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Abstract

In this paper we propose a natural approach to handle imprecise numbers
as they arise for example from measurements. Fuzzy sets turn out to be
a canonical representation for such imprecise numbers that are induced by
taking different tolerance or error bounds into account. Fuzzy sets are induced
by scaling factors that describe the magnitude of the imprecision. On the
other, the scaling factors can be derived from given fuzzy sets so that we have
a correspondence between scaling factors and fuzzy sets.

When these concepts are applied to control problems, the max-min rule
is rediscovered as an interpolations technique. Viewing fuzzy control as an
interpolation technique in vague environments enables us to validate various
concepts for the design and tuning of fuzzy controllers and suggests new also
new methods based on clear semantics.
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1 Introduction

The formal definition of a fuzzy set as a mapping from an underlying universe
to the unit interval generalizes the notion of a characteristic function by allowing
membership degrees between 0 and 1. In applications fuzzy sets are used to represent
vague concepts like small or approximately zero. Intermediate membership values
are intuitively appealing for such concepts, but often the question of assigning a
membership degree between 0 and 1 a concrete interpretation is not even considered.
There are, of course, approaches to the interpretation of grades of membership for
example as in possibility theory [1] or based on probabilistic concepts [3].

It should be emphasized that the various interpretations for membership degrees
are not viewed as competing models but as approaches to handle different phenom-
ena like uncertainty or imprecision. In this sense, our interpretation of fuzzy sets
must not be understood in a dogmatic way. It is one possible approach that suits
well when imprecise numbers have to be processed.



The basic concept of our model is to admit different tolerance or error bounds
for the numbers to be processed and to keep track of these bounds. In this way we
can introduce an appropriate interpolation technique which is applicable to control
problems.

The general idea of cognitive control is to model the behaviour of a control ex-
pert instead of building a mathematical or physical model of the considered process.
Fuzzy control as a cognitive control method is based on vaguely specified control
rules. The use of fuzzy sets as a representation form for vague knowledge is intu-
itively appealing, but a clear semantics for the fuzzy sets and the applied operators
is often not provided.

There is still confusion caused by misinterpretations as modus ponens of the
inference mechanism applied to the linguistic control rules [13]. From a purely
logical viewpoint fuzzy controllers would not use the max-min rule [7].

We propose to see fuzzy control as an example of fuzzy interpolation as it was
already mentioned in a different context in [2]. In this paper we introduce a very
simple model of cognitive control based on two concepts: a partially known crisp
control function and the notion of a vague environment which reflects the idea of
identifying values whose difference is small. More formal, mathematical approaches
based on these ideas can be found in [5, 10, 12].

In this paper we discuss a more simple approach which provides a semantical
background for Mamdani’s fuzzy control model [14]. We concentrate on the conse-
quences this interpretation implies for the design and tuning of a fuzzy controller.

Section 2 introduces the concept of vague environments. In Sections 3 we apply
this notion to cognitive control and discuss the connections to Mamdani’s model.
Section 4 is devoted to the consequences that are implied by our interpretation of
Mamdani’s model.

2 Vague Environments

In engineering applications we have in general to deal with real-valued measurements
and control actions in quantified form. Also in medical diagnosis so called reference
values are very common and the medical doctor tries to find the best fitting reference
values in a look—up table in order to determine the optimal dose of a medicine for a
certain patient. We should be aware of the fact that the involved real numbers can
never be exact. Of course, in many applications the inexactness is small enough so
that we do not have to worry about it.

In the following we will provide a model that is able to represent this inexactness
in order to handle problems connected to this phenomenon. Two different forms of
inexactness can be distinguished:

e enforced inexactness of measurement and control values which is caused by
the limited precision of measuring or other instruments or by properties of the
physical environment which make an exact measurement impossible.



e intended imprecision where we are not interested in arbitrary exactness or
where it even does not make sense. As an example consider the room temper-
ature. A difference of 0.0000001°C of the temperature is neither for a human
being of interest nor should it influence the air conditioning system.

A straight forward approach to model the above mentioned phenomena of inex-
actness is to identify values whose distance is less than an error— or tolerance bound
€ > 0. This identification can lead to problems since it does not satisfy the law of
transitivity, i.e. although z; and z, as well as z, and z3 are identified according to
|21 — 23| < € and |2y — 23| < €, it is possible that #; and z3 should not be identified
due to |y — z3| > €. This phenomenon is also known as the Poincaré paradox. A
typical consequence from this non—transitivity can be experienced for example in
the following situation. The decision to buy a certain luxurious car does in general
not depend on an increase of the price of 1§. But it is of course not allowed to
iterate this argument, otherwise we would accept any price which is not true.

A consequence of this non—transitivity is that it is impossible to define adequate
equivalence classes of indistinguishable or identifiable numbers. The most common
approach simply partitions the real numbers into disjoint intervals of a certain length
and identifies values that fall in the same interval. This leads automatically to
incoherent treatment of values that are near the boundary of an interval.

The choice of an appropriate € can be a very crucial point in applications. There-
fore, we will consider a whole set of such error bounds, namely the unit interval. At
first, this choice might look a little bit arbitrary. But as we will see, it can cover the
most general case.

It is of course not sufficient, simply to say that two values are indistinguishable
or similar if their distance is less than €, or in other words, they are distinguishable
if their distance is greater than e. This would lead to the paradoxical situation that
two temperatures are indistinguishable if they are measured in Celsius, whereas the
same temperatures are distinguishable when measured in Fahrenheit according to
the greater scaling factor for Fahrenheit. For this reason we allow to introduce a
scaling factor ¢ > 0 and consider two values as e—distinguishable if their distance
times c is greater than €. Let us assume that the set of numbers we are dealing with
(f.e. a set of possible temperatures) is the interval X = [a, b]. Introducing a scaling
factor for e—distinguishability corresponds to a transformation of the interval [a, b]
to the interval [0,c- (b — a)] C [0,00). The transformation is given by

te:la,b] = [0,00), z+>c-(z—a). (1)

In order to decide whether two values z;, x5 € [a, b] are indistinguishable we can,
instead of measuring their distance directly in [a, b] and multiplying it by c, take the
distance of their transformed values, i.e. |[t.(z1) — t.(z2)].

Although by using such a scaling factor ¢ we can overcome the problem of differ-
ent scalings as in the case of Fahrenheit and Celsius, we are not able to model the
fact that a measurement instrument might provide quite precise values in a certain



temperature (in °C) ‘ scaling factor ‘ interpretation

< 15 0 don’t care (much too cold)

15-19 0.25 too cold but nearly o.k., not too sensitive
19-23 1.5 very sensitive, near optimum

23-27 0.25 too hot but nearly o.k., not too sensitive
> 27 0 don’t care (much too hot)

Table 1: Scaling factors for the room temperature.

range whereas out of this range the measured values are less reliable. Also in the
case of intended inexactness we might wish to distinguish between values in a certain
range very carefully, but for other ranges we are not interested in precise values. To
solve this problem of differing precision for different ranges we introduce varying
scaling factors for the ranges. A scaling factor ¢ > 1 implies a weak indistinguisha-
bility (strong distinguishability) for values in the corresponding range, whereas a
scaling factor ¢ < 1 leads to a strong indistinguishability. Consider for example the
case of the room temperature. If we are interested in keeping the room temperature
at a comfortable value, we might choose the scaling factors shown in table 1.

The great scaling factor 1.5 for the range of temperatures between 19°C and
23°C indicates that these temperatures are distinguished very sensitively and we
are able to carry out a fine adjustment in order to meet the optimal temperature.
For temperatures lower than 19°C but higher than 15°C we are not so interested
in the exact temperature since such temperatures are considers as too cold. For
temperatures even below 15°C we are not at all interested in the concrete value be-
cause for these frosty values we simply have to heat as much as possible independent
from the concrete value of the temperature. Temperatures above 23°C are treated
analogously. Let us assume that X = [0, 35] is the set of possible temperatures. The
function ¢ : X — [0, 00), assigning to each temperature the corresponding scaling
factor, is shown figure 1. The corresponding transformation induced by these scaling
factors is illustrated in Figure 2.

It is easy to check that the piecewise linear transformation in figure 2 from

X = [a,b] = [0,35] to [0,00) can be computed by
t.:[a,b] = [0,00), r—>/zc(s)ds 2)

where the function ¢ is given by

0 if 0 <s< 15

025 if 15 <s< 19

c: X = [0,00), s—<¢ 15 if 19 <s< 23 (3)
025 if 23 <s< 27
0 if 27 <s< 35.
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Figure 1: The scaling factor function for the room temperature example.

15 19 23 27 35

Figure 2: The transformation induced by the scaling function in figure 1.



If we choose ¢ = 0.5 then the temperatures 20.1°C and 20.5°C are e—distin-
guishable whereas 16°C and 12°C are e—indistinguishable. By equation (2) the
transformed values for 12, 16, 20.1, and 20.5 are 0, 0.25, 2.65, and 3.25, respectively.

Note that equation (2) coincides with equation (1) when we choose a constant
scaling function c.

The scaling function in figure 1 reflects the idea that we distinguish values near
the optimal temperature very carefully, whereas the distinguishability decreases the
farther away we go from the optimal value. The piecewise linear function was only
chosen to elucidate the principle of different scaling factors and to have a simple
transformation function. In the most general case we associate with each value = of
our set X = [a, b] a scaling factor ¢(z) > 0. The function ¢ has not to be piecewise
linear. All we have to assume is that c is integrable. For the transformation induced
by such a general scaling function equation (2) is still valid. The distance é.(z1, z2)
of the transformed values of z; and 5 is given by

T2
/ c(s)ds
1

/jl c(s)ds — /;2 c(s)ds

z; and z, are considered to be e-distinguishable with respect to the scaling function
c if their ‘transformed distance’ é.(z;, z5) is greater than e.

Se(z1,20) = . (4)

We now turn to the problem of representing a vague environment that is charac-
terized by a distance function . of the above mentioned type. We do not consider
only one fixed value €, but a whole set of values for ¢, each of them leading to a
different e—distinguishability. We consider all numbers from the unit interval as pos-
sible values for €. If one would prefer to have a smaller or larger interval as possible
values for €, this can be amended by an appropriate choice of the scaling function
c. If for example the scaling function ¢ is replaced by the scaling function ¢ = A - ¢
then e-distinguishability with respect to ¢ corresponds to (e/A)-distinguishability
with respect to ¢. In this sense allowing all values from the unit interval for € covers
already the most general case.

For each € € [0, 1] we associate with the value zo € X all values z € X which are
not e—distinguishable from z, (with respect to the scaling function ¢), i.e. the set

Szee = {2 € X | bc(z,20) < €}. (5)
A more convenient representation of this family of sets is described by the mapping
Py : X — [0,1], @+ 1—min{é.(z,x0),1}, (6)

so that we have

SEO,E = {m €X | :u’mo(m) > 1- 6}'

Kz, (2) can be interpreted intuitively as the degree to which z can be identified with
zo. Therefore we can understand p,, as the fuzzy set of values that are indistin-
guishable to zo. Note that in the most simple case where we have the same scaling
factor ¢ > 0 for all z € X, i.e. a constant scaling function, we obtain a triangular
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Figure 3: The fuzzy sets p,, associated with the values zo = 15,19,21,23,27 in the
vague environment induced by the scaling function in equation (3).

membership function with slope ¢ taking its maximum at zq as the fuzzy set p.,
which represents the value zg in the vague environment X.

Note that the a—cut {z € X | u,, > a} of the fuzzy set u,, is equal to the set
Szo,1-a Of elements that are (1 — a)-indistinguishable from z,.

Let us return to the vague environment for the room temperature example char-
acterized by the scaling factors in equation (3). Figure 3 illustrates the fuzzy sets y,,
that are associated with the values zq = 15,19, 21,23, 27 in this vague environment.

The fuzzy sets in figure 3 are all of triangular or trapezoidal type. This is not
necessarily the case as figure 4 illustrates where the fuzzy sets u,, associated with
the values zo = 18 and zq = 22.5 are shown. Since the scaling function in equation
(3) is piecewise constant, the fuzzy set p,, associated with a value zo will always be
piecewise linear.

To obtain other shapes for the fuzzy set associated with the value zo, an ap-
propriate scaling function has to be defined. As an example let us consider a bell
shaped fuzzy set of the form

1 /o — 2
p:IR—[0,1], z+> exp (—— (m mo) ) (7)
2 o
Choosing
‘ |z — o 1 /z—z0\?
c: IR — [0, 00), T g - eXp —5( - ) (8)

as the scaling function, we obtain yu = u,,, i.e. the fuzzy set u represents the value
zo in the vague environment induced by the scaling function ¢. This is a direct
consequence of equation (4) for the transformed distance, since (8) is simply the
absolute value of the first derivate of (7).

More generally we can state the following theorem.
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Figure 4: The fuzzy sets u,, associated with the values zo = 18 and 2o = 22.5 in
the vague environment induced by the scaling factors in equation (3).

Theorem 2.1 Let p: IR — [0,1] be a fuzzy set such that there exists zo € IR with
(1) pl(wo) =1,
(11) p is a non—decreasing function on (—oo, zo),
(151) u is a non—increasing function on [zo, 00),
() p is continuous,
(v) p is almost everywhere differentiable.

Then there ezists a scaling function ¢ : IR — [0, 00) such that p coincides with the
fuzzy set p,, which s associated with the value zo wn the vague environment induced
by c.

Proof. Choose c(z) = |u'(z)| = dp

——| as the scaling function. O
T

It is obvious, that the reverse of theorem 2.1 also holds, which means that, given
a scaling function ¢ : IR — [0, 00) and a value o, then the fuzzy p,, associated with
o in the vague environment induced by c satisfies conditions (i) — (v) of theorem
2.1.

Conditions (i) — (iii) guarantee that the fuzzy set is fuzzy convex (i.e. all its a—
cuts are convex), so that it can be considered as the representation of a single value in
a vague environment. Non—fuzzy convex sets cannot appear in vague environments
when fuzzy sets stand only for single values. It is, of course, possible not just to
associate with a single value a fuzzy set in a vague environment, but to associate
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Figure 5: The fuzzy set g, 4} in the vague environment induced by the constant
scaling function ¢ = 0.5.

with any set of values a corresponding fuzzy set by generalizing equations (5) and

(6) for a set M C X by
Sue={x € X |Jzo e M: b.(x,20) < e}

and

pa : X —[0,1], z+—1-— min{ iléf;w{(sc(m;mo)}a 1} )

respectively. Figure 5 illustrates an example for such a non—fuzzy convex fuzzy
set associated with the set M = {2,4} in the vague environment induced by the
constant scaling function ¢ = 0.5.

This example shows that also non—fuzzy convex fuzzy sets can appear in vague
environments, when sets of values instead of single values are considered. However,
in this paper we will not pursue this topic in detail.

The concept of scaling factors for the transformation enforces conditions (iv)
and (v) of theorem 2.1. If we do not insist on transformations induced by scaling
functions, we may allow as a generalization of equation (2) any non—decreasing
function ¢ : [a,b] — [0, 00) as transformation, where ¢ is not necessarily continuous.
Such transformation functions are discussed in connection with equality relations,
which we will relate to vague environments at the end of this section to our approach,
in [6]. An example of a non—continuous transformation is illustrated in figure 6. The



Figure 6: A non—continuous fuzzy set representing the value o = 4 in the vague
environment induced by the transformation function (9).

underlying transformation is

z/6 if 0 <s< 3
‘ 2/3+(x—-3)/3 if 3 <s< 4
t:[0,12] = [0,00), =z 14 (2 —4)/6 if 4 <s< 8 ()
5/3+ (z—8)/12 if 8 <s< 12

so that the transformed distance 6(z1,z2) of z; and z, is given by 8(z1,z2) =
|t(z1) — t(z2)|. Based on equation (6) the fuzzy set shown in figure 6 is induced by
the value zo = 4.

Up to now we have only considered fuzzy sets as representations of crisp values
in vague environments that were described by scaling functions. In this way a fuzzy
partition as in figure 3 is induced by a set of crisp values together with a scaling
function. We now turn to the question whether we can provide a vague environment
for a given fuzzy partition such that the corresponding fuzzy sets can be interpreted
as representations of crisp values in this vague environment. The following theorem
answers this questions.

Theorem 2.2 Let (u;),.; be an at most countable family of fuzzy sets on IR and let

(m(()i))iel be a family of real numbers such that ,uz-(m((,i)) = 1 holds and the conditions

(i) — (v) of theorem 2.1 are satisfied for all i € I. There exists a scaling function

¢:IR — [0,00) such that p; coincides with the fuzzy set p_) (for each i € I), which
(5

1s associated with the value zy’ in the vague environment induced by c, if and only

of

min{p;(2), p;(2)} >0 = |ui(z)] = |uj()| (10)

holds almost everywhere for all 1,7 € I.
Proof. Assume that (10) is satisfied. Define the scaling function

c: R —[0,00), x> { lpi(z)]  if ps(z) >0

0 otherwise.

10
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Figure 7: A typical fuzzy partition for which a scaling function can be defined easily.

(2.2) guarantees that c¢ is well defined almost everywhere. Theorem 2.1 yields that
pi = p ) holds for all € I. Note that it is sufficient for the proof of theorem 2.1
that the scaling function coincides with the derivate of the fuzzy set only on the
support of the fuzzy set.

In order to prove the reverse implication, we assume now that there is a scaling
function ¢ : IR — [0, 00) such that p; = 0 holds for all : € I. Let 7,5 € I and let

¢ € IR with min{y,(z), p;(z)} > 0. By definition we have

pe(z) = 1-

for k € {7, 7}, which implies
u(2)] = c(e)
if py is differentiable at . Since p; and p; are almost everywhere differentiable, we
obtain
wi(2)l = c(z) = |pj(2)]

almost everywhere. a

Theorem 2.2 simply states that we can find a corresponding scaling function for
a given fuzzy partition if for each real number z € IR the absolute value of the slope
at z is the same for all fuzzy sets in the fuzzy partition whenever z belongs to the
support of the fuzzy set.

A very common type of fuzzy partition is obtained by choosing crisp values
ry < 23 < ... < &, and defining the fuzzy set p; (for 1 < 2 < n) by a triangular
membership function which takes its maximum at z; and reaches the value zero at
z;_1 and z; 1, respectively. Such a fuzzy partition is illustrated in figure 7.

For such fuzzy partitions the corresponding scaling function can be defined as
the piecewise constant function

c(z) = o ifz; <z <z,
Tit+1 — T4

11



so that the fuzzy sets p; represent the values z; in the vague environment induced
by e.

This section has introduced fuzzy sets as representations of crisp values in vague
environments. A vague environment is characterized by a scaling function ¢ : X —
[0,00). The value ¢(z) specifies how sensitive we have to distinguish between values
in the neighbourhood of z.

As theorem 2.2 shows, it is not only possible to generate fuzzy sets by a scaling
function together with crisp values, but we can also derive in many cases a cor-
responding scaling function from a given fuzzy partition. A fuzzy set determines
implicitly a corresponding scaling function by its first derivate.

The membership degrees in the unit interval are connected to error— or tolerance
bounds where the membership degree a € [0,1] is associated with the tolerance
bound € = 1 — a. In this sense a fuzzy set p,, with p, (o) = 1 represents the
value z¢ in different consideration contexts where each context is associated with
a tolerance bound. The a—cut of the fuzzy set u,, stands for the value zo in the
context with tolerance bound € = 1 — & in which we identify all values with z,
whose (transformed) distance to zo is not greater than e. In the following section
we will make use of this context view to develop an interpolation technique in vague
environments which can be applied to fuzzy control.

The principal behind the concept of a scaling function ¢ is the definition of a
transformation which induces a (pseudo—)metric or modified distance measure &,
as in equation (4). e—distinguishability is determined on the basis of this distance
measure §.. For a fixed value z¢ € IR the membership degree of z € IR to the fuzzy
set fn, is 1 minus the distance between z¢ and z with respect to .. pa,(z) can also
be interpreted as the degree to which zy and = are equal or similar.

The concept of scaling functions is used in this paper to have an intuitively
appealing and easy to carry out approach for defining transformed distances. In
principal it is possible to generalize this idea and to specify the transformed distance
directly in the form of a pseudo-metric § which induces a similarity or equality
relation Es by E(z1,22) =1 — min{é(z1,z2),1}. An equality relation is a mapping
E: X x X — [0,1] satisfying

(i) E(z,z)=1 (total existence)
(i) E(z,y)= E(y,z) (symmetry)
(ii) E(ez,y)* E(y,z) < E(z, 2) (transitivity)

where * stands for the Lukasiewicz t—norm given by a x 8 = max{a + 8 — 1,0}.
E(z,y) is interpreted as the degree to which z and y are equal. With respect to such
an equality relation the fuzzy set u,, represents the extensional hull of the set {zo},
i.e. the smallest extensional fuzzy set with p,,(zo) = 1. Extensionality means that
the fuzzy set respects the equality relation in the sense ., (z) * E(z,y) < pa(y),
1.e. whenever z has a non-zero membership grade to the fuzzy set y,, and z and y

12



are equal to some degree, then also y should belong to p,, to a certain extend. For
details on equality relations we refer to [4, 10, 16, 17].

Considering arbitrary equality relations that are not necessarily induced by scal-
ing functions makes it possible to loosen the condition in theorem 2.1. In this way
equality relations for less restrictive types of fuzzy partitions can be provided, so
that the fuzzy sets of the fuzzy partitions represent crisp values as their extensional
hulls. In [6] it is shown that having only conditions (i) — (iii) of theorem 2.1 for
the fuzzy sets of the fuzzy partition we can derive a corresponding equality relation
which is representable as the infimum of equality relations that are induced by arbi-
trary, possibly non—continuous transformations. Other types of transformations are
discussed in [15].

Equality relations that do not have to be induced by transformations are consid-
ered in [5] with respect to the Lukasiewicz t-norm and for arbitrary t—norms in [12].
The main result for the general case of arbitrary equality relations is that a fuzzy
partition is induced by an equality relation and a set of crisp points if and only if for
any two fuzzy sets of the fuzzy partition their non—disjointness degree is less than
or equal to the degree that these two fuzzy sets are equal. However, even in the case
that there exists a corresponding scaling function for a given fuzzy partition, the
equality relation derived from a fuzzy partition in [5, 11, 12] is in general coarser
than the one induced by the corresponding scaling function [8].

3 Interpolation in Vague Environments

Now, after having introduced the concept of a vague environment in the previous
section and having discussed the connections to fuzzy sets, we can apply these
notions to interpolation in vague environments. At the end of this section we will
apply this interpolation technique to control an we will rediscover the well known
Mamdani type fuzzy control method.

Interpolation in vague environments is based on the following ideas. We are
looking for a function ¢ : X; X ... x X,, = Y that associates with each input tuple
(z1,...,2n) € X1 X ... X X, an appropriate output value y = ¢(z1,...,2,). The
domains Xy,...,X,, and Y are considered as vague environments, i.e. we have to
specify corresponding scaling factors as proposed in the previous section.

Generally, we are not able to define the function ¢ (otherwise we would have
solved the control problem). But we might be able to provide the output value not
for all but for certain input tuples, i.e. we know the output value

for the » input tuples (mgl), ) IO (mgr), o).

But we are still in trouble if we have to define an output value y for an input
tuple (z1,...,z,) for which the output value is not specified. We somehow have to
interpolate the function ¢ by using the partially specified function and the properties

13



of the vague environments. Thus we have to face the question, what can we do when

we are given the input (zi,...,2,) that is different from the tuples (mgi), Q)
(z=1,...,7) 7

We make the following assumption. If z; and mgi), as well as 5 and mg) as well
as ..., as well as z,, and £(*) are not e-distinguishable, then it is reasonable to choose

an output value y that is not e-distinguishable from the output value y® for the
tuple (mgz), coozl)) wherei € {1,...,r}.

To illustrate this, we consider the input tuple (zi,...,z,) and restrict at first to
only one tuple (mgi), ooz Let e € [0,1). If 2, and mgi), as well as x5 and mg)
as well as ..., as well as z, and z{*) are not e-distinguishable, then we obtain the
set of elements that are not e-distinguishable from y(® as reasonable output values.
But if at least one of the pairs (2, mgz)), .y (2n, 21)) is e-distinguishable, we gain
no information about the output value by the above assumption.

In other words, we consider an output value y as appropriate on the e—distin-
guishability level or context (with respect to the specified input—output tuple
((mgi),...,m,(f)),y("))) if y and y®, as well as #; and mgi), as well as ..., as well
as 2, and () are not e-distinguishable. We can characterize this information by
making use of the representation of the elements that are indistinguishable to a
certain value zo in the form of a fuzzy set as it was introduced in section 2. We
associate with y the value

output
(z1,em0Zn)st

(y) =1—inf{e € [0,1] | y is appropriate on the e-distinguishability level}

which can be understood as the maximal appropriateness degree of y with respect to

the input—output tuple ((mgi), oy z2l)), y@), In terms of the fuzzy set representation
of the values zi, ..., z,,y in the vague environments X, ..., X,,, Y, respectively, we

obtain the equation

Hloroenysiy) = min{p o (21), -, 0 (2n), yo (4)}-
Since we have to take into account all specified input—output tuples in our model,
we consider an output value y as appropriate on the e—distinguishability level if y
is appropriate on the e-distinguishability level with respect to at least one of the
specified input—output tuples. If we characterize the maximal appropriateness degree
of y as a fuzzy set in the same way as we did it for one input—output tuple, we obtain
the fuzzy set

Har o) W) = 0 {0 sW)

This interpolation technique does not provide a unique function . It does only
enforce constraints on . The basic idea behind this interpolation technique is
the following. For a given input tuple (zi,...,z,) € X; X ... X X,, choose one

of the tuples (mgi), ..., zl)) for which the output y() was specified and choose an
appropriate € such that (z1,...,z,) and (mgz), ..., zl)) are e-indistinguishable. Then
you may take y € Y as an output value for (zi,...,,) if y is e-indistinguishable

from y(®).

14



Now we can apply this interpolation technique to control. We consider a control
problem in the following way. We take measurements of n input variables &1, ..., &,
with X,..., X, as underlying domains and and we have to determine the value
of one output or control variable  with underlying domain Y. We are looking for
a control function ¢ : X; X ... x X,, — Y that assigns to each input tuple an
appropriate control value.

In order to apply our interpolation technique, scaling functions for the domains

Xi,..., X5, Y have to be specified. In addition we need a partial control function
that determines the control value y(®) for some input tuples (mgz), O R (A=
1,...,7). This partial control function may be given by a control expert or derived

from experimental data.

We can now establish the connection between our technique and Mamdani’s
fuzzy control model. Each value m,(:) and y® of the specified tuples is associated
with a fuzzy set in the corresponding vague environment as it is explained in section
2. In this way we obtain a fuzzy partition of the domain X by the fuzzy sets that
are associated with the values m,(:) (z=1,...,7). Note that some of the m,(:) may be
equal. The y( induce a fuzzy partition of Y.

For a specified input—output tuple ((mgz), IO y(i)) we consider the linguistic
control rule

If & is (approximately) mgi) and ... and &, is (approximately) () then
n is (approximately) y(®. t=1,...,7)

where we associate with the linguistic terms (approximately) m(i), .., (approxi-
mately) z(), and (approximately) y® the fuzzy sets p @, ..., p_@, and Byi) 5 TE-
z, Ty,

spectively. &1, ..., &, are the input variables, n is the output variable.

The important observation that we can make now is that the fuzzy set ll’?::?.lfmn);i
derived by interpolation in vague environments corresponds exactly to the output of
the above mentioned single control rule. Moreover, the fuzzy set p?‘:ltputzn) obtained

by interpolation in vague environments is exactly the output fuzzy set of the max—
min fuzzy controller based on the r control rules of the above mentioned type.

Example 3.1 To elucidate the connection between the max—min fuzzy controller
and the concept of interpolation in vague environments, we consider a simple fuzzy
controller with two input variables & and &; and one output variable . The under-
lying domains are X; = [0,11], X, = [0,9], and Y = [0,4]. The fuzzy partitions of
X1,X5,Y are shown in figures 8 — 10, respectively. Table 2 shows the rule base of
the fuzzy controller.

From the fuzzy partitions we can derive the following scaling functions.

0 if 0<z< 1
cx, : [0,11] = [0,00), z+—< 1/3 if 1 <z< 10
0 if 10 <z< 11
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4 small medium big huge

Figure 8: The fuzzy partition of X;

1 small medium big

0 1 4 6 6.5 7.5 9
Figure 9: The fuzzy partition of X,.

1 small big

Figure 10: The fuzzy partition of Y.
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‘ H small ‘ medium ‘ big ‘ huge ‘

small small | small big
medium || small big | big
big big big | big

Table 2: The rule base of a fuzzy controller.

‘ H small ‘ medium ‘ big ‘ huge ‘

X 1 4 7 10
X 1 4 7.5
Y 0 3

Table 3: The values associated with the fuzzy sets.

Cy [074] - [0700)7 Y=

The values associated with the fuzzy sets are shown in table 3. The fuzzy sets
represent the corresponding values in the vague environment induced by the respec-
tive scaling function.

From tables 2 and 3 we obtain the partial control function described in table 4.

This example will also be used to illustrate the results in section 4.

Let us summarize the results of this section. We have introduced an intuitively
appealing and plausible approach to control based on the concept of interpolation in

Lo [[1[4]7[10]
1 [0]0]| |3
10| (3|3
75| [3]3] 3

Table 4: The partial control function.
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vague environments. Although at first glance there is no connection to Mamdani’s
fuzzy control model, it turns out that our method leads to the same computations
as the max—min rule (before defuzzification). For reasons of simplicity we will not
discuss defuzzification strategies here.

In Mamdani’s model fuzzy partitions and linguistic control rules have to be spec-
ified. In our approach we need characterizations of the vague environments in the
form of appropriate scaling functions and a partial control mapping. We showed that
we can always interpret a controller based on interpolation in vague environments
as a max—min fuzzy controller. In most cases it also possible to translate a max—
min fuzzy controller to a controller based on interpolation in vague environments.
For this translation it is necessary to derive appropriate scaling functions from the
specified fuzzy partitions and to transform the rule base into a corresponding partial
control function.

Corresponding scaling functions for a vague environment can be derived from a
fuzzy partition by applying theorem 2.2, which requires the fuzzy partition to fulfill
certain constraints, that are satisfied in many applications.

The consequences of this equivalence between Mamdani’s and our control model
for the design and tuning of a fuzzy controller will be discussed in the following
section.

4 Consequences for Fuzzy Control

After the first design of a fuzzy controller it is in general necessary to tune this
controller in order to obtain satisfactory or optimal control actions. Apart from
drastic changes like altering operations (for example taking other t-norms or t-
conorms than min or max, respectively), varying the defuzzification strategy or a
total redesign of the controller, usually only small changes are considered. We will
discuss in this paper the impacts of tuning membership functions and changing the
rule base in the view of interpolation in vague environments, where only the partial
control mapping and the scaling functions can be tuned.

Let us first turn to the problem of tuning membership functions. If we fix the
level 1 of the membership function and only change the width of fuzzy sets, this
corresponds in our model to a change in the vague environments, i.e. a variation of
the scaling functions. In order to maintain the possibility of translating the Mamdani
fuzzy controller to vague environments, it is necessary to change neighbouring fuzzy
sets of a fuzzy partition accordingly, which means for example to guarantee that the
slopes have the same absolute values. Figure 11 illustrates a consistent change of
two fuzzy sets that corresponds to an increase of the scaling function between 4 and
7 by the factor 1.5. The dotted lines indicate the changed fuzzy sets.

A change of the support of the membership functions and maintaining their
shapes does not effect the vague environments, but leads to a different partial control
function. If a fuzzy set represents the value m,(:) in the vague environment and it is

shifted one unit to the right, it then represents the value (a:,(:) +1). A simple shift
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Figure 11: This tuning of the two fuzzy sets representing the linguistic terms medium
and big in X; corresponds to multiplying the scaling factor between 4 and 7 by 1.5.

medium — mediumpeyw

0 1 4 6 6.5 7. 9

Figure 12: Shifting the fuzzy set for the linguistic term medium in X, 2.5 units
to the right and changing it accordingly to the greater scaling factor in the range
between 6 and 9.

of a fuzzy set leads only to a consistent fuzzy partition for which we can derive a
scaling function, when condition (10) of theorem 2.2 is still satisfied. Too guarantee
this consistency condition, in addition to the shift of the membership function its
slopes should be changed accordingly in order to maintain the scaling function. An
example is shown in figure 12 where the fuzzy set p is shifted to the right and it
is changed according to the greater scaling factor induced by the fuzzy set v in the
range between 6 and 9.

We should also take into account that due the fuzzy partitions moving a fuzzy
set to the left or right does have multiple effects on the partial control function
since all rules that contain the the linguistic term corresponding to the fuzzy set are
influenced. A Mamdani fuzzy controller is always based on a partial control function
which is a subset of a grid in the space X; x ... x X, x Y. It is not possible to
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change a single point of the grid, we can on only move whole lines of the grid. If,
for example, it turned out that the value we obtain from the rule

If ¢ huge and &, is big then n is big

in example 3.1 is too high, and we shift the fuzzy set for the linguistic term big one
unit to the left so that it represents the value two instead of three, we would replace
all three’s by two’s in table 4 for the partial control function, instead of changing
only the value in the lower left corner.

All together we can see that tuning membership functions can in general be
interpreted as a simultaneous change of the vague environments and the partial
control function. Tuning the rule base means to alter the partial control function
without influencing the vague environments.

The advantage of translating Mamdani’s fuzzy control model to our approach
i1s that we can interpret the changes caused by tuning. We should be aware of
the fact that an arbitrary tuning of membership functions leads to a simultaneous
change of the vague environments and the partial control function which is in general
not a desired effect. When tuning membership functions we should also take the
consistency condition into account that is needed in order to be able to derive scaling
functions (compare theorem 2.2 and figure 12).

There are also other consequences induced by our approach. For example, we can
explain, why it is reasonable to use fuzzy partitions in which the support of of each
fuzzy set is chosen in such a way that it exactly covers the range between the points
where its neighbouring fuzzy sets reach their maximum. For triangular membership
functions this guarantees always the existence of a corresponding scaling function.
This strategy also implies that the fuzzy sets are more dense in ranges where they
have smaller supports. Since smaller supports induce greater scaling factors, i.e.
higher distinguishability, this leads to having more points for interpolation where
the distinguishability is high.

Although we did not discuss the problem of defuzzification in this paper, our
approach may also be used to find constraints for defuzzification operators. It might
be reasonable to require from the control function ¢ induced by the max—min rule
together with the defuzzification strategy that ¢ does not map values that are e-
indistinguishable to values that are e-distinguishable. This constraint is expressed
by the following inequality.

min{(?ch(ml,a"r:l),...,JCXn(a:n,a"cn)} > bey (O(21,y .-y 2n), (21, ..., 80))

This is a very restrictive condition and it corresponds to the extensionality of ¢

)

with respect to the equality relations induced by the distance functions ey - - -, dey,,

and é.,. For a discussion of this constraint we refer to [11, 12].
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5 Conclusions

We have provided a very simple but clear interpretation of Mamdani’s fuzzy control
method. Making use of this interpretation we can explain the consequences of tuning
a fuzzy controller and can judge which tuning strategies are reasonable or might lead
to undesired results. It is also possible to see our approach as a stand—alone model
and to apply it directly. (Indeed, we have applied it successfully to idle speed control
of the Volkswagen GTI engine [9].) Then we can rely on the clear semantics of our
model and nevertheless use standard fuzzy hard— and software tools, since we can
translate our controller based on interpolation in vague environments to a max—min
fuzzy controller.
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