Fuzzy Clustering with Evolutionary Algorithms

Frank Klawonn
Fachbereich Elektrotechnik und Informatik

Fachhochschule Ostfriesland
Constantiaplatz 4
D-26723 Emden, Germany

Annette Keller
Deutsches Zentrum fir Luft- und Raumfahrt
Institut fur Flugfihrung
Lilienthalplatz 7
D-38108 Braunschweig, Germany

Abstract

Objective function based fuzzy clustering aims at finding a fuzzy
partition by optimizing a function evaluating a (fuzzy) assignment of a
given data set to clusters, that are characterized by a set of parameters,
the so-called prototypes. The iterative optimization technique usually
requires the objective function not only to be differentiable, but prefers
also an analytical solution for the equations of necessary conditions for
local optima. Evolutionary algorithms are known to be an alterna-
tive robust optimization technique which are applicable to quite general
forms of objective functions. We investigate the possibility of making
use of evolutionary algorithms in fuzzy clustering. Our experiments
and theoretical investigations show that the application of evolutionary
algorithms to shell clustering, where the clusters are in the form of geo-
metric contours, is not very promising due to the shape of the objective
function, whereas they can be helpful in finding solid clusters that are
not smooth, for example rectangles or cubes. These types of clusters
play an important role for fuzzy rule extraction from data.

1 Introduction

Many fuzzy clustering algorithms are based on the idea to optimize an objec-
tive function. Usually, this objective function depends on the distances of the
data to the clusters weighted by the membership degrees. By taking the first
derivative of the objective function with respect to the cluster parameters, one
obtains necessary conditions for the objective function to have an optimum.
These conditions are then applied in an iteration procedure and define a clus-
tering algorithm. This requires the objective function to be differentiable and

the iteration procedure can be computationally efficient only if the derived con-
ditions lead to explicit equations for the cluster parameters. The set of cluster
parameters, that determine the size and the shape of a cluster, depends on the
specific application field. We mainly distinguish between fuzzy clustering as
an explorative data analysis method, especially for unsupervised classification
tasks, techniques for rule extraction (for instance for fuzzy controllers), and
shell clustering algorithms, that are designed for boundary detection in image
recognition.

Unfortunately, in many cases the restrictions that are enforced on the clus-
ter parameters to be able to derive the iteration procedure are too narrow
and exclude a lot of interesting possibilities. Thus it is desirable to have an
alternative optimization technique that allows for more freedom in the choice
of the cluster parameters.

In this paper we investigate whether evolutionary algorithms may be a
solution to this problem. After a short introduction on fuzzy clustering in
Section 2, we discuss the principal approach to use evolutionary algorithms
for fuzzy clustering in Section 3. Section 4 is devoted to some theoretical
and experimental results on applying evolutionary algorithms on the basis of
the objective function introduced in Section 2. Evolutionary algorithms using
other objective functions are discussed in Section 5.

2 Objective Function Based Fuzzy Clustering

Let us briefly review some fuzzy clustering methods based on objective func-
tions. (For an overview see for example [8].) The cluster algorithm aims at
minimizing the objective function

J(X,U,v) ZZ (i)™ 'uz,ar:k) (1)

1=1 k=1
under the constraints
> ug > 0 for all s € {1,...c} (2)
and .
ug =1 for all k€ {1,...n}. (3)

X ={z1,...,zn,} C IR? is the data set, ¢ is the number of fuzzy clusters,
i € [0, 1] is the membership degree of datum zj, to cluster 7, v; is the prototype
or the vector of parameters for cluster 7, and d(v;, z¢) is the distance between
prototype v; and datum z,. The parameter m > 1 is called fuzziness index.
For m — 1 the clusters tend to be crisp, i.e. either u;, — 1 or u;, — 0, for
m — oo we have u;, — 1/c. Usually m = 2 is chosen.

The objective function (1) to be minimized uses the sum over the quadratic
distances of the data to the prototypes weighted with their membership de-
grees. (2) guarantees that no cluster is completely empty, (3) ensures that for
each datum its classification can be distributed over different clusters, but the
sum of the membership degrees to all clusters has to be 1 for each datum.

Differentiating (1), taking the constraints into account by Lagrange multi-
pliers, one obtains

ww = —————— (4)
5 (o)™

as a necessary condition for (1) to have a (local) minimum. The Equation
(4) is therefore used for updating the membership degrees u; in an iteration
procedure until the difference between the matrix (ul¢™) and the matrix (ug9)
in the previous iteration step is less than a given tolerance bound e.

The most simple fuzzy clustering algorithm is the fuzzy c-means (FCM)
(see f.e. [2]) where the distance d is simply the Euclidean distance and the pro-
totypes are vectors v; € IRP. It searches for spherical clusters of approximately

the same size and by differentiating (1) we obtain the necessary condition

Vi — > ke (uik) "z (5)
ko (i)™
for the prototypes that are used alternatingly with (4) in the iteration proce-
dure.

Gustafson and Kessel [7] designed a fuzzy clustering method that is looking
for hyper-ellipsoidal clusters. The prototypes consist of the cluster centers v; as
in the FCM and (positive definite) covariance matrices C;. The Gustafson and
Kessel algorithm replaces the Euclidean distance by the transformed Euclidean
distance

dz(vi, mk) == (Pz det Ci)l/p . (mk — ’Uz')TC_l(mk — ’Uz').

These or similar algorithms can also be applied to learn fuzzy rules from
data for classification problems [6, 12] or function approximation [11, 13, 21].
The fuzzy rules are derived from projections of the clusters leading to a certain
loss of information which could be minimized if the clusters had the shapes
of rectangles or cubes. Unfortunately, such shapes lead to non-differentiable
objective functions.

In contrast to the methods that are designed for solid clusters, the so-called
shell clustering algorithms are tailored for clusters in the form of boundaries
of circles, ellipses, etc. (For an overview on shell clustering see [14].) Davé
[5] developed one of the first shell clustering algorithms for the detection of
circles. Each prototype consists of the cluster center v; and the radius r;. The
distance function for the fuzzy c-shells algorithm (FCS) is

& ((vi,ri),2) = (|| @6 — vi || —7:)?

so that exactly those data have zero distance to the cluster that are located on
the circle with radius r; and center v;. Unfortunately, this distance function
leads to a set of coupled non-linear equations for the v; and r; that cannot be
solved in an analytical way. Thus an additional numerical iteration procedure
to solve non-linear equations is necessary in each iteration step of the clustering
algorithm which causes a lot of computational costs. Although this specific
problem is solved for circles by the fuzzy c-spherical shells algorithm (FCCS)
[16] using the distance function

dz((viari)amk) = (H Tk — Vi ||2 _,,,,?)27

the general problem for other shell shapes remains.

3 Evolutionary Algorithms for Fuzzy Cluster-
ing

Evolutionary algorithms are a class of optimization methods that are inspired
by the process of biological evolution. The principal idea is to have a collec-
tion or population of possible problem solutions encoded as parameter vectors
— the chromosomes — that define a solution. From this population a new pop-
ulation — the next generation — is generated by first producing offspring from
the old chromosomes by changing some components of the chromosomes, the
genes, randomly and sometimes also by a mixing of genes of different chromo-
somes (crossover), and then by selecting the best chromosomes for the next
generation. For details we refer to books like [1, 17].

As a quite general optimization strategy, evolutionary algorithms might be
applicable to objective function based fuzzy clustering. Thus it is necessary
to find a suitable coding of the parameters to be determined in fuzzy clus-
tering. Obviously, the parameters to be optimized are the prototypes v; and
the membership degrees uz;. In [3] it was proposed to perform hard clustering
(i.e. ug € {0,1}), with genetic algorithms by taking the u;; as the parame-
ters for the evolutionary algorithm. For fuzzy clustering this does not seem
to be suitable, since this means that besides the prototypes ¢ - n real-valued
parameters have to be optimized, where ¢ is the number of clusters and n the
number of data vectors. Since formula (4) is generally valid independent of
the special type of prototype, it is not necessary to optimize the parameters
u;;, by an evolutionary algorithm. In addition, the problems for the standard
iterative optimization procedure are not caused by the membership degrees,
but by the choice of the prototype parameters. Thus we restrict ourselves
here to optimize only the prototypes by an evolutionary algorithm. The cor-
responding membership degrees are computed as in the usual algorithm on
the basis of equation (4). In all our experiments in the following section, a
chromosome is a vector with ¢ - p real components. ¢ is the number of clusters
and p is the number of cluster (prototype) parameters, i.e. p = 1 for the FCM
(an FCM-prototype is just the cluster centre v;) and p = 2 for the FCCS (an
FCSS-prototype consists of the cluster centre v; and the radius ;). Mutation is
carried out by adding normally distributed values to the chromosome (vector)
components. We applied various crossover operators (one-point, two-point,
and uniform crossver). Although two-point crossover turned out to yield the
best results, the general effect of crossover was almost neglectable.

The aim of fuzzy clustering depends on the application domain. In the
case of data analysis and classification tasks as well as for rule extraction
it is important to find an appropriate (gradual) assignment of the data to
suitable prototypes, i.e., the emphasis is on the assignment and not on the exact
prototype parameters. For shell clustering algorithms to detect geometrical
objects in images the exact parameters, i.e. the prototype, play an important
role. This means that it is not sufficient just to compile the data points on a
circle in one cluster, but the exact values of the center and the radius of the
circle are of great interest.

075 v o5& el T
0.5 - 1-‘3‘:‘ .: -;:‘é?::l]
0.25 o=’y e " R

0F “.- .
-0.25 [wifigl, .,g. -
05 . .;:_.55.* -
0755 pe e

Figure 1: A test data set for the FCM

4 Experimental and Theoretical Results

Before we apply evolutionary algorithms to fuzzy clustering with non-standard
prototypes, we first test their performance by two standard fuzzy clustering
techniques, namely the FCM as an example for the search after solid clusters
and the shell clustering algorithm FCS. Similar experiments were also carried
out in [18] for the FCM. As in our approach, only the prototypes, i.e. for the
FCM the cluster centers, are determined by the evolutionary algorithm in [18].
[18] also reports good results when the objective function (1) is replaced by
the so-called partition coefficient, a validity measure that is sometimes used
for the FCM to determine the number of clusters.

5 1 T T T T T T LER T T T T T T | |
4k SE.art C4._fi (o) m—_
3 F vooF C2 - -
2 B 3 _:‘ ' C3 i
EE i \-':'- E C4 —=
I psStartCl_ F IR W -
1Y S T L i
ak BN N -
2k A -
3 AL T N -
-4 - """-.._‘_.--- -
-5 = -
-6 - Start C3

N " 1 1 1 1 ' [1 1 1 [T

6 -5 4 3 2 -1 01 2 3 4 5 6 7 8 9

Figure 2: Tracking the prototypes

Figure 1 shows a test data set for the FCM with four clusters. Evolutionary
algorithms with different parameters were all able to solve the problem of
finding suitable prototypes. An example run is illustrated in Figure 2 where
the tracks of the prototypes computed over the generations by the evolutionary
algorithm are indicated. A comparison of different selection strategies (left to
right: roulette wheel, remainder stochastic sampling, tournament) in Figure 3
shows that tournament selection has the best performance. In the figure the

dashed line indicates the average fitness and the other line the best fitness in
each generation, averaged over 18 runs of the evolutionary algorithm.

24 24 T T 1
22 22 “; _
\
20 20 b -
]
18 18 | -
1Y
16 16 : _
14 14 F
12 12
0 100 200 300 400 500 0 100 200 300 400 500
24 1 T T T
22 -
20 -
18 -
16 -
14 —
12 I e B e o "'dbio—_E.-E—

0 100 200 300 400 500

Figure 3: Comparison of selection strategies

Looking at these good results for the FCM we were quite optimistic also for
shell clustering. However, the results were more or less disappointing. Figure
4 shows a test data set with five circles for the FCS and two results of the
evolutionary algorithm. In one case no circle was detected correctly, in the
other only one of the five. These results could not be improved, neither by ex-
perimenting with the mutation or crossover rate nor by introducing techniques
like controlling the mutation rate on the basis of a span measure [17].

The typical results of the optimization of the objective function of the FCS
by an evolutionary algorithm tend to yield larger circles — an observation which
was also made in [4] where rectangular shells were considered. Thus we tested
the evolutionary algorithm with a data set representing only one circle with
center (0,0) and radius 2. In one case we limited the search space for the
radius and the coordinates to the interval [—2.2,2.2], in the other case to the
interval [—22,22]. In the first case the evolutionary algorithm computed the
correct radius and center in all test runs after about 30 generations. For the
second case the circle was detected correctly only in about 60% of the cases
after approximately 125 generations.

This motivated us to take a closer look at the fitness function. We consider
again a circle with center (0,0) and radius 2 as the data set. In Figure 5
the evaluation of a chromosome is shown whose y-coordinate for the circle is
the correct value 0, whereas the z-value is shifted to the right between 0 and
22. The different curves were drawn for radius values between 1 and 10. The

4 T 1 T
H
L]

2 ; N—
_-'+T+"- + -"."- ."" .
A) -

I £
- .- * -

0 frerrhpsbrr b
L Tl wth D
. P " 4 ot Lt b "
Fu " .h’l. & " ‘!"‘ E

_2 | et ..,‘___?.]

.]
% 5 H
L) o
% A <
. LIS 3
_4 — +ut ¥ g —

Figure 4: FCS: Test data and results

middle and lower diagram are just magnified scalings of the upper diagram.

From this figure it is obvious that the correct radius 2 gets the best evalua-
tion only as long as the shifted circle center is not shifted to far away from the
original circle center. The smaller radius 1 does never yield better values than
a larger radius. And with increasing distance of the shifted center to the orig-
inal center, a larger radius gets a better evaluation. This implies that in early
generations where the random circle centers are still far away from the correct
circle centers, chromosomes with smaller radius values are not being selected.
But when these values are missing in the population, a random mutation to
the correct radius without mutating also the center to the correct value leads
to a very bad evaluation. Thus these genes are so strongly dependent on each
other that only a simultaneous random jump of all genes to the correct values
can lead to good results.

When we applied the evolutionary algorithm again to the data set of Figure
1 and limited the search range for radius genes to the interval [0, 2.2], the results
were satisfactory. In all test runs the circles were detected correctly after about
80 generations in average.

Our theoretical considerations and experiments show that the applicability
of evolutionary algorithms to shell clustering is not very promising except when
the parameter range can be restricted to quite limited bounds.

Radius 1

Radius 3.5
Radius 5

Radius 10

0 1 2 3 4 5 3 7

Figure 5: Evaluation of chromosomes with shifted circle centers

As mentioned in Section 2, the standard iteration procedure is difficult or
impossible not only for certain types of shell clusters, but also for instance for
solid rectangular clusters. Such clusters would be ideal for fuzzy rule extrac-
tion, especially when they are restricted to axes parallel rectangles or cubes.

In order to obtain clusters of this type we define as prototypes for p-
dimensional data cluster centers z; € IR and diagonal matrices B;. As the
distance function we choose

d*(zx, (2, Bi)) = | Bilzi — z) ||z

2
= (fgjaé{bij zij — mkj|}) :
In opposition to [4] we use the supremum norm | . || instead of the 1-
norm. In order to avoid the undesired solution b;; = 0 for all 7,7, we have
to enforce a restriction on the matrices B;. Analogously to the Gustafson
and Kessel algorithms we require the matrix B; to have a fixed value p; for
the determinant, which determines the size or the volume of the cluster z. If
nothing is known about the data, we simply choose g; =1 forall: =1,...,c.

All results were quite satisfactory. In 90-100 percent of the test runs the
evolutionary algorithm was able to assign the data to the correct clusters and
the cluster centers were detected approximately correct. Figures 6 and 7 show

1 T 1 L T

e 0 ool)
-1 F : — 1 i -

- : - = e -
=2 : -2 J;‘a...:.
3 : — 3 ORI
-4 : — -4 |- T —
5 — 5 - .';"," -
-6 I — 6 EE
7 — TR AT
-8 - : — -8 |- ”“.‘f_';. -
9 N 9 | wdir |

2 1 0 1 2 2 -1 0 1 2

Figure 6: Two separated rectangular clusters (not filled and filled)

two 2-dimensional examples. In both cases we used two data sets — one in
which data points were only placed on the edges of the rectangles and one
where the rectangles were filled with data points.

1 T 1 . T
O e [- 0 L . +1-‘::::?:':. fl;-'iuif
-1 F ' - -1 ;-.“-:': -
2 - H —_ 2 - ‘_‘E_:-'_:t; -
-3 = - 3 - ,:qr‘s. -
4t | 1 4 S
S5 F ; - S ";1‘.5"‘::._ -
6F il T 6 L A
-7 F : . T :.tsf:;? T
S F i - S F e -
-9 1 I] -9] |]
2 -1 0 1 2 -1 0 1

Figure 7: Two contiguous rectangular clusters (not filled and filled)

It is worth noticing that the best chromosome in Figure 7 for the data set
with points only one the edges had the vectors (0, —0.1) and (0, —5.1) for the
cluster centers and and the values 0.6 and 1.6 for the entree in the upper left
corner of the diagonal matrices. The other non-zero value of the 2-dimensional
diagonal matrix can then be calculated, since the determinants are fixed. This
chromosome was assigned the error value 626.5 whereas the ‘desired’ solution
with centers (0,0) and (0, —4.5) and matrix values 0.5 and 2.0 gets a larger
error value of 740.8. Thus this method is not suited for computing the correct
parameters of rectangular shells. Nevertheless, the assignment of the data to
the clusters was satisfactory even if data points were only present on the edges.
Also the 3-dimensional case in Figure 8 and 9 caused no problems.

Figure 8: z/y-projections of three 3-dimensional clusters

5 Using Other Objective Functions

The good results on rectangular clusters described in the previous section can
be applied to deriving fuzzy rules from data. In this section we take a closer
look at evolutionary algorithm based fuzzy clustering and learning fuzzy rules.
The principal idea to apply fuzzy clustering in order to derive if-then rules
from data is that each cluster induces a rule by projecting the cluster to the
corresponding coordinate spaces [11, 21]. The projection of a cluster to the
i-th domain is obtained by taking the i-th coordinate of each data point and
assigning to it the membership degree of the original data point to the cluster.
In this way a discrete fuzzy set is defined on the i-th coordinate space. To
extend this fuzzy set to the whole i-th domain, a piecewise linear fuzzy set
can be defined on the basis of these discrete points, an enveloping fuzzy set
or a suitable approximation by a parameterized fuzzy set like a triangular or
trapezoidal membership function can be chosen [21].
In this way a cluster induces the rule

If §1 is pg and ... and &,_1 is pp—1 then &, is p,.

where p; denotes the (extension of the) i-th projection of the considered cluster
and &,..., &1 are input variables and ¢, is the output variable. In this way
a Mamdani-type fuzzy controller is defined [11, 21].

A number of variants of this principle were proposed by different authors
to solve control, function approximation and classification problems with fuzzy
rules (for a brief overview see [10]).

Fuzzy clusters are usually not bounded in the sense, that even data very
far away from the cluster center have non-zero membership degree, although
this degrees tend to be small as long as the number of clusters is not too
small. In [9] an evolutionary algorithm based fuzzy clustering algorithm was
proposed that constructs membership functions in the form of hyper-cones
for the clusters so that the membership degree to a cluster becomes zero out

4.5 [[[[

Figure 9: z/z-projections of three 3-dimensional clusters

of a region in the form of a hyper-ellipsoid. Nevertheless, the more serious
problem appearing when extracting rules from fuzzy clusters is not solved by
this approach, namely the problem of a certain loss of information enforced by
the projection of a multidimensional cluster.

The approach described in [20] constructs for each cluster a collection of
triangular fuzzy sets — one for each dimension — with an evolutionary algorithm
and avoids the projection of the clusters in this way. However, there are no
restrictions for the fuzzy sets with triangular membership functions so that it
is possible that one might be contained in another one or that they strongly
overlap.

A method for constructing rules by fuzzy clustering that restricts to well-
behaved triangular membership functions (in the sense that the membership
degrees at each point add up to 1) is the so-called grid clustering [10], a fuzzy
clustering algorithm that aims at finding fuzzy partitions for the single domains
on the basis of multidimensional data. For the grid clustering we assume that
we are given a data set {z1,...,z,} C IRP. We are looking for fuzzy partitions
on the single domains consisting of triangular membership functions with the
restrictions that for each domain at most two supports of different fuzzy sets
have a non-empty intersection and the sum of the membership degrees is one at
any point of the domain. This means that we have to determine a suitable grid
in the multidimensional space. We assume that for each domain the number
of triangular membership functions is predefined. We define the membership
degree of a data point to a cluster represented by a grid point as the minimum
of the membership degrees of the triangular membership functions whose tips
are the projections of the grid point. The grid clustering algorithm introduced
in [10] is not based on an objective function, but relies on a heuristic strategy
for constructing the clusters.

In order to improve this grid clustering algorithm, we have designed a
suitable objective function that can be optimized by an evolutionary algorithm.

The aim of our strategy is to place the prototypes on a suitable grid in the

multidimensional space in order to get fuzzy partitions on the single domains
consisting of triangular membership functions. For this reason our objective
function should not depend on the order in which we analyze the single dimen-
sions. The coordinates of the prototypes should only be influenced by those
coordinates of the data that are relatively near (in this case near means a small
Euclidean distance) to the prototype’s coordinate. A simple way in single di-
mensions is to let the data between two prototypes only influence these two.
On a grid there are a lot of prototypes with the same coordinates in a single
dimension. In the objective function each coordinate has only once to be taken
into account. These considerations led us to the following objective function:

J =

P kr ™ z,, i Pp — A\
S IOY (A v) |- e
— 4 ™ _ o) EONNCY

r=1j=1 se{l,..., n}: Le{1,....,n}: 7+1 7

C;r_)1<z"<cjr c]-r <:Dlr<c]-:_1

¢, and x4 are the r-th coordinate of the data z, and @, respectively (s, £ €
{1,...,n}). We assume that we have in the r-th dimension (r € {1,...,p}) &,
") ()

triangular fuzzy sets. Each triple c;’;,c:”’, c;/; induces a triangular member-
ship function with the interval (cg-r_)l, cg-:_)l) as the support and cg-r) as the point
with the membership degree one. Thus the fractions in the sums (without the

power m) provide the value one minus the membership degree to the triangu-

lar membership function with the tip at cg-r) of the data (or better: their r-th
projection) that lie on the support of the membership function. Since we add
up the values for all triangular fuzzy sets (and the sum of the membership de-
grees of a datum to neighbouring fuzzy sets yields one), we obtain the smallest
considerable value of (6), when all the memberships degree are 0.5 (as long
as m > 1 is chosen) and the largest considerable value, when the membership
‘S"r) to be in the center of data
clusters, i.e. the membership degree is high (near one) for data in the cluster
and low (near zero) for data in other clusters. Thus we aim at maximizing (6).
Note that (6) is a measure very similar to the partition coefficient [2].
A special treatment is needed for the data on the left/right of the left-
(r) (r)
)

most /rightmost prototype (the values c;’ and ¢).

degrees are either zero or one. We want the c

In the beginning, we

assume that the cg-r) are uniformly distributed, i.e. equidistant. We add in

(r) (r)

each dimension two additional prototypes c;’ and ¢ ° |, again equidistant to

the left and right of cgr) and c,(:r). The values c((,r) and c,(:r)_l_l are assumed to be
fixed and must not be changed by the evolutionary algorithm. Nevertheless,
we have to take these additional prototypes into account in the objective func-
tion so that the data at the edge of the universe have the same influence as
the data in the middle. This means that the second sum in (6) actually goes
from j = 0 to j = k, + 1. For the construction of the prototypes we only need
the grid coordinates in each dimension.

We apply a standard (1,b), respectively (1 + b) evolution strategy, i.e. our

population consists of just one chromosome from which generate b children.

1409276
¥

. ,;:““M\ et
b () -« e
v S Lot B x Frog .2
e e P F A AN
E 4{ BN
ks ot
%ﬁf) Lty ¢
l 54 oogE s
S \j\+ h /)' G Ty
. -
—
— . e .)
,-’.1 +—\\] d/—‘-_:_l_“} J(f . ﬁ . ..‘_s- - (_{:y ey]
P, ey (= s Ak L
ag + s T \ifr 3
— 11580613 i
. 10458095 6498740

Figure 10: Left: Original grid clustering. Right: ES-based grid clustering

The chromosome in the succeeding generation is the best chromosome of the
b children in case of the ,-strategy and the best chromosome of the b children
and the parent chromosome in case of the +-strategy.

If we have a p-dimensional domain of interest, a chromosome of the evolu-
tionary algorithm consists of p vectors. Projecting the grid points (prototypes)
into dimension 7, leads to the attributes of vector ». The p vectors do not
need to have the same number of components. If we consider for instance two-
dimensional data, i.e. p = 2, with three grid points in the z-dimension (k; = 3)
and two grid points in the y-dimension (k2 = 2) (not including the two fixed
boundary points in each dimension), then a typical chromosome would look
like ((1.2,2.1,3.4),(0.8,2.7)). This would mean that we have the six (inner)
grid points (1.2,0.8),(2.1,0.8),(3.4,0.8),(1.2,2.7),(2.1,2.7),(3.4,2.7) (plus 14
grid points at the boundary).

The descendants are generated from the parent chromosome by adding nor-
mally distributed values to the components, ensuring that all grid coordinates
remain within the boundaries determined by the data at the very boundaries
in each dimension.

Since the objective (6) consists of a sum over the dimensions, each di-
mensions contributes a value to the sum independent of the other dimensions.
Therefore, the grid coordinates can be optimized independently in each dimen-
sion. Thus we do not just choose the best chromosome for the next generation,
but consider each sub-vector, specifying the grid coordinates in one dimension,
separately and choose the best one in each dimension.

In most cases the initialization with equidistant cg-r) is good enough that
the +-strategy does not fall into local optima. So the +-strategy leads to good
results. In case of the ,-strategy the population of descendants has to be much
bigger than the population so that the evaluation time increases drastically.
All combinations of coordinates have to be computed in each dimension. If
k. is the size of the population and b is the number of descendants in this

dimension
b P (b+k,
> (k) (,-strategy), respectively > (—l:) (+-strategy)
r=1 T r=1 T

p P 121

AN f o
Loty #-}-
N4 N
et e
— e
AN o
ot) o)
pa— —— e
4 '\\ 2
/ Yy
H
R
x
- Pty X
e LA

Figure 11: Left: Original grid clustering. Right: ES-based grid clustering

possible combinations have to be evaluated. Maybe heuristics like tabu search
can help to reduce the evaluation time. The chosen strategy for the examples
i1s the +-strategy with variance 0.9 and 100 Iterations. Figures 10 and 11
illustrate the results for two examples (showing only the grid points).

To compare the evolutionary algorithm with the original heuristic grid clus-
tering algorithm described in [10], the results of the latter one were evaluated
with the same objective function. The advantages of the evolutionary compu-
tation with the proposed objective function are the same as the advantages of
the grid clustering algorithm. The result of the evolution strategy (Figure 10:
310.465, Figure 11: 159.515) is in both examples better than the results of the
original grid clustering algorithms (for the data set in Figure 10: 303.906, in
Figure 11: 159.438). Using the +-strategy, the evolutionary algorithm has the
advantage of monotone increasing objective function values.

The progress of (6) is shown in Figure 12. The upper diagram shows the
value of (6) for the dataset from Figure 10.

The first example has its best value after the first iteration, when the
heuristic grid clustering algorithm is evaluated. This good value is not reached
again during the computation. Faster evaluation is an advantage of the grid
clustering algorithm. The values of the objective function for the heuristic
grid clustering are only slightly smaller than the results obtained from the
evolution strategy. It has to be taken into account that the grid clustering
algorithm is not objective function based and therefore not tailored for the
particular objective function of the evolutionary algorithm. Nevertheless, the
results show that it is a very good heuristic method being much faster than
the evolution strategy.

6 Conclusions

Our investigations show that shell clustering with evolutionary algorithms
seems to be quite problematic, since there exist a lot of local optima and
the correct solution often looks like a very narrow optimum. The situation is

better for solid clusters. It should however be noted that evolutionary algo-
rithms require a much longer computation time to solve the problem compared
to the standard iteration procedure so that the application of evolutionary al-
gorithms makes only sense when the standard iteration procedure cannot be
applied according to a non-differentiable distance function or when an analyti-
cal solution for the single iteration steps cannot be found. Even in that a case,
as our grid clustering example shows, a good heuristic algorithm can lead to
results almost as good as the ones obtained by evolutionary computation in a
much shorter time.

We have restricted our investigations to probabilistic clustering, requiring
that the membership degrees of a datum to the clusters add up to one. In
principal, we can as well use the possibilistic version of the objective function
[15] dropping the probabilistic constraint.

Another important question is a strategy for determining the number of
clusters. This can be done in the usual way on the basis of suitable valid-
ity measures. However, this requires to carry out the clustering for varying
numbers of cluster and increases the computation time.

We obtained the most promising results for clusters suitable for construct-
ing fuzzy rules. Of course, there are other techniques of learning rules, like
neuro-fuzzy approaches (for an overview see [19]). However, it turns out that
most of these approaches are well suited for tuning the fuzzy sets, but not so
for detecting rules.

References

[1] T. Back, Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, Oxford (1996).

[2] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Plenum Press, New York (1981).

[3] J.C. Bezdek, S. Boggavarapu, L.O. Hall, A. Bensaid, Genetic Algorithm
Guided Clustering. Proc. First IEEE Conf. on Evolutionary Computation,
Orlando (1994), 34-38.

[4] J.C. Bezdek, R.J. Hathaway, N.R. Pal, Norm-Induced Shell-Prototypes
(NISP) Clustering. Neural, Parallel & Scientific Computation 3 (1995),
431-450.

[6] R.N. Davé, Fuzzy Shell Clustering and Application to Circle Detection in
Digital Images. Intern. Journ. General Systems 16 (1990), 343-355.

[6] H. Genther, M. Glesner, Automatic Generation of a Fuzzy Classification
System Using Fuzzy Clustering Methods. Proc. ACM Symposium on Ap-
plied Computing (SAC’94), Phoenix (1994), 180-183.

[7] D.E. Gustafson, W.C. Kessel, Fuzzy Clustering with a Fuzzy Covariance
Matrix. Proc. IEEE CDC, San Diego (1979), 761-766.

8]

[10]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

[20]

F. Hoppner, F. Klawonn, R. Kruse, Fuzzy—Clusteranalyse: Verfahren fur
die Bilderkennung, Klassifikation und Datenanalyse (in German). Vieweg,

Braunschweig (1997).

H. Inoue, K. Kamei, K. Inoue, Automatic Generation of Fuzzy Rules
Using Hyper Elliptic Cone Membership Function by Genetic Algorithms.
Proc. 7th Intern. Fuzzy Systems Association World Congress (IFSA’9T)
Vol. I, Academia, Prague (1997), 383-388.

F. Klawonn, A. Keller, Fuzzy Clustering and Fuzzy Rules. Proc. 7th
Intern. Fuzzy Systems Association World Congress (IFSA’97) Vol. I,
Academia, Prague (1997), 193-198.

F. Klawonn, R. Kruse, Clustering Methods in Fuzzy Control. In: W. Gaul,
D. Pfeifer (eds.), From Data to Knowledge: Theoretical and Practical

Aspects of Classification, Data Analysis and Knowledge Organization.
Springer—Verlag, Berlin (1995), 195-202.

F. Klawonn, R. Kruse, Derivation of Fuzzy Classification Rules from Mul-
tidimensional Data. In: G.E. Lasker, X. Liu (eds.), Advances in Intelligent
Data Analysis. The International Institute for Advanced Studies in Sys-
tems Research and Cybernetics, Windsor, Ontario (1995), 90-94.

F. Klawonn, R. Kruse, Constructing a Fuzzy Controller from Data. Fuzzy

Sets and Systems 85 (1997), 177-193.

R. Krishnapuram, H. Frigui, O. Nasraoui, Fuzzy and Possibilistic Shell
Clustering Algorithms and Their Application to Boundary Detection and
Surface Approximation — Part 1 & 2. IEEE Trans. on Fuzzy Systems 3
(1995), 29-60.

J. Keller, R. Krishnapuram, A Possibilistic Approach to Clustering. IEEE
Trans. on Fuzzy Systems 1 (1993), 98-110.

R. Krishnapuram, O. Nasraoui, H. Frigui, The Fuzzy C Spherical Shells
Algorithm: A New Approach. IEEE Trans. on Neural Networks 3 (1992),
663-671.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer, Berlin (1992).

S. Nascimento, F. Moura-Pires, A Genetic Approach to Fuzzy Cluster-
ing with a Validity Measure Fitness Function. In: X. Liu, P. Cohen, M.
Berthold (eds.), Advances in Intelligent Data Analysis. Springer, Berlin
(1997), 325-335.

D. Nauck, F. Klawonn, R. Kruse, Neuro-Fuzzy Systems. Wiley, Chichester
(1997).

M. Turhan, Genetic Fuzzy Clustering by Means of Discovering Member-
ship Functions. In: X. Liu, P. Cohen, M. Berthold (eds.), Advances in
Intelligent Data Analysis. Springer, Berlin (1997), 383-393.

[21] M. Sugeno, T. Yasukawa, A Fuzzy—Logic-Based Approach to Qualitative
Modeling. IEEE Transactions on Fuzzy Systems 1 (1993), 7-31.

U

Valie of J
o S B S| - DN e | (S S TR S N L

Lprefear, By T T f D s

-+ I" i

ST e EE e D0 e B e E0 e A0 e PO e I e 00
v o] £ el 8o o ow o & or- B oo B om D,

Generation

Yelue of .
e
—_—

o
]
L]
-
L]
(9]
i
X
Ll
—
T
L]
—
[
L]

Senerstion

Figure 12: Improvement of (6) by the evolutionary algorithm for the data sets
shown in Figures 10 and 11

