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Abstract. The well-known fuzzy c-means algorithm is an objective func-
tion based fuzzy clustering technique that extends the classical k-means
method to fuzzy partitions. By replacing the Euclidean distance in the
objective function other cluster shapes than the simple (hyper-)spheres
of the fuzzy c-means algorithm can be detected, for instance ellipsoids,
lines or shells of circles and ellipses. We propose a modified distance
function that is based on the dot product and allows to detect a new
kind of cluster shape and also lines and (hyper-)planes.

1 Introduction

Fuzzy clustering techniques aim at finding a suitable fuzzy partition for a given
data set. For a fuzzy partition a datum is not necessarily assigned to a unique
class or cluster, but has membership degrees between zero and one to each
cluster. Fuzzy clustering algorithms are applied for various reasons:

— The membership degrees give information about the ambiguity of the clas-
sification.

— Fuzzy clustering can adapt to noisy data and classes that are not well sepa-
rated.

— Since most fuzzy clustering approaches are based on optimizing an objective
function, membership degrees represent continuous parameters so that a
continuous optimization problem has to be solved.

— Fuzzy clustering can be applied to learning fuzzy rules from data.

In this paper we briefly review the principal objective function-based fuzzy
clustering approach in section 2. Various modifications of the distance function
in the objective function have been proposed in order to model different clus-
ter forms. In section 3 we introduce a new angle-based distance measure that
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is suitable for data sets with a smaller number of extreme values and a large
number of ‘normal’ values. Section 4 modifies this approach and we obtain a
clustering algorithm to detect lines and (hyper-)planes that can be applied to
line recognition as well as to constructing Takagi-Sugeno fuzzy rule systems (see
for instance [13]) that describe a function in terms of local linear models.

2 Objective Function-Based Fuzzy Clustering

We cannot give a complete overview on fuzzy clustering here and mention only
the basic ideas in order to provide the background for our new algorithms. For
a thorough overview on fuzzy clustering we refer to [2,9]. Most fuzzy clustering
algorithms aim at minimizing the objective function of weighted distances of the
data to the clusters
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X = {z1,...,z,} C RP is the data set, ¢ is the number of fuzzy clusters,

ui € [0, 1] is the membership degree of datum z, to cluster i, v; is the prototype
or the vector of parameters for cluster i, and d(v;, z;) is the distance between
prototype v; and datum xj. The parameter m > 1 is called fuzziness index. For
m — 1 the clusters tend to be crisp, i.e. either u;; — 1 or u;; — 0 resulting in
the hard c-means algorithm, for m — oo we have wu;, — 1/c. Usually m = 2 is
chosen. (2) ensures that no cluster is empty, (3) enforces that for each datum
its classification can be distributed over different clusters, but the sum of the
membership degrees to all clusters has to be one for each datum. Therefore, for
this approach the membership degrees can be interpreted as probabilities and the
corresponding clustering approach is called probabilistic. The strict probabilistic
constraint was relaxed by Davé who introduced the concept of noise clustering
[6,7]. An additional noise cluster is added and all data have a (large) constant
distant to this noise cluster. Therefore, noise data that are far away from all
other clusters are assigned to the noise cluster with a high membership degree.
Krishnapuram and Keller [12] developed possibilistic clustering by completely
neglecting the probabilistic constraint (3) and adding a term to the objective
function that avoids the trivial solution assigning no data to any cluster. We
cannot discuss the details of these approaches here and restrict our considerations
to the probabilistic fuzzy clustering approach. However, our algorithms can be



applied in the context of noise and possibilistic clustering in a straight forward
way.

We also do not consider the problem of determining the number of clusters
in this paper and refer to the overview given in [9].

The basic fuzzy clustering algorithm is derived by differentiating the La-
grange function of (1) taking the constraint (3) into account. This leads to the

necessary condition
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for the membership degrees for a (local) minimum of the objective function,
given the prototypes are fixed. In the same way, we can derive equations for the
prototypes, fixing the membership degrees, when we have chosen the parameter
form of the prototypes and a suitable distance function.

The corresponding clustering algorithm is usually based on the so-called al-
ternating optimization scheme that starts with a random initialization and alter-
natingly applies the equations for the prototypes and the membership degrees
until the changes become very small. Convergence to a local minimum or (in
practical applications very seldom) a saddle point can be guaranteed [1, 3].

The most simple fuzzy clustering algorithm is the fuzzy c-means (FCM) (see
f.e. [2]) where the distance d is simply the Euclidean distance and the prototypes
are vectors v; € RP. It searches for spherical clusters of approximately the same
size and by differentiating (1) we obtain the necessary conditions
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for the prototypes that are used alternatingly with (4) in the iteration procedure.

Gustafson and Kessel [8] designed a fuzzy clustering method that can adapt
to hyper-ellipsoidal forms. The prototypes consist of the cluster centres v; as in
FCM and (positive definite) covariance matrices C;. The Gustafson and Kessel
algorithm replaces the Euclidean distance by the transformed Euclidean distance
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Besides spherical or ellipsoidal cluster shapes also other forms can be de-
tected by choosing a suitable distance function. For instance, the prototypes of
the fuzzy c-varieties algorithm (FCV) describe linear subspaces, i.e. lines, planes
and hyperplanes [2,4]. The equations for the prototypes of this algorithm re-
quire the computation of eigenvalues and eigenvectors of (weighted) covariance
matrices. FCV can be applied to image recognition (line detection) and to con-
struct local linear (fuzzy) models. Shell clustering algorithms are another class
of fuzzy clustering techniques that are mostly applied to image recognition and
detect clusters in the form of boundaries of circles, ellipses, parabolas etc. (For
an overview on shell clustering see [9,11].)



In principal any kind of prototype parameter set and distance function can
be chosen in order to have flexible cluster shapes. However, the alternating opti-
mization scheme, that can at least guarantee for some weak kind of convergence,
can only be applied, when the corresponding distance function is differentiable.
But even for differentiable distance functions we usually obtain equations for the
prototypes that have no analytical solution (for instance [5]). This means that
we have to cope with numerical problems and need in each iteration step a nu-
merical solution of a coupled systems of non-linear equations. Other approaches
try to optimize the objective function directly by evolutionary algorithms (for
an overview see [10]). Nevertheless, fuzzy clustering approaches with distance
functions that do not allow an analytical solution for the prototypes are usually
very inefficient. In the following we introduce a new fuzzy clustering approach
that admits also an analytical solution for the prototypes.

3 Clustering with Angle-Based Distances for Normalized
Data

The idea of our approach is very similar to the original neural network com-
petitive learning approach as it is for instance described in [14]. Instead of the
Euclidean distance between a class representative and a given datum that Koho-
nen’s self organizing feature maps use, the simple competitive learning approach
computes the dot product of these vectors.

For normalized vectors the dot product is simply the cosine of the angle
between the two vectors, i.e. the dot product is one if and only if the (normalized)
vectors are identical, otherwise we obtain values between —1 and 1. Therefore,
we define as the (modified) distance between a normalized prototype vector v
and a normalized data vector z

dw,z) = 1-v'z. (6)

Thus we have 0 < d?(v,z) < 2 and, in case of normalized vectors, d*(v,z) =
0 z=w.

Let us for the moment assume that the data vectors are already normalized.
How we actually carry out the normalization will be discussed later on. With
the distance function (6) the objective function (1) becomes

J(X,U,v) = zc:zn:u?,ﬁ(l — v, x1)
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where v;¢ and xp is the ¢th coordinate/component of vector v; and zy,, respec-
tively. By taking into account the constraint that the prototype vectors v; have
to be normalized, i.e.
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we obtain the Lagrange function
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The partial derivative of L w.r.t. vy yields
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Since the first derivative has to be zero in a minimum, we obtain

1 <
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Making use of the constraint (7), we have

which gives us

so that we finally obtain
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as the updating rule for the prototypes.
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Fig. 1. Normalization of a datum
For this formula we have assumed that the data vectors are normalized.

When we simply normalize the data vectors, we loose information, since collinear
vectors are mapped to the same normalized vector. In order to avoid this effect



Fig. 2. Two clusters

we extend our data vectors by one component which we set one for all data
vectors and normalize these (p + 1)-dimensional data vectors. In this way, the
data vectors in RP are mapped to the upper half of the unit sphere in RPT!.
Figure 1 illustrates the normalization for one-dimensional data.

Figure 2 shows a clustering result for a two-dimensional data set (i.e. the
clustering is actually carried out on the normalized three-dimensional data). The
membership degrees are not illustrated in the figure. We have connected each
datum with the cluster centre (that we obtain by reversing the normalization
procedure) to which it has the highest membership degree.

Fig. 3. The one-dimensional distance function

It can be seen in figure 2 that the prototype of the upper cluster is slightly
lower than one might expect. The reason is that the distance function is not affine



invariant. We can already see in figure 2 that vectors near zero keep almost their
Euclidean distance when we normalize them, whereas very long vectors are all
mapped to the very lower part of the semi-circle.

Figure 3 shows distance values of two one-dimensional vectors. (The distance
is computed for the normalized two-dimensional vectors.) Of course, the distance
is zero at the diagonal and increases when we go away from the diagonal. But
the distance is increasing very quickly with the distance to the diagonal near
zero, whereas it increases slowly, when we are far away from the diagonal.

Fig. 4. Distance to the point (0,0)

Figures 4 and 5 also illustrate this effect. In Figure 4 the distance to the
(non-normalized) two-dimensional vector (cluster centre) (0,0)T is shown. It is
a symmetrical distance function. However, when we replace the cluster centre
(0,0) " by the vector (1,0) T, we obtain the function in figure 5.

Here we can see that the distance is asymmetrical in the sense that it increases
faster when we look in the direction of (0,0)". This can be an undesired effect
for certain data sets. But there are also data sets for which this effect has a
positive influence on the clustering result. Consider for instance data vectors
with the annual salary of a person as one component. When we simply normalize
each component, the effect is that a few outliers (persons with a very high
income) force that almost all data are normalized to values very near to zero.
This means that the great majority simply collapses to one cluster (near zero)
and few outliers build single clusters. Instead of a standard normalization, we
can also choose a logarithmic scale in order to avoid this effect. But the above
mentioned clustering approach offers an interesting alternative.

Figure 6 shows a clustering result of data of bank customers with the at-
tributes age, income, amount in depot, credit, and guarantees for credits. The
number of clusters was automatically determined by a validity criterion, result-
ing in three clusters. The axes shown in the figure are credit, income, and amount



Fig. 5. Distance to the point (1,0)

in depot. It is worth noticing that there is a compact cluster in the centre, repre-
senting the majority of average customers, whereas there are two other clusters
covering custumers with high credit or a large amount of money, respectively.

4 Clustering with Angle-Based Distances for
Non-normalized Data

In the previous section we have assumed that the data vectors are normalized
or that we normalize them for the clustering. In this section we discuss what
happens, when we refrain from normalizing the data vectors and the cluster
centres. In order to avoid negative distances, we have to modify the distance
function to

dw,z) = (1—v'z) (11)

The geometrical meaning of this distance function is the following. A datum
z has distance zero to the cluster v, if and only if v "2 = 1 holds. This equation
describes a hyperplane, i.e. the hyperplane of all z € RP of the form

p—1
v
Y Aaw, (12)
Toll 2
where the vectors wy,...,wp,—1 € RP span the hyperplane perpendicular to v

and Aq, .. -,)\p—l eR

This means that we can find clusters in the form of linear varieties like the
FCV algorithm. We will return to a comparison of FCV and this approach later
on. Figure 7 shows the distance to the prototype v = (0.5,0). This prototype

describes the line
2 Y 0
0 1/
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Fig. 6. Clustering result for bank customers

In order to derive equations for the prototypes we insert the distance function
(11) into the objective function (1) and take the first derivative w.r.t. v;:

aJ =
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These derivatives have to be zero at a minimum and we obtain the system of

linear equations
n

Zu%(l — v, zp)zg = 0.
k=1

Making use of the fact that (v, xy)zx = (zxx])v; holds, we obtain for the
prototypes

n -1 5
v = Zu:’zwkwk—r Zu%xk (13)
k=1 k=1

Note that the matrix Y, _, ultzix) is the (weighted) covariance matrix (as-
suming mean value zero) and can therefore be inverted unless the data are de-
generated.

An example of the detection of two linear clusters is shown in figure 8.

The difference of this approach to the FCV algorithm is in the computing
scheme that requires inverting a matrix whereas for the FCV algorithm all eigen-
values and eigenvectors have to be computed. Another difference is caused by
the non-Euclidean distance function that is again not affine invariant. Problems



Fig. 7. Distance to (0.5,0)

can arise when lines are near to (0,0) T, since then the corresponding prototype
vector v is very large, and even small deviations from the linear cluster lead to
large distances. These problems are well known for other fuzzy clustering algo-
rithms with non-Euclidean distance functions [11] and have to be treated in a
similar way.

5 Conclusions

We have introduced fuzzy clustering algorithms using dot product-based distance
functions that lead to new cluster shapes in the normalized case and to linear
clusters in the non-normalized case. They represent a further extension of the
already known objective function-based fuzzy clustering approaches.
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