Visual Inspection of Fuzzy Clustering Results

Frank Klawonn, Vera Chekhtman, and Edgar Janz

Department of Computer Science

University of Applied Sciences Braunschweig/Wolfenbuettel
Salzdahlumer Str. 46/48

D-38302 Wolfenbuettel, Germany
f.klawonn@fh-wolfenbuettel.de

1 Introduction

Clustering is an explorative data analysis method applied to data in order to
discover structures or certain groupings in a data set. Therefore, clustering can
be seen as an unsupervised classification technique. Fuzzy clustering accepts
the fact that the clusters or classes in the data are usually not completely well
separated and thus assigns a membership degree between 0 and 1 for each
cluster to every datum.

The most common fuzzy clustering techniques aim at minimizing an ob-
jective function whose (main) parameters are the membership degrees and the
parameters determining the localisation as well as the shape of the clusters.
The algorithm will always compute a result that might represent an unde-
sired local minimum of the objective function. Even if the global minimum
is found, it might correspond to a bad result, when the cluster shapes or the
number of the clusters are not chosen properly. Since the data are usually
multi-dimensional, the visual inspection of the data is very limited. Methods
like multi-dimensional scaling are available, but lead very often to unsatis-
factory results. Nevertheless, it is important to evaluate the clustering result.
Although cluster validity measures try to solve this problem, they tend to
reduce the information of a large data set and a number of cluster parameters
to a single value.

We propose in this paper to use the underlying principles of validity mea-
sures, but to refrain from the simplification to a single value and instead
provide a graphical representation containing more information. This enables
the user to identify inconsistencies in the clustering result or even in single
clusters.

Section 2 briefly reviews the necessary background in objective function-
based fuzzy clustering. The concept of validity measures is discussed in section
3. The techniques for visualisation are introduced in section 4 and in the
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final conclusions we outline that the visualisation techniques tailored for fuzzy
clustering are even useful in the case of crisp clustering.

2 Objective Function-Based Fuzzy Clustering

Fuzzy clustering is suited for finding structures in data. A data set is divided
into a set of clusters and — in contrast to hard or deterministic clustering
— a datum is not assigned to a unique cluster. In order to handle noisy and
ambiguous data, membership degrees of the data to the clusters are computed.
Most fuzzy clustering techniques are designed to optimise an object function
with constraints. The most common approach is the so called probabilistic
clustering with the objective function
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It is assumed that the number of clusters c¢ is fixed. The set of data to be
clustered is {z1,...,z,} C IRP. u;; is the membership degree of datum z; to
the ith cluster. d;; is some distance measure specifying the distance between
datum z; and cluster 4, for instance the (squared) Euclidean distance of z;
to the ith cluster centre. The parameter m > 1, called fuzzifier, controls how
much clusters may overlap. The constraints (2) lead to the name probabilistic
clustering, since in this case the membership degree u;; can also be interpreted
as the probability that x; belongs to cluster ¢. The parameters to be optimised
are the membership degrees u;; and the cluster parameters that are not given
explicitly here. They are hidden in the distances d;;. Since this is a non-linear
optimisation problem, the most common approach to minimize the objective
function (1) is to alternatingly optimise either the membership degrees or
the cluster parameters while considering the other parameter set as fixed. In
this paper we are not interested in the great variety of specific cluster shapes
(spheres, ellipsoids, lines, quadrics,. . .) that can be found by choosing suitable
cluster parameters and an adequate distance function. (For an overview we
refer to [2, 5].) Our considerations can be applied to almost all cluster shapes.
However, for shell clustering there are better suited methods. Since most shell
clustering algorithms are designed for image recognition, the data are usually
two-dimensional so that special visualisation techniques are not required.

The visualisation methods we propose are also suited for noise clustering [3]
where the principle of probabilistic clustering is maintained, but an additional
noise cluster is introduced. All data have a fixed (large) distance to the noise
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cluster. In this way, data that are near the border between two clusters, still
have a high membership degree to both clusters as in probabilistic clustering.
But data that are far away from all clusters will be assigned to the noise
cluster and have no longer a high membership degree to other clusters.

We do not cover possibilistic clustering [6] where the probabilistic con-
straint is completely dropped and an additional term in the objective func-
tion is introduced to avoid the trivial solution w;; = 0. However, the aim
of possibilistic clustering is actually not to find the global optimum of the
corresponding objective function, since this is obtained, when all clusters are
identical [7].

3 Validity Measures

Cluster validity refers to the problem whether a given (fuzzy) partition fits to
the data at all. We emphasize again that the clustering algorithm will always
try to find the best fit for a fixed number of clusters and the parameterised
cluster shapes. However, this does not mean that even the best fit is meaning-
ful at all. Either the number of clusters might be wrong or the cluster shapes
might not correspond to the groups in the data, if the data can be grouped
in a meaningful way at all. The cluster validity problem is a similar one as
in linear regression. One can always find the best fitting line for a given data
set, even if the data come from an exponential function. This does not mean
that there is a linear dependence in the data.

Cluster validity measures are used to validate a clustering result in general
or also in order to determine the number of clusters. In order to fulfill the latter
task, the clustering might be carried out with different numbers of clusters
and the one yielding the best value of the validity measure is assumed to have
the correct number of clusters.

Let us briefly review some cluster validity measures. It is beyond the scope
of this paper to provide a complete overview on validity measures and we refer
for a more detailed discussion to [2, 5]. We also restrict our considerations to
global validity measures that evaluate a whole fuzzy partition and not single
clusters.

The partition coefficient [1] is defined by

Zf:l Z?:l u?j
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The higher the value of the partition coefficient the better the clustering
result. The highest value 1 is obtained, when the fuzzy partition is actually
crisp, i.e. u;; € {0,1}. The lowest value 1/c is reached, when all data are
assigned to all clusters with the same membership degree 1/c. This means
that a fuzzy clustering result is considered better, when it is more crisp.

The partition entropy [1]
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is inspired by the Shannon entropy. The smaller the value of the partition en-
tropy, the better the clustering result. This means that similar to the partition
coefficient crisper fuzzy partitions are considered better.

In [4] validity measures are proposed that take the volume of the clusters
into account. Let
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denote the (fuzzy) covariance matrix of the ith cluster where
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denotes the centre of the ith cluster and the z; are the data vectors.
Then the validity measure called the fuzzy hypervolume is defined by

FHV = Z Vdet(4;).

A smaller value of FHV indicates compact and therefore better clusters.
The average partition density is given by

Z\/W

where S; = EjeY— u;; and

Y; = {jed{l...on} ] (25 —v) "AT (a5 — i) < 1}

is the set of data near to the cluster centre v;. S; corresponds to the number
of data assigned to cluster i that are near to the cluster centre v;. Therefore

7dst e is proportional to the average density of the data in cluster i. A high

density value indicates good clusters.
Finally, the partition density is defined by

25:1 Si
FHV

where a larger value refers again to better clusters.

It should be noted that validity measures like the partition coefficient or
the partition entropy rely solely on the membership degrees whereas fuzzy
hypervolume and (average) partition density also take the distance of the
data to the clusters into account. We will use these ideas to develop graphical
validity measures in the next section.
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4 Visualisation

Let us first use the membership degrees only for a graphical inspection,
whether a fuzzy clustering result is acceptable. It should be noted that the
underlying idea is always: The more crisp the fuzzy partition, the better the
clustering result. Of course, decreasing the fuzzifier m always leads to crisper,
but not necessarily better partitions. This must always be taken into account.

In order to illustrate our graphical validity criterions, we use the artificial
data set shown in figure 1. This data set obviously contains three well sep-
arated clusters. We have clustered this data set with the well known fuzzy
c-means algorithm with three clusters as well as four clusters. For three clus-
ters the cluster centres are not shown in the figure, but are more or less
exactly in the middle of the corresponding circles. When we use four clusters,
the marked spots in figure 1 show the cluster centres. A data point has the
highest membership degree to the nearest cluster centre.

As a first very simple visualisation of the membership degrees we can
simply look at the distribution of the membership degrees. For the ideal case
of a crisp result, i.e. each datum is assigned to exactly one cluster with member
ship degree 1 and to all others with membership degree 0, we would expect
the following: The relative frequency of the membership degree 1 should be
n/(en) = 1/c and accordingly the relative frequency of the value 0 should be
(¢ — 1)n/(en) = (¢ — 1)/c. So, for the ideal case of crisp memberships, we
would expect a distribution of the membership degrees whose chart diagram
shows a value of (¢ — 1)/c on the left side and 1/c on the right side and zero
values in between.

However, we belief that such a chart diagram is not very suitable, since its
desired shape depends on the number of clusters. And for larger numbers of
clusters the emphasis is mainly put only on the left side of the chart diagram.
Therefore, we carried out a scaling of the values in such a way that in the
ideal case the chart diagram would show a value of 1 on both the left and the
right side. This means that, when counting the frequencies of the membership
degrees, we introduce a weighting factor. The weighting for a membership
degree of 0 is ¢/(¢ — 1) and for a membership degree of 1 it is ¢. For the
computation of the chart diagram, the weighting of the membership degrees
between 0 and 1 is simply linear, increasing from ¢/(c¢—1) to ¢. A single chart
in the diagram does not show the relative frequency of membership degrees
in a range between a and b

1
Ecard{(i,j)E{l,...,c}x{1,...,n}|a§u,~j<b},

but the scaled frequency

vz )

(i.4):a<ui; <b
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Fig. 1. Clustering result with four clusters

Figure 2 shows these scaled chart diagrams for our artificial data set, when
clustered with three and four clusters. The height of the chart diagrams in
the graphics is normalised, the value on the left side is 0.92 for the left and
0.90 for the right chart diagram. What is more significant is that we can
see immediately that the chart diagrams differ in the middle and the right
side. The right chart diagram shows less values near 1 and more ambiguous
membership degrees. This is an indicator for a non-optimal clustering result.
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Fig. 2. Scaled membership distributions for three (left) and four (right) clusters
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Although these chart diagrams provide already interesting information on
the clustering result, we propose to have a look at another diagram as well.
For each datum z; we determine the cluster for which z; has the highest
membership degree, say clusters i1, and the cluster yielding the second highest
membership degree, say i2. Then for each z; we plot a point at the coordinates
(uiy j,Uin;) leading to a diagram as shown in figure 3.

It is clear that all points must lie within the triangle defined by the points
(0,0), (0.5,0.5) and (1,0), since the first coordinate must always be larger
than the second one and according to the probabilistic constraint (2) we have
Uiyj + Uigj < 1.

Having again the ideal case of (almost) crisp membership degrees in mind,
all points would be plotted near the point (1,0). Points near (0.5,0.5) indicate
ambiguous data that are shared by two clusters. Points near (0,0) usually
originate from noise data that have a low membership degree to all clusters.

The upper left graph in figure 3 shows this diagram at the beginning of
the clustering algorithm, when the cluster centres are initialised randomly. Of
course, with random cluster centres very few data are near to a cluster centre
and we find only few points near (1,0).

The lower part of figure 3 shows this diagram of maximum membership
degrees after we have carried out the clustering completely with three and
four clusters. Since for the partition with three clusters more points are con-
centrated near (1,0) than for four clusters, we see from the diagram that three
clusters should be preferred.

In the case of very large data sets, we recommend not to plot a single point
for each datum. A colour plot where the intensity of the colour represents the
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Fig. 3. Maximum membership degrees for the random initialisation (upper left), for
three (lower left) and four (lower right) clusters after convergence and an intensity
plot for a large data set (upper right)

density of points should be chosen instead. The upper right graph in figure 3
shows such an intensity plot for a similar data set as in figure 1, except that
the density of the data is increased, so that we have 192231 instead of 951
data.

So far we have considered only the membership degrees for our visualisa-
tion. We have already seen in our short review of validity measures that this
is a suitable approach, but we can use more information from the clustering
output. Validity measures like the fuzzy hypervolume or the (average) parti-
tion density also take the distances of the data to the clusters into account.
A lot of insight can be gained from a plot of the membership degrees over
the distances for each cluster. For each cluster ¢ we plot for every datum z; a
point at (d;;,ui;). This leads to diagrams as they can be seen in figure 4.

How should an ideal graph look like? We would expect high membership
degrees for small distances and low membership degrees for large distances.
Let us briefly discuss what kind of effects can occur, when cluster centres are
not chosen appropriately, although there are valid clusters in the data. Typical
problems that occur in this case are the following.
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Fig. 4. Membership degrees over distances for three clusters

e One cluster has to cover two or more data clusters. This occurs especially,
when the number of clusters is chosen too small. In this case, we would see
almost no data with small distances in the upper left part of the diagram
for this cluster.

e Two or more clusters compete and share the same data cluster. This usu-
ally occurs, when the number of clusters is chosen to high. In this case,
there will occur small membership degrees even for small distances. This
means, we find points in the lower left part of the diagrams of the corre-
sponding clusters.

Figure 4 shows the corresponding diagrams for our data set, when we use
three clusters. For all three clusters the diagrams look quite well. It can even
be seen that cluster 1 (covering the lower data cluster in figure 1) is best
separated from the other clusters.

[Eicuneomamecan -~ %
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Fig. 5. Membership degrees over distances for four clusters

In figure 5 we have the diagrams for (the inappropriate choice of) four
clusters. Cluster 1 corresponds to the lower data cluster in figure 1 and the
diagram coincides more or less with the first cluster in figure 4. The diagram
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for cluster 4 (the upper left cluster centre in figure 1) is still more or less
acceptable. Indeed, we can see from figure 1 that it covers the upper left data
cluster almost correctly. However, compared to the diagrams in figure 4 we
see a more continuous slide from high to low membership degrees, indicating
that the cluster is not very well separated from the others. Cluster 3, repre-
sented by the middle cluster centre in figure 1, is the worst one. We have low
membership degrees even for small distances, since it shares data with cluster
2 (the right one). There is also a gap in medium values for the membership
degrees arising from the fact that cluster 3 actually covers data from two
different data clusters. Cluster 2 has also low membership degrees for small
distances, because of the competing cluster 3.

E\g{;tlusterDistanceGraph ;Iglil

Cluster 1 Cluster 2 Cluster 3

| Z2 »

Reatly tensity Ol | Itensity OFF || Close |

Fig. 6. Intensity plot for membership degrees over distances for a large data set

Analogously to the diagrams showing the maximum membership degrees,
we recommend to replace the point plots by intensity plots for larger data sets
as shown in figure 6, where we have used again the previously described data
set with 192231 data points.

As another example we have used the artificial data set with some noise
added (see figure 7).

Figure 8 shows the chart diagram for the membership degree distribution
and the maximum membership degree diagram for the noisy data when clus-
tered with three clusters. These diagrams should be compared to the diagrams
in figure 2 and 3, respectively, for the data set without noise. The diagrams
for the membership degrees over the distances for the noisy data are shown
in figure 9 to be compared to figures 4 and 5. The similarities and differences
are obvious and need no further explanation.
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Fig. 7. Clustering result with three clusters for noisy data

5 Conclusions

We have a proposed a number of diagrams that support the visual validation
of a fuzzy clustering result. Classical validity measures can be used to carry
out clustering completely unsupervised. But this means that we rely on a very
strict information compression performed by these validity measures. With our
visualisation techniques much more information is available and even single
good or bad clusters can be identified by inspecting the diagrams.

Our methods can also be applied in the context of crisp clustering. Of
course, all our methods are based on membership degrees. But even if we have
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8. Scaled chart diagram (left) and maximum membership degrees diagram

(right) for noisy data
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Fig. 9. Membership degrees over distances for noisy data

carried out a crisp clustering, we can afterwards compute membership degrees
by the formulae known from fuzzy clustering and then apply our visualisation
methods.
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