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Abstract. We examine the principle capabilities and limits of fuzzy
classifiers that are based on a finite set of fuzzy if-then rules like they are
used for fuzzy controllers, except that the conclusion of a rule specifies a
discrete class instead of a (fuzzy) real output value. Our results show that
in the two—dimensional case, for classification problems whose solutions
can only be solved approximately by crisp classification rules, very simple
fuzzy rules provide an exact solution. However, in the multi-dimensional
case, even for linear separable problems, max—min rules are not sufficient.

1 Introduction

Fuzzy controllers are well examined as function approximators. Piecewise mono-
tone functions of one variable can be exactly reproduced by a fuzzy controller
[1, 9] and for the multi-dimensional case fuzzy controllers are known to be
universal approximators [2, 6, 12]. Although a lot of approaches for automat-
ically learning fuzzy classifiers are proposed in the literature (see for instance
[3, 4, 5, 10, 11, 13]), they are usually evaluated only on an experimental basis. A
theoretical analysis of the principal capabilities of fuzzy classifiers aiming at the
assignment of discrete classes to input vectors, is still lacking. A natural question
concerning fuzzy classification rules is, whether they have any advantage over
crisp classification rules when in the end for an input vector a unique assignment
to one class has to be made. We will provide a positive answer to this question
in the sense that already in the two—dimensional case fuzzy classification rules
can solve problems for which only approximate solutions can be constructed on
the basis of crisp classification rules. This paper is devoted to the question what
kind of classification problems are solvable in principle by fuzzy classifiers using
if-then rules. We do not discuss techniques for actually constructing suitable
if-then rules from data.

The paper is organized as follows. Section 2 provides the formal definition of
the type of fuzzy classifiers we are examining. In Section 3 we demonstrate that
in the two—dimensional case quite general classification problems can be solved,
whereas for higher dimensional problems simple max—min rules must fail. As
shown in Section 4 this can be amended by using other operations than max or
min.



2 Formal Framework

Let us briefly introduce the formal framework we are considering. We consider
fuzzy classification problems of the following form. There are p real variables
&1,...,&p with underlying domains X; = [a,, b;], a; < b;. There is a finite set C
of classes and a partial mapping

class: X1 x...x X, —C

that assigns classes to some, but not necessarily to all vectors (z1,...,2,) €
X1 x...x Xp.

The aim is to find a fuzzy classifier that solves the classification problem.
The fuzzy classifier is based on a finite set R of rules of the form R € R:

R:If 4 is ,u,g) and ... and z, is ,u,g)) then class is Cg.

Cr € C is one of the classes. The ,u,%)
,u,%) : X; — [0,1]. In order to keep the notation simple, we incorporate the
fuzzy sets ,u,%) directly in the rules. In real systems one would replace them by
suitable linguistic values like positive big, approximately zero, etc. and associate
the linguistic value with the corresponding fuzzy set.

In Section 3, where we present our main results, we restrict ourselves to

are assumed to be fuzzy sets on X, i.e.

max—min rules, i.e., we evaluate the conjunction in the rules by the minimum
and aggregate the results of the rules by the maximum. Therefore, we define
_ : (4) }
Lilye.oyBp) = min r; 1
pr(es . yap) = min {u)(e:) (1)
as the degree to which the premise of rule R is satisfied.
R

,u,(c )(ml,...,mp) = max{pr(z1,...,2p) | Cr = C} (2)
is the degree to which the vector (z1,...,p) is assigned to class C' € C. The de-
fuzzification — the final assignment of a unique class to a given vector (z1,...,zp)
— is carried out by the mapping

C ifp(gz)(ml,...,mp)>p,gz)(1:1,...,mp)
R((Bl,...,l‘.p): forallDEC,D;&C

unknown ¢ C otherwise.

This means that we finally assign the class C to the vector (z1,...,z,) if the
fuzzy rules assign the highest degree to class C for vector (z1,...,zp). If there
are two or more classes that are assigned the maximal degree by the rules, then
we refrain from a classification and indicate it by the symbol unknown. Note
that we use the same letter R for the rule base and the induced classification
mapping.
Finally,
R™YC) = {(z1,...,2p) | R(z1,...,2p) = C}

denotes the set of vectors that are assigned to class C' by the rules (after de-
fuzzification).



3 Max—Min Rules

Let us first take a look at crisp classification rules in the sense that the fuzzy sets
,u,g) are assumed to be characteristic functions of crisp sets, say intervals. Then
it is obvious that in the two—dimensional case each rule assigns those inputs to
the class appearing in the conclusion of the rule that are in the rectangle that is
induced by the two intervals appearing as characteristic functions in the premise
of the rule.

A classification problem with two classes that are separated by a hyperplane,
i.e. a line in the two—dimensional case, is called linear separable. Obviously, a
linear separable classification problem can be solved only approximately by crisp
classification rules by approximating the separating line by a step function (see
Figure 1).
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Fig. 1. Approximate solution of a linear separable classification problem by crisp clas-
sification rules

For fuzzy classification rules the situation is much better. The following
lemma and its corollary show that in the two—dimensional case classification
problems with two classes that are separated by a piecewise monotone function
can be solved exactly using fuzzy classification rules.

Lemmal. Let f : [a1,b1] — [a2,b2] (a; < b;) be a monotone function. Then
there is a finite set R of classification rules to classes P and N such that

R™Y(P) = {(z,y) € [a1,b1] X [az,b2] | f(z) >y},
R™YN) ={(z,y) € [a1,b1] X [a2,b2] | f(z) < y}.

Proof. Let us abbreviate X = [a1, b1], Y = [a2, b2]-
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Fig. 2. The fuzzy sets for the classification rules

Define the fuzzy sets
X — 0,1, z+—
ot X — [0,1], mr—)mzl—pl(m),

v :Y —[0,1], Y 2o

vy :Y —[0,1], yr—)bz—_yzl—ul(y).

The fuzzy sets are illustrated in Figure 2. The rule base consists of the two rules:
Ry:If 2 is py and y is vq then class is N.
Ry: If z is pp and y is v, then class is P.

It is easy to verify that these rules solve the classification problem. a

Note that the proof is based on a very similar technique as the proof for
constructing a fuzzy controller for rebuilding a function with one argument [1].
It is obvious that we can extend the result of this lemma to piecewise monotone
functions, simply by defining corresponding fuzzy sets on the intervals where the
class separating function is monotone (see Figure 3) and defining corresponding
rules for each of these intervals so that we have the following corollary.

Corollary 2. Let f : [a1,b1] — [a2,b2] (ai < b;) be a piecewise monotone
function. Then there is a finite set R of classification rules to classes P and N
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Fig. 8. The fuzzy sets for the classification rules of a piecewise monotone function

such that

RY(P) ={(=,y) € [a1,b1] X [a2,b2] | f(z) > v},
R™YN) ={(z,y) € [a1,b1] X [a2,b2] | f(z) < y}.

A direct consequence of Lemma 1 and its proof is that we can solve two—
dimensional linear separable classification problems with only two fuzzy classifi-
cation rules incorporating simple triangular membership functions so that we are
in a much better situation than in the case of crisp classification rules. However,
the result cannot be extended to more than two dimensions since the follow-
ing theorem shows that even three—dimensional linear separable classification
problems cannot be solved (evaluating the rules by the max—min schema).

Theorem 3. Let f : R® — IR, (21,22, 23) > ¢1 + 22 + 23. For fized X; =
[@i, bi], @i < b;, (1=1,2,3), denote

pP= {(mlam2a$3) c Xl X X2 X X3 | f(ml,mz,ms) > 0}’

N = {(mlam2a$3) c Xl X X2 X X3 | f(ml,mz,ms) < 0}

For any choice of the intervals X1, X5, X3 and any finite set of classification
rules R with classes CP and CN, at least one of the following conditions is not
satisfied:

(i) P+ and N # 0
(ii) The sets ,u,g) (i € {1,2,3}, R € R) are piecewise monotone and continuous.
(iii) R(CP) = P and R(CN) = N.



Proof. Assume the conditions (i), (ii), and (iii) could be satisfied simultaneously.
Then we can choose X1, X5, X3 and R in such a way that the cardinality of R
is minimal, i.e., no matter how we choose X1, X}, X} (satisfying (1)), a rule base
R’ that guarantees for (ii) and (iii) will contain at least as many rules as R.

The continuity of the fuzzy sets enforces the continuity of ,u,(g;) and ,u,(g;;.
Therefore, we have for all (z1, 22, £3) € X1 X X3 x X3 satisfying f(z1, z2,23) = 0
that p((l??(ml, L, T3) = ,u,((ﬁ\;(ml, 3, z3) holds.

The set

Z = {(21,22,23) € X1 x X2 x X3 | f(21,22,23) = 0}

— the boundary between the classes P and N — is the intersection of the plane
21 + z2 + z3 = 0 and the cube X; x X3 x X3. According to condition (i), part
of the plane lies in the interior of the cube.

Assume, there is a point (21, 22, 23) € Z in the interior of X; x X5 x X3 for
which the rules do not fire to the same degree, i.e., there is a rule S € R s.t.

,u,s(ilil, L2, 153) < Iélea;’}é{y’R(mla L2, :133)}

Then there is an entourage X{ x X3 x X§ C X1 x X3 X X3 of (z1, 22, 23) s.t. for
all (21, z2,23) € X1 x X} x X}

Hs (zla 22, 2:3) < Iélea'%{y’R(zla 22, 2:3)}

holds. But this means that the rule base R\{S} satisfies (i), (ii), and (iii) on
X1 x X3 x X%, which is a contradiction to the minimality of R. Thus we have
for all (z1,22,23) € Z

ur(z1, 2, 23) = ps(z1, 2, 23) (3)

for all R, S € R.

Therefore, we can define the function
9:7Z—10,1], (21, 22, 23) — pr(z1, 22, 23)

independent of the choice of R € R.

The fuzzy sets ,u,g) are piecewise monotone, i.e., for each ,u,g) there are only
finitely many points which have no entourage in which ,u,g) is monotone. Let z
(”)
i

be such a point. For each z and u; ’ we obtain a plane

Hz u(i) = {(1:1,1:2,:123) € IRS | T, = z}
13

Since H, () is a plane parallel to two axes, whereas
PR

~

Z = {(iﬂlaiﬂz,ms)EIRs|:1:1—|—:1:2—|—;1;3:0}



is not axes—parallel, their intersection is a line. Thus, if we consider the set

Z\ UHWg) )

R,i,2z

we simply cut out a finite set of lines from the plane Z. Therefore, and since Z
has a non—empty intersection with the interior of the cube X; x X3 x X3,

(20 (X0 x X x X3))\ H

b
R,i,2z

is non—empty. Choose an element (21, 2, 2z3) from this set which lies in the inte-
rior of X; X X2 X X3 and an entourage

Xi XX; XX:; = [21—5,21—1—5] X [22—5,22+5] X [23—5,23+5] g Xl XXz XX3
that does not contain any of the points of

U Hz,ug)'

R,i,2z

We now prove that g is constant on Z N (X] x X} x X3). We can write any
point
(:lll,l‘.z,l‘.g) €ZnN (Xi X Xé X Xé)

in the form (Zl + €1,22 + €2, 23 + 83) with €1+ €&+ €3 = 0 and |Ei| S d.
Let us consider the point

(21 + €1,22 + €3, 23 —|—83) €EZN (Xi X Xé X Xé)
Since a variation of the value z3 in (21, 22, 23) leads to a change in the classifica-
tion (from unknown to CP or CN), there has to be a rule R € R with
pr(z1,22,23) = pf (23).

Otherwise a (sufficiently small) variation of z3 would neither change the value
tep (21, 22, 23) nor uen(z1, 22, 23), resulting in the wrong classification unknown.
This implies
g(z1 4+ €1,22 — €1,23) = pr(z1 + €1, 22 — €1, 23)
3
< g (23)
= ,U'R(zla 22, 23)

= g(zla Z2, 23).

The same argument as above guarantees the existence of a rule S € R with

pus(z1 +¢€1,20 —€1,23) = ,U'_(gl)(zl +£1).



Thus we obtain

9(2z1 + €1,22 + €2, 23 + €3) = ps(21 + €1, 22 + €2, 23 + €3)
< ,U'_(gl)(zl + 1)
= ps(z1 + €1,29 — €1, 23)
= pr(2z1 + €1, 22 — €1, 23)
< g(z1, 22, 23).
By exchanging the roles of (21 + €1, 22 — €1, 23) and (21, 22, 23), we can prove that
9(z1,22,23) < g(z1 +€1,22 +€2,23 + €3)

also holds so that g has to be constant on ZN(X] x X} x X3), say g(z1, 22, 23) = @
for all (z1, z2,z3) € Z N (X] x X} x X3).
Assume there exist ¢ € {1,2,3}, R€ R, and |¢] < § s.t.
,u,%)(zi +E) < a.
Without loss of generality let 2 = 1. This leads to the contradiction

o = pr(z1+e,2—62) < py (21 +e) < a.
Thus we have for all ¢ € {1,2,3},for all z € X/, and forall Re R
p@(2) > a. (4)
Since a variation of the value z; in (21, 22, 23) leads to a change in classifica-
tion, there must be an € > 0 and a rule R € R s.t.
MR(Zl + €, 22, 23) + ,MR(Zl, 22, 23) = a.
By inequality (4) we obtain
min{,u,g)(zl +¢), ,u,g)(zz), ,u,g)(zg)} = pr(z1 + €, 22, 23)
>«
= ,U'R(zla 22, 23)
= min{ul (21), ufp (22), 1y (23)}-
Thus we have

ur(21,22,23) = py (z1) < min{u$ (22), 4 (2)}.

Taking the monotonicity of ,u,g) into account, we derive that ,u,g) has to be

(@)

increasing. The continuity of the fuzzy sets up’ guarantees the existence of £ > 0
s.t.

o =p§(21)
< p (21 +8)
< min{py) (22 — &, 4y (23)}



which leads to the final contradiction

a = pr(z1 + & 22 — &, 23)
= u§) (21 + )
> .

4 Other t—Norms and t—Conorms

The fact that linear separable higher dimensional classification problems cannot
be solved with fuzzy classification rules can be amended by replacing the max-
imum by another t—conorm (an associative, commutative, monotone increasing
binary operation with unit 0 on the unit interval, see for instance [7]), namely the
bounded sum, or by replacing the minimum by another t-norm (an associative,
commutative, monotone increasing binary operation with unit 1 on the unit in-
terval), namely the Lukasiewicz—t—norm. The following two theorems show that
it is sufficient to replace either the minimum or the maximum by a suitable
t—norm, respectively t—conorm. The function f appearing in these theorems de-
scribes an arbitrary hyperplane that separates the two classes to be distinguished
by the classifiers.

Theorem4. Let f:[a1,b1] X ... X [ap,bp] — R, (21,...,2p) = Cc+ I 7_, ciz;
(a; < b;). Then there is a finite set R of classification rules to classes P and N
such that

R™YP)={(z1,...,2p) € [a1,b1] X ... X [ap,bp] | f(Z1,..-,2p) >0}, (5)
RYN) = {(21,---,2p) € [a1,b1] X ... X [ap, bp] | f(z1,...,2p) <O} (6)

when the minimum in (1) is replaced by an arbitrary t-norm and the mazimum
in (2) is replaced by the bounded sum, i.e.

Mgz)(ml,...,mp) = min{ Z ,UJR(mla-"’mP)’l}‘

RER:Cr=C

Proof. Without loss of generality let ¢ > 0. (Otherwise consider the function
—f and exchange the rules for the classes P and N.) Without loss of generality,

let
{eal} b < 2
a = maxgec, max sup q|ciz 9"
i€{L,p} | wefas,bi] 2p



Otherwise (5) and (6) could be defined equivalently by

R™YP) = {(z1,...,2p) € [a1,b1] X ... X [ap,bp] | Lf(z:l,...,mp) > 0}

2pa
RYN) = {(z1,...,2p) € [a1,b1] X ... X [ap,bp] | %%f(ml’ s p) < 0}
Define R = {R, R1, ..., Rp} where
pi =14 ¢ (i=1,...,p)
u%ﬂ =ciz; + %
i =1 for
Crp =N
Cr, =P (i=1,...,p).
It is easy to verify that these rules solve the classification problem. a

Theorem 5. Let f : [a1,b1] X ... X [ap, bp] — R, (T1,...,2p) = c+ >0, it
(a; < b;). Then there is a finite set R of classification rules to classes P and N
such that

R™YP) = {(z1,...,2p) € [a1,b1] X ... X [ap, bp] | f(21,-..,2p) > 0},
RYN) = {(21,--,2p) € [a1,b1] X ... X [ap, bp] | fz1,...,2p) < O}

when the minimum in (1) is replaced by the Lukasiewicz t-norm, i.e.

¥4 i ¥4 i
pr(e1, ... 2p) = maX{l—erZM%)(mi),O} = QRu@) (1)
=1 =1

and the mazimum in (2) is replaced by an arbitrary t—conorm.

Proof. With the same argument as in the proof of Theorem 4 we may assume
without loss of generality

el (e} b} < e= -
max C , max su C;T = —.
’ie{l,---,P} ze[afbi] 8p

Define




Define R = {Rp, Ry} where
pian (2) = 6+ cie — i)

P

po) (2) = —c+ % - ;Ciai
i (2) =1 for (i # 1)
Cr, =P
Cry =N
It is easy to verify that these rules solve the classification problem. a

5 Conclusions

Our analysis of fuzzy if-then classification rules shows that their principal capa-
bilities are superior to simple crisp classification rules. Thus it is worthwhile to
design efficient learning algorithms for such systems. However, one has to take
into account the limitations of such classifiers, as they are described in Theo-
rem 3. One possibility is to use other operations than simply max and min. An
alternative is the design of hierarchical fuzzy classifiers on the basis of max—
min rules. Since we have shown that quite general classification problems can
be solved with max—min rules in the two—dimensional case, a hierarchical fuzzy
classifier consisting of cascaded rules where each single rule is restricted to two
variables might be a promising approach.
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