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Abstract

The most common fuzzy clustering algo-
rithms are based on the minimization of
an objective function that evaluates (fuzzy)
cluster partitions. The generalisation step
from hard clustering to crisp clustering re-
quires the introduction of an additional pa-
rameter, the so called fuzzifier. This fuzzi-
fier does not only control, how much clus-
ters may overlap, but has also some unde-
sired consequences. For example, data have
(almost) always non-zero membership de-
grees to all clusters, no matter how far they
are away from a cluster. We propose a con-
cept that generalizes the idea of the fuzzifier
and solves the mentioned problems.

Keywords: Fuzzy clustering, noise cluster-
ing, fuzzifier.

1 Introduction

The most common fuzzy clustering techniques aim at
minimizing an objective function whose (main) pa-
rameters are the membership degrees and the param-
eters determining the localisation as well as the shape
of the clusters. Although the extension from crisp to
fuzzy clustering seems to be an obvious concept, it
turns out that to actually obtain membership degrees
between zero and one, it is necessary to introduce a
so-called fuzzifier in fuzzy clustering. Usually, the
fuzzifier is simply used to control how much clusters
may overlap.

In this paper, we provide a deeper understanding of
the underlying concept of the fuzzifier and derive a

more general approach that leads to improved results
in fuzzy clustering.

Section 2 briefly reviews the necessary background in
objective function-based fuzzy clustering. The pur-
pose, background and the consequences of the addi-
tional parameter in fuzzy clustering – the fuzzifier – is
examined in section 3. Based on these considerations
and on a more general understanding of the fuzzifier,
we propose an improved alternative to the fuzzifier in
section 4 and outline possible other approaches in the
final conclusions.

2 Objective Function-Based Fuzzy
Clustering

Fuzzy clustering is suited for finding structures in
data. A data set is divided into a set of clusters and
– in contrast to hard clustering – a datum is not as-
signed to a unique cluster. In order to handle noisy
and ambiguous data, membership degrees of the data
to the clusters are computed. Most fuzzy clustering
techniques are designed to optimise an object function
with constraints.

The most common approach is the so called proba-
bilistic clustering with the objective function

f �

c

∑
i � 1

n

∑
j � 1

um
i jdi j constrained by

c

∑
i � 1

ui j
� 1 (1)

and the constraints
c

∑
i � 1

ui j
� 1 for all j � 1 ��������� n � (2)

that should be minimized.

It is assumed that the number of clusters c is fixed.
We will not discuss the issue of determining the num-
ber of clusters here and refer for an overview to [2, 5].



The set of data to be clustered is
�
x1 ������� � xn ��� IRp. ui j

is the membership degree of datum x j to the ith clus-
ter. di j is some distance measure specifying the dis-
tance between datum x j and cluster i, for instance the
(quadratic) Euclidean distance of x j to the ith cluster
centre. The parameter m � 1, called fuzzifier, controls
how much clusters may overlap. The constraints lead
to the name probabilistic clustering, since in this case
the membership degree ui j can also be interpreted as
the probability that x j belongs to cluster i.

The parameters to be optimised are the membership
degrees ui j and the cluster parameters that are not
given explicitly here. They are hidden in the distances
di j . Since this is a non-linear optimisation problem,
the most common approach to minimize the objec-
tive function (1) is to alternatingly optimise either the
membership degrees or the cluster parameters while
considering the other parameter set as fixed.

In this paper we are not interested in the great va-
riety of cluster shapes (spheres, ellipsoids, lines,
quadrics, ����� ) that can be found by choosing suitable
cluster parameters and an adequate distance function.
(For an overview we refer again to [2, 5].) We only
concentrate on the aspect of the membership degrees.

Taking the constraints in equation (2) into account
by Lagrange functions, the minimum of the objective
function (1) w.r.t. the membership degrees is obtained
at [1]

ui j
�

1

∑c
k � 1

�
di j

dk j � 1
m � 1

� (3)

when the cluster parameters, i.e. the distance values
di j , are considered to be fixed. (If di j

� 0 for one or
more clusters, we deviate from (3) and assign x j with
membership degree 1 to the or one of the clusters with
di j

� 0 and choose ui j
� 0 for the other clusters i.)

If the clusters are represented by simple prototypes
vi � IRp and the distances di j are the squared Eu-
clidean distances of the data to the corresponding
cluster prototypes as in the fuzzy c-means algorithm,
the minimum of the objective function (1) w.r.t. the
cluster prototypes is obtained at [1]

vi
�

∑n
j � 1 um

i jx j

∑n
j � 1 um

i j
� (4)

when the membership degrees ui j are considered to be
fixed. The prototypes are still the cluster centres. The

cluster prototypes are simply cluster weighted centres
based on the membership degrees.

The fuzzy clustering scheme using alternatingly equa-
tions (3) and (4) is called fuzzy c-means algorithm
(FCM). As mentioned before, more complicated clus-
ter shapes can be detected by introducing additional
cluster parameters and a modified distance function.
Our considerations apply to all these schemes, but it
would lead too far to discuss them in detail.

However, we should mention that there are alternative
approaches to fuzzy clustering than only probabilistic
clustering.

Noise clustering [3] maintains the principle of proba-
bilistic clustering, but an additional noise cluster is in-
troduced. All data have a fixed (large) distance to the
noise cluster. In this way, data that are near the border
between two clusters, still have a high membership
degree to both clusters as in probabilistic clustering.
But data that are far away from all clusters will be as-
signed to the noise cluster and have no longer a high
membership degree to other clusters. Our investiga-
tions and our alternative approach fit also perfectly to
noise clustering.

We do not cover possibilistic clustering [7] where the
probabilistic constraint is completely dropped and an
additional term in the objective function is introduced
to avoid the trivial solution ui j

� 0 for all i � j. How-
ever, the aim of possibilistic clustering is actually not
to find the global optimum of the corresponding ob-
jective function, since this is obtained, when all clus-
ters are identical [8].

Another approach that emphasizes a probabilistic in-
terpretation in fuzzy clustering is described in [4]
where membership degrees as well as membership
probabilities are used for the clustering. In this way,
some of the problems of the standard FCM can be
avoided as well. However, this approach assumes the
use of the Euclidean or a Mahalanobis distance and
is not suitable for arbitrary cluster shapes as in shell
clustering.

3 Effects of the Fuzzifier

The update equation (3) for the membership degrees
derived from the objective function (1) can lead to un-
desired or counterintuitive results, because zero mem-
bership degrees never occur (except in the extremely



Figure 1: Clusters with varying density

rare case, when a data vector coincides with a cluster
centre). No matter, how far away a data vector is from
a cluster and how well it is covered by another cluster,
it will still have non-zero membership degrees to all
other clusters.

Figure 1 shows an undesired side-effect of the prob-
abilistic fuzzy clustering approach. There are obvi-
ously two clusters. However, the right-hand cluster
has a much higher data density than the other one.
This single dense cluster attracts the other cluster pro-
totype so that the prototype of the left-hand cluster mi-
grates completely into the dense cluster. In the figure
we have also indicated for which cluster a data vector
has the highest membership degree.

Another counterintuitive effect of probabilistic fuzzy
clustering occurs in the following situation. Assume
we have a data set that we have clustered already.
Then we add more data to the data set in the form of
a new cluster that is far away from all other clusters.
If we recluster this enlarged data set with one more
cluster as the original data set, we would expect the
same result, except that the new data are covered by
the additional cluster, i.e., we would assume that the
new, well separated cluster has no influence on the old
ones. However, since we never obtain zero member-
ship degrees, the new data (cluster) will influence the
old clusters.

This means also that, if we have many clusters, clus-
ters far away from the centre of the whole data set tend
to have their computed cluster centres drawn into the
direction of the centre of the data set.

These effects can be amended, when a small fuzzifier
is chosen. The price for this is that we end up more or
less with hard clustering again and even neighbouring
clusters become artificially well separated, although
there might be ambiguous data between these clusters.

4 Replacing the Fuzzifier Function

Viewing the objective function (1) from a more gen-
eral point of view, the fuzzifier carries out a transfor-
mation

t :
�
0 � 1 ��� �

0 � 1 � � u �� um

of the membership degrees. This transformation
should be increasing and t � 0 � � 0 and t � 1 � � 1 should
hold. This is definitely satisfied by the transformation
t � u � � um. However, there might be better choices.
Let us consider an arbitrary transformation t satisfy-
ing the afore mentioned conditions and let us take a
closer look which effect the transformation t has on
the objective function. Assume, we want to minimize
the objective function

f �

c

∑
i � 1

n

∑
j � 1

t � ui j � di j (5)

under the constraints (2) w.r.t. the values ui j , i.e., we
consider the distances as fixed. Assuming that the
transformation t is differentiable, the constraints lead
to the Lagrange function

L �

c

∑
i � 1

n

∑
j � 1

t � ui j � di j � n

∑
j � 1

λ j

�
1 	 c

∑
i � 1

ui j 

and the partial derivatives

∂L
∂ui j

� t ��� ui j � di j 	 λ j � (6)

At a minimum of the objective function the partial
derivatives must be zero, i.e. λ j

� t � � ui j � di j . Since
λ j is independent of i, we must have

t � � ui j � di j
� t � � uk j � dk j (7)

for all i � k at a minimum. This actually means that
these products must be balanced during the minimiza-
tion process.



Considering the standard transformation t � u � � um

used in fuzzy clustering, it yields very small values for
the derivative near zero and even zero at u � 0. This
is the reason, why zero membership degrees nearly
never occur.

We therefore propose to use another transformation t
that does not assume the value zero for the derivative
at zero. In order not to end up with crisp membership
degrees again, we should make sure that the derivative
t � is increasing, but not starting at the value zero at
zero.

When we consider a data vector x and the cluster i
nearest to x and another cluster k further away from x,
taking (7) into account, we can see that the quotient

t � � 0 �
t � � 1 � (8)

indicates which value the quotient

di j

dk j

must exceed, in order to yield a non-zero membership
for the cluster k further away from x. The larger the
value (8) is, the more will the clustering tend to prefer
crisp clusters. Although (8) yields always zero for the
standard fuzzy clustering with t � u � � um, we can still
use a similar measure, when we replace the derivative
at zero in (8) by a value of the derivative at ε � 0 near
zero.

t � � ε �
t � � 1 �

gets larger for a smaller fuzzifier m, when we choose
t � u � � um.

A more detailed analysis of this problem can be found
in [6], where also an alternative quadratic transforma-
tion t is discussed. In this paper we propose to replace
the transformation t by the following one:

tα :
�
0 � 1 ��� �

0 � 1 � � u �� 1
eα 	 1

� eαu 	 1 � (9)

We now derive the update equations for our new clus-
tering approach. We have to minimize the objective
function

f �

c

∑
i � 1

n

∑
j � 1

1
eα 	 1

� eαui j 	 1 � di j (10)

under the constraints (2) and the constraints 0
�

ui j
�

1. Computing the partial derivatives of the Lagrange
function

L �

c

∑
i � 1

n

∑
j � 1

1
eα 	 1

� eαui j 	 1 � di j � n

∑
j � 1

λ j

�
1 	 c

∑
i � 1

ui j 

and solving for ui j we obtain

ui j
�

1
α

ln

�
λ j � eα 	 1 �

α � di j � (11)

if ui j �� 0. Using ∑k:uk j �� 0 uk j
� 1, we can compute

λ j
� eα � ĉ � 1

eα 	 1
� α � ∏

k:uk j �� 0 � dk j � 1 � ĉ

where ĉ is the number of clusters to which data vector
x j has non-zero membership degrees. Replacing λ j in
(11), we finally obtain the update equation for

ui j
�

1
αĉ

�
α � ∑

k:uk j �� 0

ln

�
dk j

di j � 
 � (12)

We still have to determine which ui j are zero. Since
we want to minimize the objective function (10), we
can make the following observation. If ui j

� 0 and
di j 	 dt j , then at a minimum of the objective function,
we must have ut j

� 0 as well. Otherwise we could
reduce the value by setting ut j to zero and letting ui j

assume the original value of ut j . This implies the fol-
lowing. For a fixed j we can sort the distances di j in
decreasing order. Without loss of generality let us as-
sume d1 j 
 ����� 
 dc j . If there are zero membership de-
grees at all, we know that for minimizing the objective
function the ui j-values with larger distances have to be
zero. (12) does not apply to these ui j-values. There-
fore, we have to find the smallest index i0 to which
(12) is applicable, i.e. for which it yields a positive
value. For i 	 i0 we have ui j

� 0 and for i 
 i0 the
membership degree ui j is computed according to (12)
with ĉ � c � 1 	 i0.

When using our modified algorithm, the update equa-
tions for the cluster prototype remain the same – for
instance, in the case of FCM cluster centres as in (4)
– except that we have to replace um

i j by

tα � ui j � �
1

eα 	 1
� eαui j 	 1 � �

In addition to using the slightly more complicated up-
date equation (12) instead of (3), we also have to sort



the distances to the cluster centres for each data vec-
tor in every iteration step. However, from the point
of view of computational complexity, this does not
lead to a significant decrease in performance, since we
only have to sort as many distances as we have clusters
each time. And the number of clusters is usually quite
small so that we mainly have a linear increase of the
computational complexity in the number of data. For
reasons of efficiency, we also recommend to compute
(12) in the following way:

ui j
�

1
ĉ � 1

αĉ

�
∑

k:uk j �� 0

ln � dk j � 
 	 α ln � di j ��� (13)

For a fixed data vector x j only the last term ln � di j �
varies for the clusters, the rest needs only to be com-
puted once in each iteration step.

With this modified algorithm the data set in figure
1 is clustered correctly (for instance with α � 0 � 5).
Especially, when our modified approach is coupled
with noise clustering, most of the undesired effects of
fuzzy clustering can be avoided and the advantages of
a fuzzy approach can be maintained.

The value α � 0 in our approach has a similar effect
as the fuzzifier m in standard fuzzy clustering: The
smaller α is chosen, the crisper the fuzzy partition
tends to be. This is also obvious from the quotient
(8). We obtain

t �α � 0 �
t �α � 1 � � e

� α
�

5 Conclusions

We have proposed a new approach to fuzzy clustering
that overcomes the problem in fuzzy clustering that all
data tend to influence all clusters. As a future work,
we will extend our approach to more general transfor-
mations t other than the exponential one proposed in
this paper and the quadratic approach presented in [6].
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