xz-(i’j) reflecting the dependencies has to be specified. The dependency of
two domains with respect to indistinguishabilty has nothing to do with dependencies
between variables.

According to the equality relations the (unknown) control function should be
assumed to be characterized by a morphism ¢ from (X1, E;) X ... X (Xn, E,) to

(Y, F'). Therefore, if ¢ is known and the inputs & = @4,...,&, = @, are given, for

each y € Y the value ¢((z1,...,2,),y) can be computed, that means, we obtain for
each (z1,...,2,) € Xi X ... x X, a fuzzy set ug*?% Y — [0,1] by

H (y) = (@1, 2n),y):

Those values y with high membership degrees represent appropriate output values
for the input values &; = 1,...,& = @,. In order to obtain a single output value
we still have to defuzzify p2i**"; . In this section we only consider fuzzy control

without defuzzification. Defuzzification strategies will be discussed in section 4.
Although it is in general impossible to specify ¢ for all pairs ((z1,...,2s),y),

we or the control expert might know that for certain input values (mgi), o,z the
correct output values are y(*) (for s = 1,... k). We therefore assume that
(2., 2),y0) =1 (1)



fori=1,...,k.
The specification of these k input—output pairs corresponds to the k control rules

If & is (approximately) mgi) and ... and &, is (approximately) () then

n is (approximately) y(®. (i=1,...,k) (2)

The values mgi), o2 y6) (3 = 1,... k) should be interpreted as singletons,

i.e. to each of these values we associate an extensional fuzzy set p_w, ..., 1 @, tyo,
z, Ty,

respectively. If the equality relations are induced by metrics as in example 2.2, these
extensional fuzzy sets are represented by triangular functions.
The problem we have to solve is the following. Given arbitrary input values

& =z1,...,&n = ¢, how can pontPut

apn . be computed when only the above mentioned

k control rules are known? According to the extensionality of ¢ a lower bound can
be computed for poutPut

L1,y Tn "’

Theorem 3.1 Given the above described assumptions then

output

Hay,onmn(¥) 2> 108X {pt i (21) T T o (20) 11y (y) 1 (3)

1=1,...,.k

holds for ally € Y.

Proof. Due to the extensionality of ¢ we obtain

pora ) = @((21,. .., 20),9)
> p((@1,. -, 2n),y9) 1 F(y,y)
> p((@), . 20),y) N B, 2), (21, ., 2a)) T F(y,y9)
D B(@,.. 20, (o1, .., 2.) 1 F(y,y)
= B (2, 2)N ... N Eu(z®, 2,) N F(y,y®)
= (@) N T e (2n) Ty (9)- (4)
for all 2 = 1,..., k. Therefore, (4) implies (3). O

If M = A then (3) is exactly the output fuzzy set (before defuzzification) of the
max-min controller. Thus we can explain the max—min— or more generally, the
max—T1 controller on the basis of equality relations.

Remark. Although we assumed that ¢ is a morphism we only needed the exten-
sionality of ¢ for the derivation of (3). Thus it is sufficent to require that ¢ is a
relation on (((Xl, E1) x...x(Xn, En)) x (Y, F)) If ¢ is assumed to be a morphism,
the singleton property and the total definiteness enforce consistency conditions on
the equality relations or equivalently on the fuzzy sets that represent the singletons
specified in the control rules.



Considering a morphism ¢ and specifying this morphism partially in the form
of (1) leads (in the case of equality relation generated by metrics as in example
2.2) to triangular fuzzy sets representing singletons. In the following we show how
trapezoidal membership functions can be motivated when R = ¢ is assumed to be a
relation. Then, instead of specifying k control rules as in (2) the control rules have
the following form.

Ifé& € X 6, € XU then
any of the values n € Y) is an appropriate output value, (5)

where Xl(i) C Xy,...,X% C X,,YO) C Y, respectively, for s = 1,...,k. In the
same way as (1) corresponds to (2), (5) can be replaced by

R((z1,...,2zn),y) =1 (6)

if there exists 7 € {1,...,k} such that z; € Xl(i), o2y € XB) and y € Y@, In the
same way (3) was derived by exploiting the extensionality of ¢, we now obtain from
the extensionality of R

Theorem 3.2 Given control rules in the form of (5) and assuming (6) for the
relation R describimg the control task,

output

Hay, oY) 2 max {pya (1) M. M pyo (2n) N pye (y)}- (7)
holds for ally € Y.

In (7) the fuzzy sets By oy By i), and py (i) are the extensional hulls generated
1 n

by the subsets Xl(i), ..., X0 and Y respectively. If these subsets are intervals and
the equality relations are induced by metrics as in example 2.2 the corresponding
fuzzy sets are now trapezoidal instead of triangular functions.

4 Defuzzification

In the last section we demonstrated how a fuzzy controller (without defuzzification
strategy) can be described in terms of equality relations where fuzzy sets represent
extensional hulls of crisp points or sets. The control strategy can be specified by
a morphism or a relation, both leading to the same formula for the output fuzzy
set. But when choosing a defuzzification strategy one has to take into account if
the fuzzy controller was designed with a functional or a relational view in mind.
For the functional view it is assumed that for each input—tuple there is a unique
output value whereas in the relational view for some input tuples there can be a set
of output values from which one may be chosen arbitrarily.

The aim of a defuzzification strategy is to compute a single output value from the
output fuzzy set p2***** . The commonly used defuzzification methods are the mean

1,000 "
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Figure 3: A fuzzy set where defuzzification strategies like MOM and COA could
lead to an undesired result.

of maximum method (MOM) and the center of area method (COA) (see f.e. [16]).
Both strategies are based on the implicit assumption that the control rules aim to
model a morphism (function) but not a relation. In order to elucidate this, consider
the following example. A set of control rules was specified for a car that should avoid
collisions automatically. When the car is driving straight forward in the direction
of an obstacle, the resulting output fuzzy set might look like the one in figure 3
indicating that the car should either turn left or right. But both defuzzification
strategies MOM and COA lead to the undesired result that the car bumps straight
into the obstacle. These methods lead to results which can be judged as correct
intuitively when the output fuzzy set is unimodal, i.e. it is an increasing function
until a certain point and after that it is decreasing. Thus the fuzzy set can be
interpreted as representing a singleton or an interval (in terms of equality relations).
But it cannot be expected to obtain such a fuzzy set if the control strategy itself
in its nature represents a relation, not intended to give a unique output value for
a fixed input, but to characterize a set of output values from which one can be
chosen arbitrarily. In this case before applying a strategy like MOM or COA, an
appropriate fuzzy subset of the output fuzzy set p2**"; has to be chosen which can
be interpreted as generated by a singleton.

Therefore, when specifying the rules for the fuzzy controller, it should be made
clear if these rules intend to represent a functional or a relational view, in order to
be able to choose an appropriate defuzzification strategy.

5 Conclusions

We do not claim that our approach is the only way to view fuzzy control since
there are other approaches based on a logical framework, for example as in [15].
But with our model the intuitive concepts applied in fuzzy control can be explained
merely in terms of equality relations. For the domain of the input— and output
variables it is assumed that values lying closely together are difficult to distinguish.

11



This indistinguishability is expressed by equality relations, which can be thought as
induced by metrics when * is used as the corresponding t-norm. The control rules
are either given in the form of crisp input—output pairs specifying a control function
partially, or as pairs of sets of input values and sets of output values reflecting the
idea of a control relation. The crisp points and sets are extended to fuzzy sets in
order to be extensional with respect to the equality relations. In the case of equality
relations induced by metrics as in example 2.2 and 2.8 crisp points lead to triangular
membership functions whereas intervals lead to trapezoidal membership functions.

The output fuzzy set computed by the max—min— or, more generally, the max—-
inference can be interpreted as a lower bound for the membership function induced
by the actual input values and the control rules that specify a control function or
relation partially. It turns out that it is important for the choice of an appropriate
defuzzification strategy to determine whether the control rules are intended to rep-
resent a control function or a control relation. The commonly used defuzzification
methods like MOM and COA are designed for a functional view of the control rules.

The advantage of the presented method is its sound mathematical background.
Based on this model one can explain existing fuzzy control techniques. In a forth-
coming paper [9] we will analyze practical aspects of fuzzy control like the derivation
of the equality relation.
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