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Abstract. Fuzzy clustering offers various possibilities for learning fuzzy if-then rules from data for
classification tasks as well as for function approximation problems like in fuzzy control. In this paper we
review approaches for deriving rules from data by fuzzy clustering and discuss some of their common
problems. As a consequence, we propose a new method which is specifically tailored for the task of

learning rules.
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1 Introduction

The development of fuzzy control was initiated in
the early 70’s by the idea to construct a controller
based on the empirical knowledge of an operator or
control engineer. Deriving control rules from data
is an alternative approach, which became ever more
interesting during the last years since it does not
require the difficult knowledge acquisition task from
scratch.

There are of course a number of approaches to
learning fuzzy rules from data based for instance
on techniques of neural (for an overview see [18])
or evolutionary computation (see for example [9]),
mostly aiming at optimizing certain parameters of
a fuzzy controller. However, fuzzy clustering seems
to be a very appealing method for learning rules
since there is a close and canonical connection be-
tween fuzzy clusters and fuzzy rules. Intuitively,
each if-then rule of a Mamdani-type fuzzy con-
troller specifies a vague point of the graph of the
control function in the sense that it can be identi-
fied with the Cartesian product of the membership
functions modeling the linguistic terms appearing in
a rule. If for instance triangular membership func-
tions are used, the point or vector with the coordi-
nates of the tips of the triangles is a ‘typical’ point
on the control function. With increasing distance,
points in its neighbourhood are less ‘typical’ and
have therefore a decreasing membership degree to
the vague point defined by the Cartesian product of
the fuzzy sets appearing in the rule. In this sense,
a fuzzy controller can be characterized by a typi-
cal point (on the control function) and membership
function that is decreasing with increasing (trans-
formed [10]) distance to the typical points. (For a
more formal presentation of this idea we refer to
[16]). Many fuzzy clustering algorithms are exactly
pursuing the same strategy: A fuzzy cluster is rep-

resented by a typical element — usually the cluster
center — and the membership degree of a datum to
the cluster is decreasing with increasing, sometimes
transformed distance to the cluster center.

In the following section we briefly review the
background of fuzzy clustering we need to explain
how rules can be derived from fuzzy clusters. In
Section 3 we present a variety of methods for ap-
plying fuzzy clustering to obtain different kinds of
fuzzy rules. Section 4 is devoted to some problems
that are caused by these specific approaches and
proposes new algorithms that are specifically tai-
lored for the task of learning rules.

2 Fuzzy Clustering and Global
Partitions

Many fuzzy clustering approaches characterize each
cluster by a set of parameters, the so—called proto-
type. Given aset X = {z1,...,zn} C IR? of sample
data, the aim of objective function based fuzzy clus-
tering [2] is to determine the prototypes in such a
way that the objective function
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is minimized. u; stands for the membership degree
of datum zj, to cluster ¢, d(v;, z) is the distance of
datum zj to the cluster %, represented by the proto-
type v;. c¢is the number of clusters which is fixed or
can be determined by using a suitable cluster valid-
ity measure (see for instance [2, 3, 20]). The choice
of the parameter m > 1 — the fuzzifier — determines
whether the clusters tend to be more crisp or fuzzy,
i.e.,for m — 1 we have u;;; — 1 or u;; — 0, whereas
m — oo implies u;x — 1/c.

To avoid the trivial minimum u;; = 0 for all %, &,



either the probabilistic constraint

C
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has to be assumed or the term

D> om > (1 —wa)™
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for all k € {1,...

has to be added to (1) leading to the concept of
possibilistic clustering [15]. It is obvious that in
order to minimize (1) data points z; with a small
distance d(v;, 1) to the cluster ¢ should be assigned
a high membership degree whereas data with larger
distances should have low membership degrees.

A standard approach to obtain a concrete algo-
rithm is to derive necessary conditions for the mem-
bership degrees u;; and the prototypes v; in order to
obtain a (local) minimum of the objective function
(1). The clustering algorithm simply starts with a
random initialization and updates the u;; and the
v; alternatingly in an iterative procedure. We do
not go into the details of the algorithms, since they
are not of importance for our considerations in this
paper.

The most simple algorithm is the fuzzy c-means
algorithm (FCM) whose prototypes are simply the
cluster centers in the form of vectors v; € IR? and
the distance d(v;,zx) of datum zx to cluster ¢ is
the Euclidean distance between z; and the cluster
center. Gustafson and Kessel [5] enriched each pro-
totype with a symmetric, positive definite matrix C;
and compute the distance d(v;, zx) by the formula
d?(vi, i) = (det C)YP - (21 — v;)T C~ Mz — vy).
This resulting Gustafson—Kessel algorithm (GK) al-
lows in contrast to the FCM, that is tailored for
spherical clusters, the detection of hyperellipsoidal
clusters whose axes determined by the eigenvectors
of the matrix Cj.

The method designed by Gath and Geva (GG)
[3] introduces an additional parameter P; for each
prototype that allows the algorithm in connection
with the matrices C; to adapt to clusters of differ-
ent sizes. However, the GG is not a proper objective
function algorithm, since it is based on a fuzzifica-
tion of a maximum likelihood estimator.

The prototypes of the fuzzy c—varieties algorithm
(FCV) [2] are tuples of the form (v;, e(l), .. e(T)) €

i 1€
(IRP)™*+1 and induce r—dimensional linear varieties

T
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i.e. lines for » = 1 and planes for » = 2. The dis-

tance function

T
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(3)
assigns the distance 0 exactly to those data that
are lying in the linear variety determined by the
prototype.

The fuzzy c—elliptotypes algorithm (FCE) [2]
computes the distance as a convex combination of
the distance (3) of the FCV and the Euclidean dis-
tance between the cluster center v; and the datum
z} in order to avoid that, for instance for r = 1,
collinear, separated, short lines are lumped together
in one cluster.

For an overview on various fuzzy clustering al-
gorithms see [6].

3 Deriving Rules from Fuzzy
Clusters

The principal idea to apply fuzzy clustering in order
to derive if-then rules from data is that each cluster
induces a rule by projecting the cluster to the corre-
sponding coordinate spaces [11, 20]. The projection
of a cluster to the i—th domain is obtained by taking
the —th coordinate of each data point and assign-
ing to it the membership degree of the original data
point to the cluster. In this way a discrete fuzzy set
is defined on the i—th coordinate space. To extend
this fuzzy set to the whole i—th domain, a piecewise
linear fuzzy set can be defined on the basis of these
discrete points, an enveloping fuzzy set or a suitable
approximation by a parameterized fuzzy set like a
triangular or trapezoidal membership function can
be chosen [20].

In this way a cluster induces the rule

If ¢ is pq and ... and €p_1 is pp—1 then
&p is php.

where p; denotes the (extension of the) i—th pro-
jection of the considered cluster and &;,...,&—1
are input variables and £, is the output variable.
In this way a Mamdani-type fuzzy controller is de-
fined [11, 20]. In [19] a method based on the FCE is
proposed to derive Takagi—Sugeno type controllers
from fuzzy clusters. For the premise in the rule,
the fuzzy sets are again defined by the projections
of the cluster, whereas the conclusion must now be a
(linear) function in the input variables. This func-
tion is simply the linear function constituting the
prototype of the corresponding cluster. A similar
approach to obtain local linear approximations of
data is described in [21]. In [1, 7] as well as in
[17] Takagi-Sugeno type controllers are generated
on the basis of the GK where the linear functions



are defined on the basis of the eigenvalues and eigen-
vectors of the matrices Cj.

Besides these techniques that are from a mathe-
matical point of view tailored for function approxi-
mation or regression, similar methods can be ap-
plied to derive classification rules where discrete
classes appear in the conclusions of the rules [12].

All these approaches have to face the problem
that the fuzzy clustering algorithm yields a ‘fuzzy
partition’ of the product space of all data whereas
fuzzy if-then rules are usually defined on the ba-
sis of fuzzy partitions of the single domains. This
means that in addition to the loss of information
caused by the approximation of the discrete fuzzy
sets the projection of the fuzzy cluster can lead to
unusual fuzzy partitions on the single domains and
enforces again a loss of information, since the origi-
nal fuzzy cluster can not be reconstructed from the
fuzzy sets appearing in the if-then rule derived from
the cluster.

There are approaches to reduce this loss of in-
formation: [13] recommends to restrict to diagonal
matrices C; when using the GK or GG for rule in-
duction. In this way, the fuzzy clusters are forced
to be in the form of axis—parallel hyperellipsoids.
Since from the projections of the clusters only the
smallest hyperbox containing the corresponding hy-
perellipsoid can be reconstructed, the loss of infor-
mation is kept smaller in comparison to arbitrary
hyperellipsoids. One approach in [20] clusters only
the output data and induces the rules by computing
the projections to the input domains of the cylin-
drical extensions of the fuzzy clusters.

Nevertheless, the fuzzy partitions of the single
domains cannot be guaranteed to be in the form of
usual fuzzy partitions defined by experts.

4 Single Domain Partitions

In the previous section we have seen that although
fuzzy clustering is an important contribution to data
analysis in general, it is not fully accurate for induc-
ing if-then rules. On the one hand, the shapes of
the membership functions tend to be unusual, and
on the other hand, fuzzy clustering is designed for
partitions of product spaces and not of single do-
mains that are usually considered for fuzzy rules.
In the following we describe two approaches that
concentrate on finding fuzzy partitions of the single
domains and are therefore well-suited for inducing
fuzzy rules. Both approaches construct fuzzy par-
titions with triangular membership function with
the restriction that for each domain at most two
supports of different fuzzy sets have a non—empty

1We do not want to dive into a discussion on a formal
definition of a fuzzy partition. We use this terminology in a
naive and intuitive way.

intersection and the sum of the membership degrees
is one at any point of the domain. Although these
kinds of fuzzy partitions seem to be very restrictive,
they are very reasonable from a semantic point of
view [14].

The first approach was developed to construct a
Takagi-Sugeno type controller from data with con-
stant functions in the conclusions of the rules. Thus
taking the above restrictions for the fuzzy partitions
into account, the parameters that have to be deter-
mined are the constant output values in the con-
clusions of the rules and the tips (kernels) of the
triangular membership functions in each input do-
main. The algorithm starts with equidistant tips
of the triangular membership function. As error
function we simply take the sum of the quadratic
difference between the desired outputs given by the
data set and the output computed by our controller.
In order to minimize this error, the output values in
the rules can be determined by a simple linear re-
gression technique when we fix the fuzzy partitions
8]

Now we have to adjust the distances between the
tips of the triangular membership functions. For
this task we determine for each domain X, and each
area the error of the regression function. By an
area we mean the interval between the tips of two
neighbouring triangular membership function.

error(area;) =

(zﬁ‘),...,zgf)):z,(f)eareai
(4)
(m(ll), cery mg)) represent the input values in the data
set and y®) the corresponding desired output val-
ues. f(m(ll), . ..,mg)) denotes the actual output of
the fuzzy controller for input (m(ll), .. .,mg)). area;
is the interval between the tips of (¢ — 1)th and ith
triangular membership function in the domain X,,.
Now the area; should be contracted, when the
error is relatively high, whereas it can be stretched
when the error is small. In this way we refine the
partitions in these areas where the error is high and
can better approximate the function. If L¢! is the
length of area; then we define the new (relative)
length of the ith area by

old
Li

const + error(area,)

rel __
e =

where const is a positive constant that first of all
avoids devision by zero when the error is zero for
a certain area. const also determines how strong
the contraction or stretching of the corresponding
area is depending on the error. If const is small in
comparison to the error, this will result in drastic
changes whereas a large constant allows only very
small variations.
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Figure 1: Initial approximation
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Figure 2: Approximation with adjusted fuzzy par-
titions

Finally, it is necessary to normalize the relative
length of each area so that the overall length is the
same as before, i.e., the length of the interval X, :

¥, 1
rel *
> L

In this way, we obtain new fuzzy partitions for
the domains and can then compute new constant
outputs for the rule by linear regression, derive again
new fuzzy partitions and so on. We iterate this pro-
cedure until the error of the regression function does
not improve sufficiently anymore.

The idea to refine the fuzzy partitions in those
areas where the error is relative high is illustrated
by a simple example of a piecewise linear function.
Figure 1 shows such a function, which would be
approximated by a single line when we start the
regression with equidistant triangular membership
functions. Figure 2 illustrates the good result with
adjusted fuzzy partitions. It is interesting to note
that the fuzzy sets concentrate on the area where
the function is changing its course.

The good results of this approach also for multi-
dimensional inputs motivated us to develop a fuzzy
clustering algorithm that aims at finding fuzzy par-
titions for the single domains on the basis of multi-
dimensional data. We assume that we are given a

Li = Li- ()

data set {z1,...,z,} C IRP. We are looking for
fuzzy partitions on the single domains consisting
of triangular membership function with the proper-
ties mentioned before. This means that we have to
determine a suitable grid in the multi-dimensional
space. We assume that for each domain the num-
ber of triangular membership functions is prede-
fined. We define the membership degree of a data
point to a cluster represented by a grid point as
the minimum of the membership degrees of the tri-
angular membership functions whose tips are the
projections of the grid point. We start the fuzzy
clustering with equidistant triangular membership
functions on the domains. In order to rearrange the
grid, we compute the projections of the data and
the membership degrees of these projections to the
triangular membership functions. Then we update
the triangular membership functions by computing
new tips as the cluster centers, i.e., as

> k=1 il (k) * i
(o]

tg:elv = [ P
Y k=1 LA (zk,v)
old
where tﬁ:élv and t(()'f(g stand for the actualized, respec-

tively old tip and z,, denotes the v—th projection
of datum zg. p,() is the triangular fuzzy set with
old

its tip at £*).

The fuzzy sets at the left and right boundary in
each dimension require a special treatment, since it
is not clear how membership degrees on the left and
right side of the left-most, respectively right-most
tip of the triangular membership function have to
be computed. A very simple approach which does
not yield good results would put a triangular fuzzy
set at the left and right boundary (given by the
smallest, respectively greatest, value of the data in
the corresponding dimension) and would not allow
to change these fuzzy sets. Therefore, cluster cen-
ters of clusters at the boundary would tend to be at
the boundary of the clusters and not in their mid-
dle. To avoid this effect, we allow changes of the
left-most and right-most fuzzy sets in each dimen-
sion and extend the triangular membership function
in the direction of the corresponding boundary in
such a way that the data points at the very bound-
ary obtain a membership degree of 0.5.

Figure 3 shows a result obtained by this grid
clustering technique. Each data point is connected
to the prototype (grid point) whose associated clus-
ter assigns the greatest membership degree to the
data point. (In his case, we have computed the
membership degree of a 3-dimensional data point
by taking the product of the membership degrees
of its coordinates to the corresponding fuzzy sets.
Of course, another t—norm than the product is also
possible.)

This grid clustering method is of course not an



Figure 3: An example of grid clustering

objective function based algorithm, but provides
clusters with cluster centers on the grid that are
very well suited for rule induction for function ap-
proximation as well as for classification tasks. It
should be noted that empty clusters, i.e., a cluster
corresponding to a grid point whose entourage does
not contain any data points, should be neglected
when the rules are stated. This means that only
those clusters are allowed to induce a rule that are
non-empty.

An advantage of this grid clustering method is
also that in opposition to the usual probabilistic
or possibilistic clustering algorithm, clusters do not
have an infinite range, thus data points that are
covered by other clusters far away from one cluster
do not have any influence on this cluster.

Although we assumed the number of grid points
to be fixed, we can also automatically determine
their number on the basis of suitable validity mea-
sures like they are described in [2, 3, 6, 20]. We
determine the number of grid points applying the
corresponding validity measure separately in each
dimension and optimizing the number of grid points
dimension—-wise.
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