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Abstract

In this paper we survey the main approaches to fuzzy shell cluster analysis
which is simply a generalization of fuzzy cluster analysis to shell like clusters,
i.e. clusters that lie in nonlinear subspaces. Therefore we introduce the main
principles of fuzzy cluster analysis first. In the following we present some fuzzy
shell clustering algorithms. In many applications it is necessary to determine
the number of clusters as well as the classification of the data set. Subsequently
therefore we review the main ideas of unsupervised fuzzy shell cluster analysis.
Finally we present an application of unsupervised fuzzy shell cluster analysis in
computer vision.

1 Introduction

Cluster analysis is a technique for classifying data, i.e. to divide the given data into a
set of classes or clusters. In classical cluster analysis each datum has to be assigned to
exactly one class. Fuzzy cluster analysis relaxes this requirement by allowing gradual
memberships, offering the opportunity to deal with data that belong to more than one
class at the same time.

Traditionally, fuzzy clustering algorithms were used to search for compact clusters.
Another approach is to search for clusters that represent nonlinear subspaces, for in-
stance spheres or ellipsoids. This is done using fuzzy shell clustering algorithms, which
is the subject of this paper.

Fuzzy shell cluster analysis is based on fuzzy cluster analysis. Therefore we review
the main ideas of fuzzy cluster analysis first, and present then some fuzzy shell clus-
tering algorithms. These algorithms search for clusters of different shapes, for instance
ellipses, quadrics, ellipsoids etc. Since in many applications the number of clusters, into
which the data shall be divided, is not known in advance, subsequently the subject of
unsupervised fuzzy shell clustering analysis is reviewed. Unsupervised fuzzy shell clus-
tering algorithms determine the number of clusters as well as the classification of the
data set. Finally an application of fuzzy shell cluster analysis in computer vision is
presented.
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2 Fuzzy Cluster Analysis

2.1 Objective Function Based Clustering

Objective function based clustering methods determine an optimal classification of
data by minimizing an objective function. Depending on whether binary or gradual
memberships are used, one distinguishes between hard and fuzzy clustering methods.
In fuzzy cluster analysis data can belong to several clusters at different degrees and
not only to one. In general the performance of fuzzy clustering algorithms is superior
to that of the corresponding hard algorithms [1].

In objective function based clustering algorithms each cluster is usually represented
by a prototype. Hence the problem of dividing a data set X, X = {zy,...,2,} C R?,
into ¢ clusters can be stated as the task of minimizing the distances of the datum to
the prototypes. This is done by minimizing the following objective function J(X, U, /3)

JX,U,B) = 3 5 uld (B, ) (1)
i=1j=1
subject to
i uig >0 forallie{l,...,c} (2)
¢ qu; =1 forall je{l,....,n} (3)

where u;; € [0, 1] is the membership degree of datum z; to cluster ¢, §; is the prototype
of cluster 4, and d(f3;, z;) is the distance between datum z; and prototype 3;. The ¢ xn
matrix U = [u,] is also called the fuzzy partition matrix and the parameter m is called
the fuzzifier. Usually m = 2 is chosen.

Constraint (2) guarantees that no cluster is empty and constraint (3) ensures that
the sum of membership degrees for each datum equals 1. Fuzzy clustering algorithms
which satisfy these constraints are also called probabilistic clustering algorithms, since
the membership degrees for one datum formally resemble the probabilities of its being
a member of the corresponding cluster.

The objective function J(X, U, ) is usually minimized by updating the member-
ship degrees u;; and the prototypes [3; in an alternating fashion, until the change AU of
the membership degrees is less than a given tolerance . This approach is also known
as the alternating optimization method.

A Fuzzy Clustering Algorithm
Fiz the number of clusters c
Fiz m, m € (1,00)
Initialize the fuzzy c-partition U
REPEAT
Update the parameters of each clusters prototype
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Update the fuzzy c-partition U using (4)
UNTIL |AU| < ¢

To minimize the objective function (1), the membership degrees are updated using
(4). The following equation for updating the membership degrees can be derived by
differentiating the objective function (1).

( 1 . if I; =0,
(g
uy =< = \d(xy, Br) (4)
0 if T 0 and i ¢ I;
\ 2,2 € [0,1] such that Y ;c; uj; =1, if I; # 0 and i € I;.

This equation is used for updating the membership degrees in every probabilistic clus-
tering algorithm.

In contrast to the minimization of the objective function (1) the minimization of
(1) varies with respect to the prototypes according to the choice of the prototypes and
the distance measure. Therefore each choice leads to a different algorithm.

2.2 Possibilistic Clustering Algorithms

The prototypes are not always determined correctly using probabilistic clustering al-
gorithms, i.e. only a suboptimal solution is found. The main source of the problem is
constraint (3), which requires the membership degrees of a point across all clusters to
sum up to 1. This is easily demonstrated by considering the case of two clusters. A
datum x;, which is typical for both clusters, has the same membership degrees as a
datum z,, which is not at all typical for any of them. For both data the membership
degrees are u;; = 0.5 for ¢ = 1,2. Therefore both data influence the updating of the
clusters to the same extent.

An obvious modification is to drop constraint (3). To avoid the trivial solution, i.e.
uwi; =0forallie {1,...,c},57 € {1,...,n}, (1) is modified to (5).

JOXUB) = 3 () + X i 31 = )" ®)

i=1j=1 =1

where 7; > 0.

The first term minimizes the weighted distances while the second term avoids the
trivial solution. A fuzzy clustering algorithm that minimizes the objective function
(5) under the constraint (2) is called a possibilistic clustering algorithm, since the
membership degrees for one datum resemble the possibility of its being a member of
the corresponding cluster.
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Minimizing the objective function (5) with respect to the membership degrees leads
to the following equation for updating the membership degrees u;; [11].

1
1
1+ <d2(;¢j,@)> m—1

i
Equation (6) shows, that 7; determines the distance at which the membership degree
equals 0.5. If d*(z;, ;) equals n;, the membership degree equals 0.5. So it is useful,
to choose 7; for each cluster separately [11]. 7; can be determined by using the fuzzy
intra cluster distance (7) for example.

m= e )", ). 1)

) ]:1

(6)

uij =

where N; = 377, (u;;)™. Usually K =1 is chosen.

It is recommended to initialize a possibilistic clustering algorithm with the results
of the corresponding probabilistic version [12]. In case prior information about the
clusters is available, it can be used to determine 7; for a further iteration of the fuzzy
clustering algorithm to fine tune the results [10].

A Possibilistic Clustering Algorithm
Fiz the number of clusters c
Fiz m, m € (1,00) Initialize U using the corresponding fuzzy algorithm
Compute n; using (7)
REPEAT
Update prototype using U
Compute U using (6)
UNTIL |AU| < &,
Fix the values of m; using a priori information
REPEAT
Update prototype using U optional
Compute U using (6)
UNTIL |AU| < &9

2.3 The Fuzzy C Means Algorithm

The simplest fuzzy clustering algorithm is the fuzzy ¢ means algorithm (FCM) [1]. The
¢ in the name of the algorithm reminds that the data is divided into ¢ clusters. The
FCM searches for compact clusters which have approximately the same size and shape.
Therefore the prototype is a single point which is the center of the cluster, i.e. 5; = (¢;).
The size and shape of the clusters are determined by a positive definite n x n matrix
A. Using this matrix A the distance of a point z; to the prototype f3; is given by

d* (x5, ;) = llzj — ailly = (25 — )T Az — ¢). (8)
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In case A is the identity matrix, the FCM looks for spherical clusters otherwise for
ellipsoidal ones. In most cases the Euclidean norm is used, i.e. A is the identity matrix.
Hence the distance reduces to the Euclidean norm, i.e.

d*(x;, ;) = |lzj — cil” (9)

Minimizing the objective function with respect to the prototypes leads to the fol-
lowing equation (10) for updating the prototypes [7].

1 n
Ci = ﬁ Z uij) " (10)

where Nz = Z?:l (’U/U)m

A disadvantage of the FCM is, that A is not updated. Therefore the shape of the
clusters cannot be changed. Besides, when the clusters are of different shape, it is not
appropriate to use a single matrix A for all clusters at the same time.

2.4 The Gustafson-Kessel Algorithm

The Gustafson-Kessel algorithm (GK) searches for ellipsoidal clusters [6]. In contrast
to the FCM, a separate matrix A;, 4; = (detC;)'/"C;!, is used for each cluster.
The norm matrices are updated as well as the centers of the corresponding clusters.
Therefore the prototypes of the clusters are a pair (¢;, C;), where ¢; is the center of the
cluster and C; the covariance matrix, which defines the shape of the cluster.

Like the FCM the GK computes the distance to the prototypes by

d*(x, 3;) = (detC)/™(x; — )T C7 N zj — ¢;). (11)

To minimize the objective function with respect to the prototypes, the prototypes
are updated according to the following equations [7]

1 n
c; = ﬁ Z U” l‘j, (12)

1 & T
C; = N, z:: wig)™ (w5 — i) (v — ;)" (13)

The GK is a simple fuzzy clustering algorithm to detect ellipsoidal clusters with
approximately the same size but different shapes. In combination with the FCM it
is often used to initialize other fuzzy clustering algorithms. Besides the GK can also
be used to detect linear clusters. This is possible, because lines and planes can also
be seen as degenerated ellipses or ellipsoids, i.e. at least in one dimension the radius
nearly equals zero.
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2.5 Other Algorithms

There are many fuzzy clustering algorithms besides the FCM and the GK. These
algorithms search for clusters with different shape, size and density of data and use
different distance measures. For example, if one is interested in ellipsoidal clusters of
varying size the Gath and Geva algorithm can be used [5]. It searches for ellipsoidal
clusters, which can have different shape, size, and density of data.

If one is interested in linear clusters, for instance lines, linear clustering algorithms,
for example the fuzzy c-varieties algorithm [1] or the adaptive fuzzy clustering algorithm
[3], can be used. Another linear clustering algorithm is the compatible cluster merging
algorithm (CCM) [8, 7]. This algorithm uses the property of the GK to detect linear
clusters and improves the results obtained by the GK by merging compatible clusters.
Two clusters are considered compatible, if the distance between these clusters is small
compared to their size and if they lie in the same hyperplane.

A common application of the CCM is line detection. The advantage of the CCM
in comparison to other line detection algorithms is its ability to detect significant
structures while neglecting insignificant ones.

3 Fuzzy Shell Cluster Analysis

The fuzzy clustering algorithms discussed up to now search for clusters that lie in linear
subspaces. Besides, it is also possible to detect clusters that lie in nonlinear subspaces,
i.e. resemble shells or patches of surfaces with no interior points. These clusters can be
detected using fuzzy shell clustering algorithms.

The only difference between fuzzy clustering algorithms and fuzzy shell clustering
algorithms is that the prototypes of fuzzy shell clustering algorithms resemble curves
resp. surfaces or hypersurfaces. Therefore the algorithm for probabilistic clustering and
the algorithm for possibilistic clustering are both used for fuzzy shell cluster analysis.

There is a large number of fuzzy shell clustering algorithms which use different
kinds of prototypes and different distance measures. Fuzzy shell clustering algorithms
can detect ellipses, quadrics, polygons, ellipsoids, hyperquadrics etc. In the following
the fuzzy c ellipsoidal shells algorithm, which searches for ellipsoidal clusters, and the
fuzzy ¢ quadric shells algorithm, which searches for quadrics, are presented. Further
fuzzy shell clustering algorithms are described in [7].

3.1 The Fuzzy C Ellipsoidal Shells Algorithm

The fuzzy c ellipsoidal shells algorithm (FCES) searches for shell clusters with the
shape of ellipses, ellipsoids or hyperellipsoids [7, 4]. In the following we present the
algorithm to find ellipses.
An ellipse is given by
(x— )T Ai(x — ¢;) = 1, (14)
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where ¢; is the center of the ellipse and A; is a positive symmetric matrix, which
determines the major and minor axes lengths as well as the orientation of the ellipse.
From that description of an ellipse the prototypes f3;, f; = (c;, A;), for the clusters are
derived.

The fuzzy c ellipsoidal shells algorithm uses the radial distance. This distance
measure is a good approximation to the exact (perpendicular) distance, but easier to
compute. The radial distance d%ij of a point x; to a prototype (3; is given by

d*(z;, B;) = dyy; = ||z — 2%, (15)

where z is the point of the intersection of the ellipse 3; and the line through ¢; and z;
that is near to the cluster.
Using (14) d%ﬁ-j can be transformed to

., = WO = Al — ) = Py "

(zj — )T Ai(z; — ¢i)

Minimizing the objective function with respect to the prototypes leads to the fol-
lowing system of equations [7]:

é“g(%’ —c)(w; =)' <W) (Vi —1) = 0. (17)

n

7j=1

M /d;; — 1
%(6; R O P (O ™

where d; = (z; — ¢;)T Ai(z; — ¢;) and I is the identity matrix.
This system of equations has to be solved using numerical techniques. To update
the prototypes e.g. the Levenberg-Marquardt algorithm [13] can be used.

3.2 The Fuzzy C Quadric Shells Algorithm

The fuzzy ¢ quadric shells algorithm (FCQS) searches for clusters with the shape of a
quadric or a hyperquadric. A quadric resp. a hyperquadric is defined by

T _
where
T _ (. ) ) ) ) ) )
b; = (pzl:p12:"'7pzn:p1(n+l)7'":pW:pWJrla'":p1s)7
T __ 2 2 2
q" = (x],25, .. X0, BTy e Ty 1Ty e e L1, Ty v oy Ty 1)),

s=nn+1)24+n+1=r+n+1,
n is the dimension of the feature vector of a datum and r = n(n +1)/2.
Hence the prototypes of the fuzzy ¢ quadric shell clustering algorithm are s-tuples.
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The FCQS uses the algebraic distance. The algebraic distance of a point z; to a
prototype f3; is defined by

d* (x5, 0;) = diyy; = v} 4;4) pi = D} M;p;, (20)

where M; = q;q] .

An additional constraint is needed to avoid the trivial solution p! = (0,...,0). For
two dimensional data the constraint

2 2 2 1, L oo
1P+ Pia + - 4 P + oPin+1) T §pi'r|| =1 (21)

is recommended, because it is a good compromise between performance and result
quality [10]. However this constraint prevents the algorithm from finding linear clusters.
Linear clusters are detected as hyperbolas or ellipses with a large ratio of major to minor
axis. Therefore an additional algorithm for line detection is needed, which is executed
after the FCQS. For that purpose the CCM is well suited. Good results are obtained
by initializing the CCM, using those clusters, which probably represent linear clusters,
i.e. hyperbolas and ellipses with a large ratio of major to minor axis [10].

Defining a; = (a1, ..., ain),b; = (bi1,...,bin) by

{pik 1<k<n
aig =9 Pk <p <y (22)
V2 B
bik = pirrky 1<k <s—r (23)

constraint (21) simplifies to ||a;||* = 1. To minimize the objective function with respect
to the prototypes, a; and b; are computed by
a; = eigenvector corresponding to the smallest eigenvalue of (F; — GT H;'G}),

n n n
Fi—zuz‘jRJa Gz—ZuijSp Hz—Z%’Tga
=1 =1 =1
=T R R
R; =rjr;, Sj =rjt;, T = tt;,
T _ 2 .2 2
i o= (15, T Ty, V21759, N 2T1T0, - N 2T 1T )
tj = [l‘jl,l'jg,...,l'jn,]_].

Therefore updating the prototypes reduces to an eigenvector problem of size n(n+1)/2,
which is trivial. However the chosen distance measure déij is highly nonlinear in nature
and is sensitive to the position of a datum x; with respect to the prototype f; [10].
Therefore the membership degrees computed using the algebraic distance are not very
meaningful. Depending on the data, this sometimes leads to bad results.
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Since this problem of the FCQS is caused by the particular distance measure, the
modified FCQS uses the shortest (perpendicular) distance dfpij. To compute this dis-
tance, we first rewrite (19) as 2T A;x + 27b; + ¢; = 0. Then the shortest distance
between a datum z; and a cluster f; is given by [10]

d* (x5, i) = d%—’z’j = min [l = =I1%, (24)

subject to
2T Az +2"bi+ ¢ =0, (25)
where z is a point on the quadric ;. By using the Lagrange multiplier A, the solution

is found to be 1
where [ is the identity matrix. Substituting (26) in (25) yields a forth degree equation
in A\. Each real root A\, of this polynomial represents a possible value for A. Calculating

the corresponding z vector zy, dQPij is determined by
2 : 2
dPij = min |z — 2. (27)

The disadvantage of using the exact distance is, that the modified FCQS is compu-
tationally very expensive, because updating the prototypes can be achieved only by
numeric techniques such as the Levenberg-Marquardt algorithm [13, 10, 4]. Therefore
using a simplified modified FCQS is recommended. In this simplified algorithm the
prototypes are updated using the algebraic distance dg;; and the membership degrees
are updated using the shortest distance dp;; [10].

In higher dimensions the approximate distance d 4;; is used instead of the geometric

distance dp;;. It is defined by:

déij — pzTMjpi (28)
[Vdoii|*  pi (D(g;)D(q;)")pi
where \7dg;; is the gradient of the functional p; q evaluated in z; and D(g;) the Jacobian
of g evaluated in x;. The corresponding variant of the FCQS is called the fuzzy ¢ plano-
quadric shells algorithm (FCPQS) [10].

The reason for using the approximate distance is that there is no closed form so-
lution for dp;; in higher dimensions. Hence in higher dimensions the modified FCQS
cannot be applied.

Updating the prototypes of the FCPQS requires solving a generalized eigenvector
problem, for instance on the basis of the QZ algorithm [10].

d*(x;, B;) = diij =

4 Unsupervised Fuzzy Shell Cluster Analysis

The algorithms discussed so far are based on the assumption that the number of clusters
is known beforehand. However, in many applications the number of clusters ¢ into
which a data set shall be divided is not known.
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This problem can be solved using unsupervised fuzzy clustering algorithms. These
algorithms determine automatically the number of clusters by evaluating a computed
classification on the basis of validity measures.

There are two kinds of validity measures, local and global. The former evaluates
single clusters while the latter evaluates the whole classification. Depending on the
validity measure, unsupervised fuzzy clustering algorithms are divided into algorithms
based on local validity measures and algorithms based on global validity measures.

In this section the ideas of unsupervised fuzzy clustering are presented. A detailed
discussion can be found in [7].

4.1 Global Validity Measures

An unsupervised fuzzy clustering algorithm based on a global validity measure is exe-
cuted several times, each time with a different number of clusters. After each execution
the clustering of the data set is evaluated. Since global validity measures evaluate the
clustering of a data set as a whole, only a single value is computed. Usually the number
of clusters is increased until the evaluation of the clustering indicates that the solution
becomes worse.

However it is very difficult to detect a probably optimal solution as is easily demon-
strated. A very simple global validity measure is the objective function of the fuzzy
clustering algorithm. But it is obvious that the global minimum of that validity mea-
sure is unusable, because the global minimum is reached, if the number of data equals
the number of clusters. Therefore often the apex of the validity function is used instead.

Unfortunately it is possible that the classification as a whole is evaluated as good,
although no cluster is recognized correctly.

Some validity measures use the fuzziness of the membership degrees. They are
based on the idea that a good solution of a fuzzy clustering algorithm is characterized
by a low uncertainty with respect to the classification. Hence the algorithms based on
these measures search for a partition which minimizes the classification uncertainty.
For example this is done using the partition coefficient [1].

Other validity measures are more related to the geometry of the data set. For
example the fuzzy hypervolume is based on the size of the clusters [5]. Because in
probabilistic clustering each datum is assigned to a cluster, a low value of this measure
indicates small clusters which just enclose the data.

For fuzzy shell clustering algorithms other validity measures are used. For example
the fuzzy shell thickness measures the distance between the data and the corresponding
clusters [10].

4.2 Local validity measures

In contrast to global validity measures, local validity measures evaluate each cluster
separately. Therefore it is possible to detect some good clusters even if the classification
as a whole is bad.
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An unsupervised fuzzy clustering algorithm based on local validity measures starts
with a number of clusters greater than the expected number of clusters. A good
recommendation is to use twice as many clusters as expected [10]. After each execution
of the used fuzzy clustering algorithm the number of clusters and the data is reduced.
Good clusters and the assigned data are temporarily removed. Bad clusters and data
that represent noise are deleted. In a further iteration the fuzzy clustering algorithm
is executed on the remaining data using the number of the remaining clusters. This is
repeated until no cluster is left or no cluster is removed. After the number of clusters is
determined, the temporarily removed clusters are fine tuned by running the clustering
algorithm again.

Some local validity measures are derived from global validity measures. For exam-
ple the fuzzy shell thickness can also be determined for each cluster separately [10].
However, sometimes the evaluation of a clusters varies depending on its size and com-
pleteness. For example it is difficult to distinguish between sparse clusters and cluster
segments using these validity measures.

For two dimensional data good results are obtained by using the surface density
[10]. The surface density measures the relation between the number of data assigned
to a cluster and the number of data, if that cluster would be perfect. For example,
for a full circle the number of assigned data is related to the circumference. It is also
possible to distinguish between cluster segments and sparse clusters using the surface
density.

For applications in computer vision it has been proven successful to use the surface
density in combination with other local validity measures.

4.3 Initialization

The performance and quality of a classification computed by a fuzzy clustering algo-
rithm depends to a high degree on the initialization of the fuzzy clustering algorithm.
Especially fuzzy shell clustering algorithms are very sensitive concerning the initializa-
tion, because they tend to get stuck in local minima.

A widely used procedure for initialization is to start with some iterations of the
FCM and, if applicable, the GK and the FCES. For instance, a good initialization of
the FCQS and its modifications can be achieved by using 10 iterations of the FCM,
10 iterations of the GK and 5 iterations of the FCES [10]. In case only ellipsoidal
shell clusters are searched, better results are achieved by omitting the GK because it
sometimes tends to search for lines.

An alternative approach is to apply methods from computer vision. For example,
some techniques from boundary detection can be used to initialize fuzzy shell clustering
algorithms. One such algorithm is introduced in [7]. For shell cluster analysis it
is superior to the initialization procedure using the FCM, the GK, and the FCES
described above. The reason is that the initialization relates more to the nature of
the searched clusters. In addition this algorithm estimates the expected number of
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clusters at the beginning of the fuzzy shell clustering algorithm. Hence it can reduce
the computation time of the unsupervised fuzzy shell clustering algorithm. The results
presented in section 5 are computed using this algorithm.

5 Fuzzy Shell Cluster Analysis in
Computer Vision

Fuzzy clustering techniques can be applied in numerous fields. One of them is computer
vision, in which clustering methods have been used for region segmentation for years.
Another application in computer vision is contour detection and fitting or surface
detection and fitting. Unsupervised fuzzy shell clustering algorithms seem to be well
suited for this task.

The detection and recognition of boundaries in two dimensional pictures or sur-
faces in three dimensional scenes is one of the major problems in computer vision.
A common method is the use of the generalized Hough transform which is able to
deal with noisy and sparse boundaries or surfaces. However the disadvantage of the
generalized Hough transform are its computational complexity and its high memory
requirements! if there are only few assumptions concerning the boundaries or surfaces
searched for. An alternative approach is to use fuzzy shell clustering algorithms, which
perform boundary detection and fitting or surface detection and fitting simultaneously.
These algorithms require far less computations and memory compared with the gen-
eralized Hough transform. Besides this algorithms are insensitive to local aberrations
and deviations in shape as well as to noise.

Fuzzy shell clustering algorithms searching for quadrics or hyperquadrics can detect
a large variety of curves, which they are able to detect. For many applications this is
sufficient. It is recommended to use an unsupervised version of the FCQS that is based
on the local validity criteria of the surface density [10]. However, the validity measure
of surface density has to be slightly modified, because in applications of computer
vision the aspect of digitization of images must be considered. That can be done using
a correction factor [10].

Finally we present some results of boundary detection and recognition obtained
by an unsupervised fuzzy shell clustering algorithm. Fig. 3 and 4 are obtained from
fig. 1 and 2 respectively, by using an edge detection algorithm and an algorithm for
line thinning. The data shown in these figures are divided into clusters by using an
unsupervised fuzzy shell clustering algorithm. Fig. 5 and 6 show the clusters obtained
by the FCQS.

It is obvious that the significant boundaries are determined correctly. Besides,
like the CCM an unsupervised fuzzy shell clustering algorithm is able to distinguish

!The computational complexity is O(n x Np, X Npy ... x Ny, ) and the memory requirement is

O(n X Np, X Np, ... x Ny _,), where n is the number of points, N, is the number of quantization
levels of the i-th parameter, and s is the total number of parameters [10].
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between significant and insignificant structures. However, it is always important to bear
in mind, that the computed classification is based on the choice of the validity and the
distance measures. Therefore an optimal solution computed by an unsupervised fuzzy
clustering algorithm sometimes differs from a classification obtained by a human. For
example a human might describe the right border of the cup in fig. 4 using an extra
line which is missing in fig. 6.

Summarizing unsupervised fuzzy shell cluster analysis is an interesting method for
line detection and recognition or contour detection and recognition. Its advantage com-
pared to other algorithms, e.g. the generalized Hough transform, is its lower compu-
tational complexity and its ability to distinguish between significant and insignificant
structures. However, this ability is also a disadvantage because they cannot detect
small and fine structures. Finally it is to remark that an optimal solution cannot be
guaranteed.
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Figure 1: picture of a disk Figure 2: picture of a cup

Figure 3: contour of a disk Figure 4: contour of a cup
Figure 5: prototypes found by Figure 6: prototypes found by
the FCQS the FCQS
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