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Abstract. Local patterns in the form of single clusters are of interest
in various areas of data mining. However, since the intention of cluster
analysis is a global partition of a data set into clusters, it is not suitable
to identify single clusters in a large data set where the majority of the
data can not be assigned to meaningful clusters. This paper presents a
new objective function-based approach to identify a single good cluster
in a data set making use of techniques known from prototype-based,
noise and fuzzy clustering. The proposed method can either be applied
in order to identify single clusters or to carry out a standard cluster
analysis by finding clusters step by step and determining the number of
clusters automatically in this way.
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1 Introduction

Cluster analysis aims at partitioning a data set into clusters. It is usually assumed
that, except for some noise data, most of the data can be assigned to clusters.
However, when we are interested in detecting local patterns, standard clustering
techniques are not suited for this task.

In various applications, cluster analysis is applied, although the focus is on
detecting single interesting patterns, instead of partitioning the data set. For
instance, cluster analysis is very often applied in the context of gene expression
data in order to find groups (clusters) of genes with a similar expression pattern.
The approach described in this paper was also motivated by an analysis of gene
expression data where we applied standard clustering in the first step [4], but
the main intention of the biologists was to find local patterns instead of a global
partition into clusters. However, there are many other areas like the analysis of
customer profiles where local patterns are of high interest.

A number of different approaches for the detection of local patterns have
already been proposed and studied in the literature. For categorical data, nu-
merous variants of the a priori algorithm for finding frequent item sets and
association rules are very popular [8]. Scan statistics [7, 3] can be used to search
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for local peaks in continuous data sets. However, due to the high computational
costs, they are not suited for high-dimensional data and are very often applied
in the context of geographical clusters, for instance places with an unusually
high rate of a certain disease. In [9] a statistical approach is described that tries
to circumvent the high computational costs of scan statistics by restricting the
search space for the price of sub-optimal solutions. In this paper, we do not
follow the more statistical idea of finding regions with high densities in the data
space, but clusters that are more or less well separated from the rest of the data.

Fig. 1. An example data set.

Figure 1 shows an almost ideal example of a data set we consider here. It
contains an almost well-separated cluster close to the top-left of the figure made
of 200 data points, whereas the other 600 data points are scattered all over the
data space and do not form meaningful clusters. Of course, figure 1 serves only
illustration purposes, real data sets will have more than two dimensions.

The approach presented in this paper follows the concept of prototype-based
cluster analysis, however, trying to find only one single cluster at a time. From
the perspective of the single cluster, that we are trying to find in one step, data
not belonging to this cluster is considered as noise. Therefore, we incorporate the
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idea of noise clustering into our approach. Section 2 provides a brief overview on
the necessary background of prototype and objective function-based clustering
including noise clustering. In section 3 the new approach is introduced in detail.
Short comments on application scenarios are provided in section 4, before we
conclude the paper with a perspective on future work.

2 Prototype- and Objective Function-Based Clustering

In prototype-based clustering clusters are described by certain parameters that
determine the prototype of the cluster. In the most simple case of c-means clus-
tering, the prototype has the same form as a data object, assuming that clusters
correspond more or less to (hyper-)spheres. Nevertheless, more flexible clus-
ter shapes can also be covered by using more sophisticated prototypes. Cluster
shapes might range from ellipsoidal shapes of varying size to non-solid clusters
in the form of lines, hyperplanes or shells of circles and ellipses, the latter being
more interesting in the area of image analysis. In this paper, we only mention
c-means prototypes for our approach. However, our approach can be easily ap-
plied to any other cluster shape that is used in prototype-based clustering. For an
overview on different cluster shapes and an introduction to objective function-
based clustering we refer for instance to [5].

Once the form of the prototype is chosen, the idea of most prototype-based
clustering techniques is to minimize the following objective function

f=000 uid (1)

i=1 j=1

under the constraints
(&
uy =1 forallj=1,...,n (2)
i=1

It is assumed that the number of clusters c is fixed. We will not discuss the
issue of determining the number of clusters here and refer for an overview to [1,
5]. The set of data to be clustered is {z1,...,2,} C IRP. d;; is some distance
measure specifying the distance between datum z; and cluster 4, for instance
the (quadratic) Euclidean distance of z; to the ith cluster centre in the case
of c-means clustering. u;; is the membership degree of datum z; to the ith
cluster. In the case of classical deterministic clustering, we require u;; € {0,1}.
However, here we will need the more general concept of fuzzy clustering and
allow w;; € [0,1]. The parameter m > 1, called fuzzifier, controls how much
fuzzy clusters may overlap. The constraints (2) lead to the name probabilistic
clustering, since in this case the membership degree u;; can also be interpreted
as the probability that x; belongs to cluster :.

The parameters to be optimized are the membership degrees u;; and the
cluster parameters that are not given explicitly here. They are hidden in the
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distances d;;. Since this is a non-linear optimization problem, the most common
approach to minimize the objective function (1) is to alternatingly optimize
either the membership degrees or the cluster parameters while considering the
other parameter set as fixed.

Davé [2] introduced the technique of noise clustering. Noise clustering uses
the same objective function as (1). However, one of the clusters — the noise cluster
— does not have any prototype parameters to be optimized. All data objects have
a fixed (large) distance § to this noise cluster. In this way, data objects that are
far away from all other clusters are assigned to the noise cluster.

3 Identifying Single Clusters

As mentioned in the introduction, we are not interested in partitioning the data
set, but in finding single clusters step by step. In order to find one single cluster,
we adopt the idea of prototype-based clustering reviewed in the previous section.

We can simplify the notation, since we do not have to deal with ¢ clusters,
but only with two clusters: The proper cluster, we want to identify, and the noise
cluster. We denote the membership degree of data object x; to the cluster to be
identified by u; and its distance to this cluster by d;. According to the constraint
(2), the membership degree to the noise cluster is 1 — u;. The distance to the
noise cluster is denoted by §. We also choose m = 2 as the fuzzifier. This means
that the objective function (1) including the constraints (2) simplifies to

A=) uldy+ (1 —uy)?s% (3)
j=1

The distance § to the noise cluster influences the possible size of the single cluster,
we want to identify. The larger the noise distance, the larger the single cluster
can be. However, we are not able to specify é a priori. In [6] an approach was
proposed that also considers a single cluster together with a noise cluster. There,
the noise distance § is varied. Starting from a very large value ¢ is decreased in
small steps until it reaches zero. While § decreases, data objects are moved
from the proper cluster to the noise cluster. The proper cluster is identified
by analysing the fluctuation of the data from the proper cluster to the noise
cluster. Although effective, this approach requires high computational costs for
the repeated clustering while 4 is decreasing. Also the analysis of the fluctuation
of the data is not trivial.

In this paper, we try to adapt § automatically during the clustering process.
Therefore, we extend the objective function (3) by three further terms. We want
our proper cluster to be well-separated from the remaining data, i.e. from the
noise cluster. When the proper cluster is well separated from the noise cluster,
membership degrees should tend to the values zero and one. There should be
few data with intermediate values. Assuming u; € [0,1], the following term is
maximal, if u; € {0,1} holds for all data objects j. It is minimal, if all u; are
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equal to 0.5.
n
fo =Y w4 (1—u)’ (4)
j=1

It is also desirable, that our proper cluster is not empty and all data are assigned
to the noise cluster. The term

I3 = ZU? (5)

is maximised, when data objects are assigned to the proper cluster with high
membership degrees.

Finally, we need an additional condition for the noise distance 4. Otherwise,
if we could choose ¢ freely, minimizing (3) would automatically lead to 6 = 0.
The fourth term

fa =19 (6)
should be maximised in order to favour larger values §. A large § also means
that the proper cluster can be larger.

The objective function, we want to minimize for identifying the single cluster,
is a linear combination of these four terms. Since only (3) should be minimized,
whereas the other three should be maximised, we choose a negative coefficient
for (4), (5) and (6). The overall objective function to be minimized is

f= 0= af ™)

We have introduced the factor % for the first three terms, in order to make the
choice of the coefficients independent of the number of data. % f1 is the weighted
average distance, weighted by the membership degrees, of the data to the two
clusters. % f2 can be interpreted as an indicator of how well separated the proper
cluster is from the remaining data. It can assume values between 0.5 and 1. %fg
corresponds to the proportion of data in the proper cluster. The final term f; is
already independent of the number of data.

The parameters in f to be optimized are

— the membership degrees u; € [0,1] (j € {1,...,n}),
— the noise distance 6 > 0 and

— the cluster prototype parameters that are hidden in the distances d;.

In order to apply the alternating optimization scheme, we have to find the
optimal values for each set of parameters, while the other parameters are con-
sidered as fixed.

Taking the partial derivative of f with respect to u; leads to

of
an

ay

_ 2 a1 o a1 - oo az as as az
= 2gu]d] —2;6 +2;U]6 —2gu]—2;u]+2g—2gu]. (8)
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For a minimum, it is necessary that the partial derivative is zero. Setting (8) to
7ero, we obtain

ay (52 — as
a1d§ +a102 — 2ay — as )

(9)

Uj:

The partial derivative of f with respect to ¢ is
of a - 2
% = 2;6‘;(1_11]) — A4,

leading to
a4

2@1% Z?:l(]- — U]‘)Q '

The cluster prototype parameters occur only in the distances d; and therefore
only in the term f; of the objective function. Therefore, the derivation for the
cluster prototype parameters is the same as for standard fuzzy clustering. In the
most simple case of a fuzzy c-means prototype, the prototype is a vector v € IRP
like the data objects. The corresponding equation for v is then

5 = (10)

S vl
_ 2uj=1 Y51
Jj=1"7
The four coefficients ay, . . ., a4 determine, how much influence the corresponding

terms in the objective function have. Since only the proportions between these
coefficients and not their absolute values play a role in the optimization, we can
choose a; = 1 without loss of generality. Therefore, equations (9) and (10) can
be simplified to

62 — a9
- 12
Ui d§+52—2a2—a3 ( )
d
. P p— - (13)
25 Zj:l(l - Uj)
respectively.

The principal algorithm to find a single cluster is then as follows:

1. Choose a3, as,aq > 0.

N

. Choose € > 0 for the stop criterion.
3. Initialise v and ¢ (randomly or as described in section 4).
4. Update the u;’s according to equation (12).

5. Update 4 according to equation (13).
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6. Update v according to equation (11) (or to the corresponding equation, if
other than fuzzy c-mean prototypes are considered).

7. Repeat steps 4,5,6 until v is not changed significantly anymore, i.e. until
” pnev _ Uold ||< €.

In step 4 we have to make sure that 0 < u; < 1 holds. In order to satisfy
this condition, we define a lower bound for the noise distance . When we want
the denominator in (12) to be positive, even for small distances d; or at least for
distances about d; = a3, we have to require that 6> > 2as, i.e. § > v/2a2 holds.
Therefore, we define § = \/2a5 in case (13) yields a value smaller than /2as. For
very small values of d; this might still lead to a negative denominator in (12).
It is obvious that we should choose u; = 1 in these cases, i.e. assign the data
object z; fully to the very close proper cluster.

Recommendations for the choice of the parameters as, as, a4 will be provided
in the next section.

4 Application Scenarios

The main objective of identifying a single cluster is still to find the correct
cluster prototype and to assign the corresponding data correctly to the cluster.
Therefore, the most important term in the objective function (7) is fi. Since we
assume a; = 1, the other parameters should be chosen smaller than one. Our
experiments with various data sets have shown that in most cases a4 ~ a3z ~ 10as
is a suitable relation between the coefficients. The crucial point is then the choice
of the parameter as. Since this coefficient determines also the minimal noise
distance, it should depend on the expected distances d; in the data set. When
we assume that the data set is normalised to the unit hyper-cube, the distance
values d; still depend on the dimension p of the data and a4 ~ (p-0.1)* worked
quite well.

In the example data set from figure 1 our algorithm is able to identify the
cluster in the top left correctly, depending on the initialisation. As long as the
initial cluster centre v is not too far away from the dense data cluster — the
initial prototype does not have to be within the data cluster — the cluster will be
identified correctly. However, when the initial prototype v is too far away from
the cluster to be identified, the cluster might not be found. We cannot expect
this, since our algorithm does not carry out any explicit scanning of the data
set. Therefore, we recommend to carry out standard c-means clustering and use
the resulting cluster centres as initialisations for our algorithm. The initial value
for d can then be based on the average distance of the data to the corresponding
cluster. We have applied this technique to gene expression data and were able
to identify clusters relevant from the biological point of view. Due to the limited
space, we cannot discuss the details of this application here.
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5 Conclusions

We have proposed an efficient approach to identify single clusters. Future work
will focus on the influence of the choice of the coefficients as, as, a4 to be chosen
in our algorithm as well as on results using more complex cluster prototypes.
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