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Abstract. Objective function based fuzzy clustering aims at finding a fuzzy partition by optimizing
a function evaluating a (fuzzy) assignment of a given data set to clusters, that are characterized by a
set of parameters, the so—called prototypes. The iterative optimization technique usually requires the
objective function not only to be differentiable, but prefers also an analytical solution for the equations
of necessary conditions for local optima. Evolutionary algorithms are known to be an alternative
robust optimization technique which are applicable to quite general forms of objective functions. We
investigate the possibility of making use of evolutionary algorithms in fuzzy clustering. Our experiments
and theoretical investigations show that the application of evolutionary algorithms to shell clustering,
where the clusters are in the form of geometric contours, is not very promising due to the shape of the
objective function, whereas they can be helpful in finding solid clusters that are not smooth, for exam-
ple rectangles or cubes. These types of clusters play an important role for fuzzy rule extraction from data.
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1 Introduction

Many fuzzy clustering algorithms are based on the
idea to optimize an objective function. Usually, this
objective function depends on the distances of the
data to the clusters weighted by the membership de-
grees. By taking the first derivative of the objective
function with respect to the cluster parameters, one
obtains necessary conditions for the objective func-
tion to have an optimum. These conditions are then
applied in an iteration procedure and define a clus-
tering algorithm. This requires the objective func-
tion to be differentiable and the iteration procedure
can be computationally efficient only if the derived
conditions lead to explicit equations for the cluster
parameters. The set of cluster parameters, that de-
termine the size and the shape of a cluster, depends
on the specific application field. We mainly dis-
tinguish between fuzzy clustering as an explorative
data analysis method, especially for unsupervised
classification tasks, techniques for rule extraction
(for instance for fuzzy controllers), and shell clus-
tering algorithms, that are designed for boundary
detection in image recognition.

Unfortunately, in many cases the restrictions
that are enforced on the cluster parameters to be
able to derive the iteration procedure are too nar-
row and exclude a lot of interesting possibilities.
Thus it is desirable to have an alternative optimiza-
tion technique that allows for more freedom in the
choice of the cluster parameters.

In this paper we investigate whether evolution-
ary algorithms may be a solution to this problem.
After a short introduction on fuzzy clustering in
Section 2, we discuss the principal approach to use

evolutionary algorithms for fuzzy clustering in Sec-
tion 3 and report on the experimental and theoret-
ical results in Section 4.

2 Objective Function Based
Fuzzy Clustering

Let us briefly review some fuzzy clustering meth-
ods based on objective functions. (For an overview
see for example [8].) The cluster algorithm aims at
minimizing the objective function
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J(X,Uv) = 30 (ua)™d (v, z1)
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under the constraints
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and

c
E Ui — 1
i=1

X ={=z1,...,2,} C IR? is the data set, c is the
number of fuzzy clusters, u;; € [0,1] is the mem-
bership degree of datum z; to cluster ¢, v; is the
prototype or the vector of parameters for cluster
1, and d(v;, zx) is the distance between prototype
v; and datum z;. The parameter m > 1 is called
fuzziness index. For m — 1 the clusters tend to be
crisp, i.e. either u;; — 1 or uy — 0, for m — oo we
have u;; — 1/c. Usually m = 2 is chosen.

forall ke {1,...n}. (3)



The objective function (1) to be minimized uses
the sum over the quadratic distances of the data to
the prototypes weighted with their membership de-
grees. (2) guarantees that no cluster is completely
empty, (3) ensures that for each datum its classifi-
cation can be distributed over different clusters, but
the sum of the membership degrees to all clusters
has to be 1 for each datum.

Differentiating (1), taking the constraints into
account by Lagrange multipliers, one obtains

1
Uiy = " +1 (4)
i (Ftmd)

as a necessary condition for (1) to have a (local)
minimum. The Equation (4) is therefore used for
updating the membership degrees u;; in an itera-
tion procedure until the difference between the ma-
trix (ul¢") and the matrix (ugd) in the previous
iteration step is less than a given tolerance bound
E.

The most simple fuzzy clustering algorithm is
the fuzzy c—means (FCM) (see f.e. [2]) where the
distance d is simply the Euclidean distance and the
prototypes are vectors v; € IRP. It searches for
spherical clusters of approximately the same size
and by differentiating (1) we obtain the necessary

condition n
v — 2ok=1(Uik)" (5)
' > p=a (i)™
for the prototypes that are used alternatingly with
(4) in the iteration procedure.

Gustafson and Kessel [7] designed a fuzzy clus-
tering method that is looking for hyper—ellipsoidal
clusters. The prototypes consist of the cluster cen-
ters v; as in the FCM and (positive definite) co-
variance matrices C;. The Gustafson and Kessel
algorithm replaces the Euclidean distance by the
transformed Euclidean distance

dz(vi,mk) = (Pi detCi)l/p-(mk—vi)TC_l(mk—vi).

These or similar algorithms can also be applied
to learn fuzzy rules from data for classification prob-
lems [6, 10] or function approximation [9, 11, 15].
The fuzzy rules are derived from projections of the
clusters leading to a certain loss of information
which could be minimized if the clusters had the
shapes of rectangles or cubes. Unfortunately, such
shapes lead to non-differentiable objective
functions.

In contrast to the methods that are designed
for solid clusters, the so—called shell clustering algo-
rithms are tailored for clusters in the form of bound-
aries of circles, ellipses, etc. (For an overview on
shell clustering see [12].) Davé [5] developed one
of the first shell clustering algorithms for the de-
tection of circles. Each prototype consists of the

cluster center v; and the radius »;. The distance
function for the fuzzy c—shells algorithm (FCS) is

d*((viy i), z) = (|| 2k —vi || —ri)?

so that exactly those data have zero distance to the
cluster that are located on the circle with radius »;
and center v;. Unfortunately, this distance function
leads to a set of coupled non-linear equations for
the v; and r; that cannot be solved in an analytical
way. Thus an additional numerical iteration pro-
cedure to solve non-linear equations is necessary in
each iteration step of the clustering algorithm which
causes a lot of computational costs. Although this
specific problem is solved for circles by the fuzzy
c—spherical shells algorithm (FCCS) [13] using the

distance function
d*((vi,ri)yzi) = (| 2x — i ||> —r)?,

the general problem for other shell shapes remains.

3 Evolutionary Algorithms for
Fuzzy Clustering

Evolutionary algorithms are a class of optimization
methods that are inspired by the process of biolog-
ical evolution. The principal idea is to have a col-
lection or population of possible problem solutions
encoded as parameter vectors — the chromosomes —
that define a solution. From this population a new
population — the next generation — is generated by
first producing offspring from the old chromosomes
by changing some components of the chromosomes,
the genes, randomly and sometimes also by a mix-
ing of genes of different chromosomes (crossover),
and then by selecting the best chromosomes for the
next generation. For details we refer to books like
[1, 14].

As a quite general optimization strategy, evolu-
tionary algorithms might be applicable to objective
function based fuzzy clustering. Thus it is neces-
sary to find a suitable coding of the parameters to
be determined in fuzzy clustering. Obviously, the
parameters to be optimized are the prototypes wv;
and the membership degrees u;;. In [3] it was pro-
posed to perform hard clustering (i.e. us € {0, 1}),
with genetic algorithms by taking the u;; as the pa-
rameters for the evolutionary algorithm. For fuzzy
clustering this does not seem to be suitable, since
this means that besides the prototypes c - n real—
valued parameters have to be optimized, where c is
the number of clusters and n the number of data
vectors. Since the formula (4) is generally valid in-
dependent of the special type of prototype, it is not
necessary to optimize the parameters u;; by an evo-
lutionary algorithm. In addition, the problems for
the standard iterative optimization procedure are
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Figure 1: A test data set for the FCM

not caused by the membership degrees, but by the
choice of the prototype parameters. Thus we re-
strict ourselves here to optimize only the prototypes
by an evolutionary algorithm. The corresponding
membership degrees are computed as in the usual
algorithm on the basis of equation (4).

The aim of fuzzy clustering depends on the ap-
plication domain. In the case of data analysis and
classification tasks as well as for rule extraction it is
important to find an appropriate (gradual) assign-
ment of the data to suitable prototypes, i.e., the
emphasis is on the assignment and not on the ex-
act prototype parameters. For shell clustering algo-
rithms to detect geometrical objects in images the
exact parameters, i.e. the prototype, play an impor-
tant role. This means that it is not sufficient just to
compile the data points on a circle in one cluster,
but that the center and the radius of the circle are
of great interest.

4 Experimental and Theoreti-
cal Results

Before we apply evolutionary algorithms to fuzzy
clustering with non—standard prototypes, we first
test their performance by two standard fuzzy clus-
tering techniques, namely the FCM as an example
for the search after solid clusters and the shell clus-
tering algorithm FCS.

Figure 1 shows a test data set for the FCM with
four clusters. Evolutionary algorithms with differ-
ent parameters were all able to solve the problem
of finding suitable prototypes. An example run is
illustrated in Figure 2 where the tracks of the pro-
totypes computed over the generations by the evo-
lutionary algorithm are indicated. A comparison of
different selection strategies (left to right: roulette
wheel, remainder stochastic sampling, tournament)
in Figure 3 shows that tournament selection has the
best performance. In the figure the dashed line indi-
cates the average fitness and the other line the best
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Figure 2: Tracking the prototypes
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Figure 3: Comparison of selection strategies

fitness in each generation, averaged over 18 runs of
the evolutionary algorithm.

Looking at these good results for the FCM we
were quite optimistic also for shell clustering. How-
ever, the results were more or less disappointing.
Figure 4 shows a test data set with five circles for
the FCS and two results of the evolutionary algo-
rithm. In one case no circle was detected correctly,
in the other only one of the five. These results could
not be improved, neither by experimenting with the
mutation or crossover rate nor by introducing tech-
niques like controlling the mutation rate on the ba-
sis of a span measure [14].

The typical results of the optimization of the
objective function of the FCS by an evolutionary
algorithm tend to yield larger circles — an observa-
tion which was also made in [4] where rectangular
shells were considered. Thus we tested the evolu-
tionary algorithm with a data set representing only
one circle with center (0,0) and radius 2. In one case
we limited the search space for the radius and the
coordinates to the interval [—2.2,2.2], in the other
case to the interval [—22,22]. In the first case the
evolutionary algorithm computed the correct radius
and center in all test runs after about 30 genera-
tions. For the second case the circle was detected



Figure 4: FCS: Test data and results

correctly only in about 60% of the cases after ap-
proximately 125 generations.

This motivated us to take a closer look at the
fitness function. We consider again a circle with
center (0,0) and radius 2 as the data set. In Figure
5 the evaluation of a chromosome is shown whose
y—coordinate for the circle is the correct value 0,
whereas the z—value is shifted to the right between 0
and 22. The different curves were drawn for radius
values between 1 and 10. The middle and lower
diagram are just magnified scalings of the upper
diagram.

From this figure it is obvious that the correct
radius 2 gets the best evaluation only as long as
the circle center is not shifted to far away from the
original circle center. The smaller radius 1 does
never yield better values than a larger radius. And
with increasing distance of the shifted center to the
original center, a larger radius gets a better evalu-
ation. This implies that in early generations where
the random circle centers are still far away from the
correct circle centers, chromosomes with smaller ra-
dius values are not being selected. But when these
values are missing in the population, a random mu-
tation to the correct radius without mutating also
the center to the correct value leads to a very bad
evaluation. Thus these genes are so strongly depen-
dent on each other that only a simultaneous random
jump of all genes to the correct values can lead to
good results.

When we applied the evolutionary algorithm
again to the data set of Figure 1 and limited the
search range for radius genes to the interval [0, 2.2],
the results were satisfactory. In all test runs the
circles were detected correctly after about 80 gen-
erations in average.
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Figure 5: Evaluation of chromosomes with shifted
circle centers

Our theoretical considerations and experiments
show that the applicability of evolutionary algo-
rithms to shell clustering is not very promising ex-
cept when the parameter range can be restricted to
quite limited bounds.

As mentioned in Section 2, the standard iter-
ation procedure is difficult or impossible not only
for certain types of shell clusters, but also for in-
stance for solid rectangular clusters. Such clusters
would be ideal for fuzzy rule extraction, especially
when they are restricted to axis parallel rectangles
or cubes.

In order to obtain clusters of this type we define
as prototypes for p—dimensional data cluster centers
z; € IR? and diagonal matrices B;. As the distance
function we choose

d*(zx, (2, Bi)) = || Bi(zi —zx) |12

2
(1?]%,{1’” |z — mk]-|}) :
In opposition to [4] we use the supremum norm
|| . ||loo instead of the 1-norm. In order to avoid
the undesired solution b;; = 0 for all ¢, j, we have
to enforce a restriction on the matrices B;. Analo-
gously to the Gustafson and Kessel algorithms we
require the matrix B; to have a fixed value g; for the
determinant, which determines the size or the vol-
ume of the cluster 7. If nothing is known about the
data, we simply choose g; = 1 forallz=1,...,c.
All results were quite satisfactory. In 90-100
percent of the test runs the evolutionary algorithm
was able to assign the data to the correct clusters
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Figure 6: Two separated rectangular clusters (not

filled and filled)
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Figure 7: Two contiguous rectangular clusters (not

filled and filled)

and the cluster centers were detected approximately
correct.
examples. In both cases we used two data sets —
one in which data points were only placed on the
edges of the rectangles and one were the rectangles
were filled with data points.

It is worth noticing that the best chromosome
in Figure 7 for the data set with points only one the
edges had the vectors (0, —0.1) and (0, —5.1) for the

cluster centers and and the values 0.6 and 1.6 for the

Figures 6 and 7 show two 2-dimensional

entree in the upper left corner of the diagonal matri-
ces. The other non-zero value of the 2—dimensional
diagonal matrix can then be calculated, since the
determinants are fixed. This chromosome was as-
signed the error value 626.5 whereas the ‘desired’
solution with centers (0, 0) and (0, —4.5) and matrix
values 0.5 and 2.0 gets a larger error value of 740.8.
Thus this method is not suited for computing the
correct parameters of rectangular shells. Neverthe-
less, the assignment of the data to the clusters was
satisfactory even if data points were only present on
the edges. Also the 3—dimensional case in Figure 8
and 9 caused no problems.
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Figure 9: z/z-projections of three 3-dimensional
clusters

5 Conclusions

Our investigations show that shell clustering with
evolutionary algorithms seems to be quite problem-
atic, since there exist a lot of local optima and the
correct solution often looks like a very narrow op-
timum. The situation is better for solid clusters.
It should however be noted that evolutionary algo-
rithms require a much longer computation time to
solve the problem compared to the standard itera-
tion procedure so that the application of evolution-
ary algorithms makes only sense when the standard
iteration procedure cannot be applied according to
a non—differentiable distance function or when an
analytical solution for the single iteration steps can-
not be found.
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