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Abstract. Fuzzy cluster analysis uses membership degrees to assign data objects
to clusters in order to better handle ambiguous data that share properties of dif-
ferent clusters. However, the introduction of membership degrees requires a new
parameter called fuzzifier. In this paper the good and bad effects of the fuzzifier
on the clustering results are analysed and based on these considerations a more
general approach to fuzzy clustering is proposed, providing better control on the
membership degrees and their influence in fuzzy cluster analysis.

1 Introduction

A simple and common popular approach to cluster analysis is the so-called
k-means clustering algorithm (see for instance Duda and Hart (1973)). In
this approach each cluster is represented by a prototypical object that cor-
responds to the cluster centre. A data object is assigned to the cluster for
which the distance of the prototype to the data object is smallest. In order
to model partly overlapping clusters, the concept of membership degrees was
proposed by Bezdek (1973) and Dunn (1974). Viewing k-means clustering
and its fuzzy variant as an objective function-based clustering technique, it
is necessary to introduce a new parameter, called fuzzifier. The behaviour and
the properties of the clustering scheme differ significantly from the classical
k-means one. A detailed analysis of the fuzzifier, its properties, its positive
and negative effects leads to a more general approach to fuzzy clustering with
a better understanding as well as better control of the clustering parameters
and properties.

The paper is organized as follows. After a brief review of fuzzy clustering in
section 2, section 3 provides a more detailed analysis and understanding of the
fuzzifier concept, discussing also the question whether fuzzy clustering is more
robust than crisp clustering. In section 4 various approaches are proposed
that generalize the fuzzifier concept in order to have a better control on the
properties of the clustering algorithm. Future perspectives are discussed in
the conclusions.
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2 Fuzzy cluster analysis

The c-means® clustering algorithm is designed to partition a data set X =
{z1,...,2,} C RP into ¢ clusters. From the purely algorithmic point of view,
the c-means clustering can be described as follows. Each of the ¢ clusters is
represented by a prototype v; € RP. These prototypes are chosen randomly
in the beginning. Then each data vector is assigned to the nearest prototype
(w.r.t. the Euclidean distance). Then each prototype is replaced by the centre
of gravity of those data assigned to it. The alternating assignment of data to
the nearest prototype and the update of the prototypes as cluster centres is
repeated until the algorithm converges, i.e., no more changes happen.

This algorithm can also be seen as a strategy for minimizing the objective

function .
=3 uidi (1)

i=1 j=1

under the constraints
Zuij =1 forallj=1,...,n (2)
i=1

where u;; € {0,1} indicates whether data vector z; is assigned to cluster
i (ujj = 1) or not (uj; = 0). dij =|| z; — v; ||* is the squared Euclidean
distance between data vector x; and cluster prototype v;. The parameters
to be optimized are the cluster prototypes v;, hidden in the distances d;;,
and the assignments u;; to the clusters. Since there is no direct solution to
this optimization problem, the above described strategy tries to minimize the
objective function by alternatingly optimizing either the cluster prototypes
or the assignments, while the other parameter set is considered to be fixed.

It should be noted that by replacing the Euclidean distance by other
distance measures and enriching the cluster prototypes by further parameters,
other shapes than just the spherical clusters as in standard c-means clustering
can be discovered. Clusters might be ellipsoidal, linear manifolds, quadrics
or even differ in volume (Keller and Klawonn (2003)). Since this paper is
concerned with the assignment of the data objects to clusters, we refer to
the literature (for instance Héppner et al. (1999)) for an overview. All our
considerations are more or less independent of the chosen distance function
dij.

The generalization from crisp assignments u;; € {0,1} to membership
degrees u;; € [0,1] seems to be straight forward, by simply considering the
latter relaxed constraint for the objective function. However, even when arbi-
trary values between zero and one are allowed for the assignment of the data
objects to the clusters, it is easy to prove that a minimum of the objective

! In fuzzy cluster analysis, ¢ is chosen to denote the number of clusters. In order to
be coherent in notation, we therefore write c-means instead of k-means clustering.
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function (1) can only be obtained, if the membership degrees are chosen in a
crisp way, i.e. u;; € {0,1}. The reason for this is quite obvious. Not assigning
the full weight u;; of a data object z; to the closest cluster ¢, but instead
raising the weight u;; to a cluster with a larger distance, will definitely in-
crease the value of the objective function. Therefore, for fuzzy clustering the
objective function was modified in the following form, introducing a so-called

fuzzifier m > 1:
(& n
[ = ZZU?}dm’- (3)

i=1 j=1

Note that the fuzzifier m does not have any effects, when we use hard clus-
tering. The fuzzifier m > 1 is not subject to the optimization process and
has to be chosen in advance. A typical choice is m = 2. We will discuss
the effects of the fuzzifier in the next section. The fuzzy clustering approach
with the objective function (3) under the constraints (2) and the assumption
u;;j € [0,1] is also called probabilistic clustering, since due to the constraints
(2) the membership degree u;; can be interpreted as the probability that z;
belongs to cluster .

The objective function (3) is also optimized by an alternating optimization
scheme. It can be shown that the membership degrees have to be chosen as

1
Uij = ————— 1 (4)

5 dij \ 71
k=1 \d;
unless there exists a cluster 4 with zero distance d;; to x;. In this case u;; =1

and uy; = 0 for ¢ # k is chosen. If d;; is the squared Euclidean distance, then
the cluster centres v; are computed as the weighted mean

XU,
Vi = m om - ()
Zj:l Ujj

3 Properties of the fuzzifier

The fuzzifier m controls, how much clusters may overlap. For m — 1 the
membership degrees tend to the values 0 and 1, i.e. fuzzy clustering is turned
into crisp clustering. For m — oo clusters become completely merged because
of Uj5 — %

In addition to be able to better handle ambiguous data, it seems that fuzzy
c-means clustering is more robust than standard crisp ¢-means. Although
there is no proof for this hypothesis, the use of membership degrees might
be able to eliminate undesired local minima in the objective function and
can therefore prevent fuzzy clustering from converging to counter-intuitive
results. Figure 1 shows the objective functions of c-means and fuzzy c-means
clustering for a simple one-dimensional data set. The data set consists of
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Fig. 1. Objective functions for crisp (left) and fuzzy (right) clustering

two clusters centred around 0 and 5. There is also a cluster with very few
data around 10. The clustering was carried out using noise clustering (Davé
(1991)). This means that in addition to the two clusters for which the pro-
totypes must be computed there is a third noise cluster that has no specific
prototype, but a fixed large distance to all data. The noise cluster is supposed
to collect those data that are far away from all other clusters, in our case the
few data around 10. In figure 1 the z- and the y-axis refer to the location
of the two cluster prototypes. The membership degrees are assumed to be
chosen according to (4) for fuzzy clustering and for crisp clustering, the data
objects are assigned to the closest cluster (including the noise cluster). The
objective function for fuzzy clustering on the right hand side has two local
minima, both representing correct clustering results. The difference between
them is that the first and second cluster prototype are exchanged. The objec-
tive function for crisp clustering has — in addition to the two ”correct” local
minima — four more undesired local minima. For a detailed discussion of this
problem we refer to Klawonn (2004).

Another explanation for the higher robustness of fuzzy clustering is that
a bad initialisation is more difficult to overcome for crisp clustering. In order
to illustrate this effect we consider the artificial data set in figure 2. When
(crisp) c-means is initialized by random cluster centres as they are indicated
by the three squares, the left prototype will grab immediately the two clusters
on the left hand side, while the other two prototypes have to share the third
cluster. They will never obtain any information about the existence of the
other two clusters. The situation is different for fuzzy c-means. Although
all data from the two clusters on the left hand side are closest to the left
initial prototype, they will still have a non-zero membership degree to the
other clusters according to equation (4). Therefore, there is a higher chance
that one of the prototypes on the right hand side will be attracted by one
of the two clusters on the left hand side. However, although fuzzy clustering
benefits in this case from the non-zero membership degrees, they can have
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Fig. 2. A bad initialisation for c-means

bad effects in other cases. First of all, it is counter-intuitive to have non-zero
membership degrees, no matter how far away a data object lies from a cluster
prototype and how well it might be covered by another prototype. Secondly,
when clusters have different data densities, clusters with higher densities tend
to influence or even completely attract other cluster prototypes than the one
that is closest as well.

4 Alternatives to the fuzzifier

Viewing the fuzzifier in fuzzy clustering from a more general point of view, its
main effect is a transformation of the membership degrees. Instead of using
the terms u;;d;; as in the objective function (1) for c-means, fuzzy clustering
(3) replaces this by g(u;;)d;; where g(u) = u™. It is an obvious question,
whether this type of transformation g is the only reasonable one or whether
there are better alternatives. In order to better understand the role of the
transformation g, we follow Klawonn and Hoéppner (2003a) and consider the

objective function
F=>2 guij)di (6)

i=1 j=1

under the constraints (2) that we want to minimize w.r.t. the values u;;,
considering the distances d;; to be fixed. The constraints lead to the Lagrange

function
L= Sty + 3 (2)
j=1 =1

i=1 j=1
and the partial derivatives

oL
8uij

= g'(uij)dij — Aj. (7)

At a minimum of the objective function the partial derivatives must be zero,
ie. Aj = ¢'(uy;)d;j. Since ); is independent of ¢, we must have

g (uij) - dij = g'(urj) - d;j (8)
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for all ¢,k at a minimum. This actually means that these products must
be balanced during the minimization process, unless at least one of the two
membership degrees is zero or one. Equation (8) also explains why it is nec-
essary to introduce the fuzzifier and why zero membership degrees (nearly)
never occur. When we simply use the identity g(u) = u as the transforma-
tion, i.e. we consider the objective function (1), then it is obvious that (8)
cannot be achieved, since ¢'(u) = 1 is constant. On the other hand, when
we use g(u) = u™ with m > 1, we have ¢’(0) = 0 and ¢'(1) = m > 0.
Therefore, in order to balance the two products in (8), no matter how large
dir, and how small d;; is, up; must be chosen greater than zero and wu;;
smaller than one. When we replace g(u) = ™ by another transform g with
g'(0) > 0, this will definitely yield a zero membership degree for a cluster k,
if d;;j/dr; < g'(0)/g'(1) holds. Of course, it is not possible to choose arbitrary
functions g : [0,1] — [0, 1]. It is obvious that g should be increasing and that
we want g(0) = 0 and g(1) = 1. The above argument also requires that g
should be differentiable. Equation (8) will only let clusters with a larger dis-
tance to a data object than the closest cluster participate in the membership
degree if ¢'(u) < g¢'(@) for u < @. This means g’ should also be increasing.
Another important aspect is that we are still able to derive an analytical so-
lution for the membership degrees, when we want to minimize the objective
function (6) while fixing the cluster prototypes (and therefore the distances
d;;). Without an analytical solution, a numerical solution, i.e. an iterative
scheme would be needed within the alternating optimization leading to high
computational costs. Klawonn and Héppner (2003a/b) proposed a quadratic
transform

go(u) = au® + (1 —a)u 0<a<l) 9)

and an exponential transform

j— au

galu) = | (e 1) (0 < a). (10)
The objective function using the transformation (9) represents a convex com-
bination of standard crisp ¢-means and fuzzy c-means clustering with a fuzzi-
fier m = 2. When using these transforms, the update equations for the al-
ternating optimization scheme have to be altered. For the cluster prototypes
(5) the terms uj} have to be replaced by ga(u;;). The update equations for
the membership degrees are

Ui = 1 1+(C_1)_§—ﬂ whereﬁ:l_a (11)
J 1-7 dij 1+a
Zk:ukjyéo E

and
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respectively. ¢ is the number of clusters with zero membership degree for
data object x;. These clusters with zero membership degree are determined
in the following way. For a fixed data object z; the distances d;; are sorted
in decreasing order. Without loss of generality let us assume di; > ... > d,;.
If there are zero membership degrees at all, we know that for minimizing the
objective function the w;;-values with larger distances have to be zero. The
corresponding update equation does not apply to these u;;-values. Therefore,
we have to find the smallest index ip to which (11), respectively (12), is
applicable, i.e. for which it yields a positive value. For ¢ < ig we have u;; =0
and for i > ip the membership degree u;; is computed according to (11),
respectively (12), with ¢ = ¢ + 1 — ip. Note that updating the membership
degrees requires additional sorting. However, the sorting has to be carried
out for a relatively small number of elements, namely as many elements as
there are clusters, so that the additional computational costs are acceptable.

Klawonn (2004) proposed to drop the differentiability of the transforma-
tion g completely and to consider a piecewise linear transformation g as it
is shown in figure 3. This gives more freedom to control the behaviour of
the membership degrees than just by one parameter «. With this kind of

9(u)
gs = 1%
921
g1t
U
go=0=1uo uy Uy gy =1

Fig. 3. A piecewise linear transformation

transformation, the update equation for membership degrees can no longer
be determined by taking derivatives. Klawonn (2004) describes an efficient
update scheme for such piecewise linear transformations with guaranteed con-
vergence. A piecewise linear transformation will lead to discrete membership
degrees in the sense that only the membership degrees corresponding to the
bends in the curve will occur. Although such a piecewise linear transformation
is not differentiable, it still satisfies the condition that its derivative exists
at least almost everywhere and is non-decreasing. We can even give up this
monotonicity condition for the derivative. This means that membership de-
grees in parts where the transformation becomes flatter will not be assigned
to clusters. In this way, making the curve flatter around 0.5, we can avoid
ambiguous membership degrees forcing them to tend more to either zero or
one.
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5 Conclusions

Understanding the fuzzifier in fuzzy clustering as a specific type of transfor-
mation opens the door to new approaches to fuzzy clustering. The undesired
effect of non-zero membership degrees, no matter how far away data objects
might be from a cluster, can be avoided in this way. This also enables fuzzy
clustering to cope with clusters of different densities. The proposed trans-
forms allow a specific adjustment of the properties of the fuzzy clustering
algorithm like: When should a data object have a non-zero membership de-
gree? Are completely ambiguous data acceptable? In most cases this can be
achieved by a piecewise linear transformation with only three or four seg-
ments. Future work will be devoted to algorithms whose membership trans-
formation is changed over time or might even be adaptive. For instance, as
we have already mentioned in section 3, standard fuzzy clustering can easier
overcome a bad initialisation, because all data objects have at least a small
influence on all clusters, no matter how large the distance is. However, this
property is not desired for the final clustering result. Therefore, it seems ad-
visable, to start the clustering with a transformation similar to the one used
in standard fuzzy clustering and then modify it, so that non-zero membership
degrees become less probable.
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