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Abstract: The step from the well-known c-means clustering algorithm to
the fuzzy c-means algorithm and its vast number of sophisticated extensions
and generalisations involves an additional clustering parameter, the so called
fuzzifier. This fuzzifier does not only control, how much clusters may or are
assumed to overlap. It also has some negative effects causing problems for
clusters with varying data density, noisy data and large data sets with a
higher number of clusters. In this paper we take a closer look at what the
underlying general principle of the fuzzifier is. Based on these investigations,
we propose an improved more general framework that avoids the undesired
effects of the fuzzifier.

1 Introduction

Clustering is an exploratory data analysis method applied to data in order to
discover structures or certain groupings in a data set. Fuzzy clustering accepts
the fact that the clusters or classes in the data are usually not completely well
separated and thus assigns a membership degree between 0 and 1 for each
cluster to every datum.

The most common fuzzy clustering techniques aim at minimizing an ob-
jective function whose (main) parameters are the membership degrees and the
parameters determining the localisation as well as the shape of the clusters.
Although the extension from deterministic (hard) to fuzzy clustering seems
to be an obvious concept, it turns out that to actually obtain membership
degrees between zero and one, it is necessary to introduce a so-called fuzzifier
in fuzzy clustering. Usually, the fuzzifier is simply used to control how much
clusters are allowed to overlap. In this paper, we provide a deeper under-
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standing of the underlying concept of the fuzzifier and derive a more general
approach that leads to improved results in fuzzy clustering.

Section 2 briefly reviews the necessary background in objective function-
based fuzzy clustering. The purpose, background and the consequences of
the additional parameter in fuzzy clustering — the fuzzifier — is examined in
section 3. Based on these consideration and on a more general understanding,
we propose an improved alternative to the fuzzifier in section 4 and outline
possible other approaches in the final conclusions.

2 Objective Function-Based Fuzzy Clustering

Clustering aims at dividing a data set into groups or clusters that consist of
similar data. There is large number of clustering techniques available with
different underlying assumptions about the data and the clusters to be dis-
covered. A simple and common popular approach is the so-called c-means
clustering [4]. For the c-means algorithm it is assumed that the number of
clusters is known or at least fixed, i.e., the algorithm will partition a given
data set X = {x1,...,2,} C R? into ¢ clusters. Since the assumption of a
known or a priori fixed number of clusters is not realistic for many data anal-
ysis problems, there are techniques based on cluster validity considerations
that allow to determine the number of clusters for the c-means algorithm as
well. However, the underlying algorithm remains more or less the same, only
the number of clusters is varied and the resulting clusters or the overall parti-
tion is evaluated. Therefore, it is sufficient to assume for the rest of the paper
that the number of clusters is always fixed.

From the purely algorithmic point of view, the c-means clustering can be
described as follows. Each of the ¢ clusters is represented by a prototype v; €
IR?. These prototypes are chosen randomly in the beginning. Then each data
vector is assigned to the nearest prototype (w.r.t. the Euclidean distance).
Then each prototype is replaced by the centre of gravity of those data assigned
to it. The alternating assignment of data to the nearest prototype and the
update of the prototypes as cluster centres is repeated until the algorithm
converges, i.e., no more changes happen.

This algorithm can also be seen as a strategy for minimizing the following

objective function:
C n
f=000 widy (1)

i=1 j=1

under the constraints

ZUU =1 forallj=1,...,n (2)
i=1



What is Fuzzy About Fuzzy Clustering? 3

where u;; € {0,1} indicates whether data vector z; is assigned to cluster i
(uij = 1) or not (uz; = 0). dij =|| zj —v; ||* is the squared Euclidean distance
between data vector x; and cluster prototype v;.

Since this is a non-trivial constraint nonlinear optimisation problem with
continuous parameters v; and discrete parameters u;;, the above mentioned
algorithm, alternatingly optimising one set of parameters while the other set
of parameters is considered as fixed, seems to be a reasonable approach for
minimizing (1).

It should be noted that choosing the (squared) Euclidean distance as a
measure for the distance between data vector u;; and cluster ¢ is just one choice
out of many. In this paper we are not interested in the great variety of specific
cluster shapes (spheres, ellipsoids, lines, quadrics,...) that can be found by
choosing suitable cluster parameters and an adequate distance function. (For
an overview we refer to [2, 5].) Our considerations can be applied to all cluster
shapes. In this paper we concentrate on the assignment of data to clusters
specified by the u;;-values, especially in fuzzy clustering where the assumption
u;; € {0,1} is relaxed to u;; € [0,1]. In this case, u;; is interpreted as the
membership degree of data vector x; to cluster i. Especially, when ambiguous
data exist and cluster boundaries are not sharp, membership degrees are more
realistic than crisp assignments. However, it turned out that the minimum of
the objective function (1) under the constraints (2) is still obtained, when w;;
is chosen in the same way as in the c-means algorithm, i.e. u;; € {0,1}, even
if we allow u;; € [0,1]. Therefore, an additional parameter m, the so-called
fuzzifier [1], was introduced and the objective function (1) is replaced by

i=1 j=1

Note that the fuzzifier m does not have any effects, when we stick to hard
clustering. The fuzzifier m > 1 is not subject of the optimisation process
and has to be chosen in advance. A typical choice is m = 2. We will discuss
the effects of the fuzzifier in the next section. The fuzzy clustering approach
with the objective function (3) under the constraints (2) and the assumption
u;j € [0, 1] is called probabilistic clustering, since due to the constraints (2) the
membership degree u;; can be interpreted as the probability that z; belongs
to cluster i.

This still leads to a nonlinear optimisation problem, however, in contrast
to hard clustering, with all parameters being continuous. The common tech-
nique for minimizing this objective function is similar as in hard clustering,
alternatingly optimise either the membership degrees or the cluster parame-
ters while considering the other parameter set as fixed.

Taking the constraints (2) into account by Lagrange functions, the mini-
mum of the objective function (3) w.r.t. the membership degrees is obtained
at [1]
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1
Uj = ———————, (4)

.. m—1
e ()

when the cluster parameters, i.e. the distance values d;;, are considered to
be fixed. (If d;; = 0 for one or more clusters, we deviate from (4) and assign
z; with membership degree 1 to the or one of the clusters with d;; = 0 and
choose wu;; = 0 for the other clusters i.)

If the clusters are represented by simple prototypes v; € IRP and the
distances d;; are the squared Euclidean distances of the data to the corre-

sponding cluster prototypes as in the hard c-means algorithm, the minimum
of the objective function (3) w.r.t. the cluster prototypes is obtained at [1]

v — Z?:l u:?:v] (5)
! Z?:l ug ’

when the membership degrees u;; are considered to be fixed. The prototypes
are still the cluster centres. However, using [0, 1]-valued membership degrees
means that we have to compute weighted cluster centres. The fuzzy cluster-
ing scheme using alternatingly equations (4) and (5) is called fuzzy c-means
algorithm (FCM). As mentioned before, more complicated cluster shapes can
be detected by introducing additional cluster parameters and a modified dis-
tance function. Our considerations apply to all these schemes, but it would
lead too far to discuss them in detail. However, we should mention that there
are alternative approaches to fuzzy clustering than only probabilistic clus-
tering. Noise clustering [3] maintains the principle of probabilistic clustering,
but an additional noise cluster is introduced. All data have a fixed (large)
distance to the noise cluster. In this way, data that are near the border be-
tween two clusters, still have a high membership degree to both clusters as in
probabilistic clustering. But data that are far away from all clusters will be
assigned to the noise cluster and have no longer a high membership degree to
other clusters. Our investigations and our alternative approach fit also per-
fectly to noise clustering. We do not cover possibilistic clustering [6] where the
probabilistic constraint is completely dropped and an additional term in the
objective function is introduced to avoid the trivial solution u;; = 0 for all ¢, 5.
However, the aim of possibilistic clustering is actually not to find the global
optimum of the corresponding objective function, since this is obtained, when
all clusters are identical [7].

3 Understanding the Fuzzifier

The fuzzifier controls how strong clusters may overlap. Figure 1 illustrates this
effect by placing two cluster centres on the z-axis at 0 and 1. The leftmost
plot shows the membership functions for the two clusters, when the fuzzifier is
set to m = 2, the middle one for /. = 1.5 (and the rightmost will be discussed
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later). It is well known and can be seen easily that for a larger m the transition
from a high membership degree from one cluster to the other is more smooth
than for a smaller m. Looking at the extremes, we obtain crisp {0, 1}-valued
membership degrees for m — 1 and equal membership degrees to all clusters
for m — oo with all cluster centres converging to the centre of the data set.
Note that we have chosen a non-symmetric w.r.t. to the cluster centres, so
that images do not look symmetric, although the membership functions are
complimentary.
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Fig. 1. Effects of the fuzzifier (from left to right): m =2, m=1.5, 8 =0.5

The update equation (4) for the membership degrees derived from the ob-
jective function (3) can lead to undesired or counterintuitive results, because
zero membership degrees never occur (except in the extremely rare case, when
a data vector coincides with a cluster centre). No matter, how far away a data
vector is from a cluster and how well it is covered by another cluster, it will
still have nonzero membership degrees to all other clusters.

Figure 2 shows an undesired side-effect of the probabilistic fuzzy clustering
approach. There are obviously three clusters. However, the upper cluster has
a much higher data density than the other two. This single dense cluster
attracts all other cluster prototypes so that the prototype of the left cluster
is slightly drawn away from the original cluster centre and the prototype we
would expect in the centre of the lower left cluster migrates completely into
the dense cluster. In the figure we have also indicated for which cluster a data
vector has the highest membership degree.

Another counterintuitive effect of probabilistic fuzzy clustering occurs in
the following situation. Assume we have a data set that we have clustered
already. Then we add more data to the data set in the form of a new cluster
that is far away from all other clusters. If we recluster this enlarged data set
with one more cluster as the original data set, we would expect the same
result, except that the new data are covered by the additional cluster, i.e., we
would assume that the new cluster has no influence on the old ones. However,
since we never obtain zero membership degrees, the new data (cluster) will
influence the old clusters.
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Fig. 2. Clusters with varying density

This means also that, if we have many clusters, clusters far away from
the centre of the whole data set tend to have their computed cluster centres
drawn into the direction of the centre of the data set.

These effects can be amended, when a small fuzzifier is chosen. The price
for this is that we end up more or less with hard clustering again and even
neighbouring clusters become artificially well separated, although there might
be ambiguous data between these clusters.

As can be seen in figure 1, the membership degrees tend to increase again,
when we move far away from all clusters. This undesired effect can be amended
by applying noise clustering. Nevertheless, even in the case of noise clustering,
noisy data, no matter how far away they are from all other clusters, will still
have nonzero membership degrees to all clusters.

In order to propose an alternative to the fuzzifier approach, we examine
more closely what impact the fuzzifier has on the objective function. When
we want to generalise the idea of deterministic or hard clustering to fuzzy
clustering, using the original objective function (1) of hard clustering simply
allowing the u;; values to be in [0, 1] instead of {0, 1}, still leads to crisp par-
titions, as we have already mentioned before. In order to better understand
why, let us consider the following situation. We fix the cluster prototypes,
i.e. the distance values d;;, for the moment — we might even assume that we
have already found the best prototypes — and want to minimize the objec-
tive function (1) by choosing the appropriate membership degrees taking the
constraints (2) into account. A good starting point seems to be to choose
Ujp; = 1, if djy; < d;; for all i = 1,...,c and u;; = 0 otherwise. When we try
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to further reduce the resulting value of the object function by decreasing an
u;,;-value that was set to one, we have to increase another u;;-value to satisfy
the constraint (2). When we reduce u;,; by € and increase u;; by ¢ instead,
the change in the objective function will be

A = e-dij —e-diy; = e(dij — diy;).

Since d;,; < d;j, this can only lead to an increase and therefore never to an
improvement of the objective function. The trade-off by reducing u;,; and
therefore increasing u;; always means a bad pay-off in terms of the objective
function. We can turn the pay-off into a good one, if we modify the objective
function in the following way: A reduction of a u;,;-value near 1 by ¢ must
have a higher decreasing effect than the increment of a u;;-value near 0. Since
the factor d;,; of u;,; is smaller than the factor d;; of u;;, we apply a trans-
formation to the membership degrees in the objective function, such that a
decrease of a high membership degree has a stronger decreasing effect than
the increasing effect caused by an increase of a small membership value. One
transformation, satisfying this criterion, is

g:[0,1] = 1[0,1], w—u™

with m > 1 that is commonly used in fuzzy clustering. However, there might
be other choices as well. Which properties should such a transformation sat-
isfy? It is obvious that g should be increasing and that we want g(0) = 0 and
g(1) = 1. If ¢ is differentiable and we apply the above mentioned reduction
of the membership degree u;,; by €, trading it in for an increase of the mem-
bership degree u;; by a small value €, the change in the objective function is
now approximately

A x e-g'(uiy) dij —e- g (wigs) - digj = e(dij - g'(uij) — digj - g'(uin5))- (6)

In order to let this decrease the objective function, we need at least g'(u;;) <
g'(uiy5), since di,; < d;;. More generally, we require that the derivative of g
is increasing on [0,1]. g(u) = u™ with m > 1 definitely has this property.
Especially, for this transformation we have ¢'(0) = 0, so that it always pays
off to get away from zero membership degrees. Figure 3 shows the identity
(the line which does not transform the membership degrees at all), the trans-
formation u? (the lower curve) and another transformation that also satisfies
the requirements for g, but has a nonzero derivative at 0, so that it only pays
off to have a nonzero membership degree, if the distance values d;; is not too
large in comparison to d; ;.

Let us take a closer look which effect the transformation ¢ has on the
objective function. Assume, we want to minimize the objective function

F=Y2 gluij)d (7)

i=1 j=1
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Fig. 3. Transformations for probabilistic clustering

under the constraints (2) w.r.t. the values u;j, i.e., we consider the distances
as fixed. The constraints lead to the Lagrange function

L = Z Zg(uij)dij + Z /\j (1 - Zu”>
i=1 j=1 j=1 i=1
and the partial derivatives

oL
8Uij

= g'(uij)dij — \j. (8)

At a minimum of the objective function the partial derivatives must be
zero, i.e. A; = ¢'(u;)d;;. Since A; is independent of i, we must have
g'(uij)dij = g'(up;)dy; for all 4,k at a minimum. This actually means that
these products must be balanced during the minimization process. In other
words, the minimum is not reached unless the A-values in (6) are all zero.

4 An Alternative for the Fuzzifier

Taking into account the analysis carried out in the previous section, we pro-
pose a new approach to fuzzy clustering that replaces the transformation
g(u) = u™ by another transformation. In principle, we can think of any dif-
ferentiable function satisfying the requirements stated in the previous section.
However, when we want to maintain the computationally more efficient alter-
nating optimisation scheme for fuzzy clustering with explicit update equations
for the membership degrees, we easily run into problems for general functions
g. From (8) we can immediately see that we will need the inverse of ¢’ in
order to compute the u;;. Therefore, we restrict our considerations here to
quadratic transformations. Since we require g(0) = 0 and g(1) = 1 and an
increasing first derivative, the choices reduce to quadratic functions of the
form g(u) = au? + (1 — a)u with 0 < a < 1.
Instead of a we use the parameter

g'(0) 1-«a
g'(1) 1+a
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We can easily compute a = % Let us assume that d;,; is the distance of

data vector z; to the nearest cluster and d;; is the distance of z; to another

cluster further away. Then £ indicates the lower bound that the quotient 10;
must exceed, in order to have a nonzero membership degree of z; to the cluster
that lies further away. For § = 0 we obtain standard fuzzy clustering with
fuzzifier m = 2 and B = 1 leads to crisp clustering.

We now derive the update equations for our new clustering approach. We
have to minimize the objective function

23
ZZ<1+[3 Uij 1_1_[3“2'1') dij

i=1 j=1

under the constraints (2) as well as 0 < u;; < 1. Computing the partial
derivatives of the Lagrange function

1—3 23 <

i=1 j=1

and solving for u;; we obtain
1 (1+B)A;
wi = 5 (S - )
if u;; # 0. Using Zk:ukﬁéo ug; = 1, we can compute

2(1+(c—-1)p)
1
(1 + 6) Zk:ukj;ﬂ] E
where ¢ is the number of clusters to which data vector z; has nonzero mem-

bership degrees. Replacing A; in (9), we finally obtain the update equation
for

N =

1 1+ (¢— 1)6
’ 1= 6 Ek ur;#0 dk]

We still have to determine which w;; are zero. This can be done in the following
way. For a fixed j sort the distances d;; in decreasing order. Without loss of
generality let us assume d;; > ... > d.;. If there are zero membership degrees
at all, we know that for minimizing the objective function the u;;-values with
larger distances have to be zero. (10) does not apply to these w;j-values.
Therefore, we have to find the smallest index 79 to which (10) is applicable,
i.e. for which it yields a positive value. For ¢ < iy we have u;; = 0 and fori > i
the membership degree u;; is computed according to (10) with é = ¢+ 1 — io.

With this modified algorithm the data set in figure 2 is clustered correctly
(for instance with g = 0.5, the corresponding transformation g is the curve
in the middle in figure 3). Especially, when our modified approach is coupled
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with noise clustering, most of the undesired effects of fuzzy clustering can be
avoided and the advantages of a fuzzy approach can be maintained.

When using our modified algorithm, the update equations for the cluster
prototype remain the same — for instance, in the case of FCM as in (5) —
except that we have to replace u;; by

1=8., 26
1+B 17 1+,8 1]

9luij) = auf; + (1 - aju; =

5 Conclusions

We have proposed a new approach to fuzzy clustering that overcomes the
problem in fuzzy clustering that all data tend to influence all clusters. From
the computational point of view our algorithm is slightly more complex than
the standard fuzzy clustering scheme. The update equations are quite similar
to standard (probabilistic) fuzzy clustering. However, for each data vector
we have to sort the distances to the clusters in each iteration step. Since
the number of clusters is usually quite small and the order of the distances
tends to converge quickly, this additional computational effort can be kept at
minimum.

As a future work, we will extend our approach to more general transfor-
mations g and apply the balancing scheme induced by (6) directly to compute
the membership degrees.

References

1. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms.
Plenum Press

2. Bezdek JC, Keller J, Krishnapuram R, Pal NR (1999) Fuzzy models and algo-
rithms for pattern recognition and image processing. Kluwer, Boston

3. Davé, RN (1991) Characterization and detection of noise in clustering. Pattern
Recognition Letters 12: 657-664

4. Duda, R, Hart, P (1973) Pattern classification and scene analysis. Wiley, New
York

5. Hoppner F, Klawonn F, Kruse R, Runkler T (1999) Fuzzy cluster analysis.
Wiley, Chichester

6. Krishnapuram R, Keller J (1993) A possibilistic approach to clustering. IEEE
Trans. on Fuzzy Systems 1: 98-110

7. Timm H, Borgelt C, Kruse R (2002) A modification to improve possibilistic
cluster analysis. IEEE Intern. Conf. on Fuzzy Systems, Honululu (2002)



