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Abstract

The way engineers use fuzzy control in real world applications is often not
coherent with an understanding of the control rules as logical statements or
implications. In most cases fuzzy control can be seen as an interpolation of a
partially specified control function in a vague environment, which reflects the
indistinguishability of measurements or control values.

In this paper we show that equality relations turn out to be the natural way
to represent such vague environments and we develop suitable interpolation
methods to obtain a control function.

As a special case of our approach we obtain Mamdani’s model and can
justify the inference mechanism in this model and the use of triangular mem-
bership functions not only for the reason of simplified computations, and we
can explain why typical fuzzy partitions are preferred. We also obtain a cri-
terion for reasonable defuzzification strategies.

The fuzzy control methodology introduced in this paper has been applied
successfully in a case study of engine idle speed control for the Volkswagen

Golf GTI.
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1 Introduction

The idea of fuzzy control is to model an expert or engineer who is able to control the
process instead of relying on a mathematical formalization of the process itself as
in classical control theory. In order to be able to build a knowledge—based model of
the control actions of an engineer an appropriate mathematical framework is needed.
Since human knowledge often involves imprecise and vague descriptions, appropriate



approximate reasoning mechanisms have to be integrated into the knowledge—based
model.

Although the concepts of fuzzy logic and especially those of fuzzy control seem to
be reasonable from an intuitive point of view, criticism against these concept arises
at the point where exact numbers in the form of membership degrees or the choices
of appropriate operators like —norms, t—conorms, and implication operators enter
the model. Of course, it is reasonable to reject the idea of representing a concept
like old for a certain age like 55 years in terms of the two truth values true and false.
But this does not lead us to a unique and natural representation of the concept old
as a fuzzy set with fixed membership degrees.

To overcome this problem we have to provide an interpretation of fuzzy sets for
the area of fuzzy control. Such a model with well-founded semantics is a key—issue
for the acceptance of fuzzy control methods for those who argue against a fuzzy
system due to its heuristic background.

Although there is wide variety of approximate reasoning schemes [2, 15], only
a few attempts were made to perceive fuzzy control in this light, for example as
fuzzy interpolation [3]. Some misunderstandings and misinterpretations are caused
by the name fuzzy logic controller and the idea of generalized modus ponens for the
inference scheme [17], which suggest to see fuzzy control rules as logical implications
[1], which would lead to other methods in fuzzy control [10].

The aim of this paper is to consider three topics.

(1) The way engineers use fuzzy control in real world applications can often be
seen as an interpolation of a partially specified control function in a vague
environment. We propose a model that follows this intuition.

(2) The proposed model has been applied successfully to the problem of engine
idle speed control. The method provides deeper insight about how to design,
tune, and evaluate fuzzy controllers.

(3) Mamdani’s fuzzy control model [18] can be reformulated by using our method.
With this semantics several heuristic ideas used in Mamdani’s approach can
be justified.

In Section 2 we define the notion of vague environments modelled by equality
relations. The notion of equality relations also known under the names similar-
ity relations or indistinguishability operators is also studied in [22, 20, 8]. We do
not introduce equality relations as an abstract concept, but motivate them from an
engineering point of view as a method of representing indistinguishability or simi-
larity of points with a short distant in between. By this approach fuzzy sets can be
seen as representatives of crisp values in a vague environment described by equality
relations. On the other hand we show that a fuzzy partition induces a vague environ-
ment in which the corresponding fuzzy sets appear as representatives of crisp points.
These ideas provide a justification of the use of triangular and trapezoidal member-
ship functions as well as for the condition for fuzzy partitions that ‘neighbouring’
membership functions should overlap at membership degree 0.5.



The application of these results to fuzzy control is described in Section 3. As
one consequence we derive the method proposed by Mamdani. We also obtain
constraints for the control mapping induced by a fuzzy controller which can be used
to evaluate defuzzification strategies. More general mathematical foundations are
described in [12, 13, 14].

In Section 4 we review the method of fuzzy control based on vague environments
as a systematic step—by-step approach freed from mathematical formalisms. This
leads to a design and valuation method for fuzzy controllers.

The case study on idle speed control presented in Section 5 shows how these
ideas can be applied to a control problem.

2 Vague Environments

This section describes the idea of vague environments and how to take them into
account, when operating on them. Vague environments provide a suitable framework
for analogical reasoning [6].

2.1 Equality Relations as Vague Environments

In physics and engineering sciences one often encounters the problem to handle
inexact measurements. The inexactness might be caused by a limited precision of
the measurement instruments or by general restrictions enforced by the experiment
or process. This inexactness can be classified as indistinguishability. On the other
hand, in many cases exaggerated exactness does not make sense as for example in
the case of measuring the room temperature. This intentional inexactness might be
called similarity. It is mainly this kind of inexactness that is inherent in fuzzy control
models. However, in the following we will not distinguish between these two concept
of inexactness and will call both of them indistinguishability. We consider a set of
values for which we take indistinguishability into account as a vague environment.

A very common approach to cope with a vague environment X C IR (for reasons
of simplicity let us assume X = IR) is to choose a (small) number ¢ > 0 as an error
or tolerance bound and to identify two values x, 2’ € X if their distance is at most ¢,
ie. |x —a'| <e. In that case  and 2’ might be called e-indistinguishable. We can
represent this e—indistinguishability by a relation R. C X x X containing all pairs
of numbers that are e—indistinguishable, i.e. R. = {(z,2') € X x X | |v — 2’| < e}.
Although we speak of e—indistinguishability, the relation R. is not an equivalence
relation, because it is not transitive. The non-transitivity is caused by the fact that
r and 2" as well as 2’ and z” might be e—indistinguishable, but = and z” are not
necessarily e—indistinguishable, since |# — 2’| < e and |2’ — 2"| < & does in general
not imply |z — 2”| < e.

In practical applications it is often reasonable instead of fixing one value for ¢ to
consider a whole range of values, for example the set [0,1]. The interval [0, 1] could
be replaced by any other interval [0,¢]. But since we will take scaling factors into



account later on, it is sufficient to restrict ourselves to the unit interval. We define
the mapping

E:XxX —][0,1, (z,2')—1—inf{e€][0,1]|(z,2") € R.}. (1)

The greater the value F(x,2’) the more x and 2’ are indistinguishable or similar. In
this simple example we have F(z,2’) = 1 — min{|z — 2/|,1}. Obviously,

(v,2') € R. <= FE(z,2') >1—¢ (2)

holds (compare also [20, 4]). In this sense, we can interpret the degree E(x,z’) of
indistinguishability between = and 2’ in terms of an error or tolerance bound &, i.e.
FE(x,2") is greater than 1 —¢ if and only if 2 and 2’ are indistinguishable with respect
to the tolerance bound e. Furthermore, for a point o € X we can describe the set
of points that are e—indistinguishable to xq by [#o —¢,20+¢] = {x € R | F(x,2¢) >
1 —e}. Intuitively, E(x,2’) can be read as the degree to which = and 2’ are equal
or to which they can be identified. This motivates the following definition.

Definition 2.1 A mapping E : X x X — [0,1] is an equality relation if FE satisfies
the following axioms.

(i) E(z,2)=1
(ii) E(x,2') = E(2/,2)
(tii) E(x,2")+ E(2',2") =1 < E(a,2").

Condition (iii) is motivated by the fact that (x,2’) € R. and (2/,2") € R
implies (x,2”) € R.yor. It can also be interpreted as a transitivity condition in the
sense that if  and 2’ as well as 2’ and 2" are ‘equal’ to some degree, then = and
2" must also be ‘equal’” to some degree. Therefore, in the spirit of this notion of
transitivity we could replace condition (iii) by

T(E(z,2"), E(2',2")) < E(x,z")

where T'(a, 8) = min{a + 3 — 1,1} is the Lukasiewicz t—norm. From a theoretical
point of view, any other t—norm is also reasonable, leading to a different notion of
an equality relation. For such more foundational discussions on equality relations
see for example [5, 8]. Equality relations are also called similarity relations [22] or
(with arbitrary —norms) indistinguishability operators (see for example [20]). For

this paper it is sufficient to consider equality relations only as described in Definition
2.1.

Example 2.2 As we have already seen, when we have motivated equality relations,
that the standard metric 6 on IR given by é(x,2") = |x — 2| induces an equality
relation Fs via Fs(x,2') = 1 — min{|z — 2’|, 1}. More generally, if § is a metric on
the set X, then Fs(z,2') =1 — min{é(x,2’), 1} is an equality relation on X. If, for
example, X = IR", then we can take é(x,2') = || # — 2’ || as an appropriate metric,
where || . || is a norm. O



Example 2.3 In Example 2.2 we considered the equality relation induced by the
standard metric on IR. This metric is not always appropriate, since it does not take
any scaling factors into account. For instance, if we want to compute the degree
to which the ages of two persons are equal, the result depends on the unit (years,
months, days, etc.) which we use for measuring the age. To amend this, we might
introduce a scaling factor ¢ > 0 and define the equality relation F(°)

EO(z, 2"y =1 —min{|c-z — c-2'|,1}. (3)

Depending on the unit we use for measuring, we have to choose an adequate scaling
factor c. For example, in order to obtain the same indistinguishability that we have
for the unit month when we measure in years, we would have to take the scaling
factor 12 into account. O

Example 2.4 In some applications it is reasonable to modify the idea of a scaling
factor as described in Example 2.3. Let us assume that we consider the real interval
[a,b] as possible values (our set for the vague environment). Instead of one scaling
factor for all values, we can specify different scaling factors for different ranges.

A vague environment induced by a measuring instrument that works with high
precision in the range of [—1,1] C [a,b] and with less precision outside this area,
might be characterized by choosing the scaling factor 3 for the range [—1,1] and
the scaling factor 0.5 for the area outside [—1,1]. This means that we magnify the
interval [—1,1] by the factor 3 and we shorten the intervals [—1,a] and [1,b] by the
factor 2 (i.e. we ‘magnify’ them by the factor 0.5). To illustrate this idea, let us
assume ¢ = —3 and b = 5. In order to ‘measure’ the distance between two elements
z, 2" € [=3,5], we map the interval [—3, 5] (piecewise linearly) to the interval [0, 9],
where [—3,—1], [-1,1], [1,5] is mapped linearly to [0,1], [1,7], [7,9], respectively.
This piecewise linear transformation is given by the mapping

0.5 (z +3) -3 < 2 < -1
f:[-35—10,9, —<¢ 3-(z+1)+1 it -1 < 2 < 1
0.5-(x—1)+7 if 1 < z <

The equality relation on [—3,5] induced by this transformation is defined by
E: [_375] X [_375] - [07 1]7 (l’,l'/) =1 = mm{|f(:1;) - f($/)|, 1}

This equality relation is intended to model the vague environment induced by a
measuring instrument that does not measure with the same exactness over the whole
range [—3,5]. Therefore, the equality relation reflects indistinguishability.

It is also reasonable to define such an equality relation to represent similarity.
For example, if we want to regulate the room temperature, we may use a thermome-
ter with a certain exactness for temperatures between 0°C' and 35°C'". But for our
purposes we are not interested in a precise value for a temperature below 15°C' or
above 27°C, since we consider these temperatures as much too cold or warm, respec-
tively, so that we have to heat or cool the room as much as possible. Temperatures



between 15°C" and 19°C" or between 23°C' and 27°C are also considered as too cold
or too warm. But heating or cooling should be carried out moderately in these
cases. For temperatures between 19°C' and 23°C' we are interested in more exact
measurements, since these temperatures are near the optimal value for the room
temperature and the adjustment has to be chosen carefully. In order to reflect this
vague environment we might use the transformation

0 if 0 < x < 15
0.25 - (x — 15) it 15 < 2 < 19
£:00,35 = [0,8], =4 15-(x—19)+1 if 19 < z < 23
0.25-(x—23)+7 if 23 < x < 27
8 it o271 < @ < 35,
leading to the equality relation E(z,2') =1 — min{|f(x) — f(2)|, 1}. O

Example 2.5 In Example 2.4 we considered vague environments where we specified
different factors ¢ > 0 for different intervals. A scaling factor ¢ > 1 for an interval
means that we ‘look at this interval through a magnifying glass’ and the indistin-
guishability or similarity between values of this interval is low. On the contrary, a
scaling factor ¢ < 1 implies that the values of this interval show great indistinguisha-
bility or similarity. We now consider a more general approach where we associate to
each element of our vague environment a scaling factor, describing the magnifying
factor with which we look at the neighbourhood of the element. If the interval [a, b]
is the underlying set of our vague environment, then we can represent the idea of
scaling factors by a mapping ¢ : [a,b] — [0,00). Assuming that the mapping c is
integrable, the corresponding transformation is given by

fila,b] — [0,00), x— / c(t)dt.
Again, we obtain the equality relation, characterizing our vague environment by
E:a,b] x [a,b] = [0,1], (2,2") = 1 —min{|f(z) — f(2"),1}.
O

The idea of equality relations (or indistinguishability operators) based on differ-
ent scalings is also studied and characterized in terms of monotonic scaling mappings

in [9, 11].

Example 2.6 In the above examples the underlying set of the vague environment
was considered as a subset of the real numbers. This example is devoted to the
vague environment with the set of fuzzy sets of X as the underlying set. Generally,
two fuzzy sets p, v : X — [0, 1] are considered to be equal if and only if u(2) = v(x)
holds for all x € X. But in some cases it might be reasonable to view two fuzzy



sets whose membership functions are nearly identical as ‘nearly equal’ or similar
although there exists an x € X such that u(x) # v(x). The equality relation

E(p,v) = inf {1 —|u(z) = v(z)[}

on the set of fuzzy sets of X can be used to represent this idea of similarity between
fuzzy sets. a

2.2 Points and Sets in Vague Environments

Operating in vague environments requires to reconsider concepts like points and
sets. If we have to deal with a vague environment with indistinguishability, we have
to take into account that a crisp value obtained from a measuring instrument does
in general not correspond exactly to that value according to the indistinguishability.
The same holds for the phenomenon of similarity. Specifying a crisp value ¢ in a
vague environment generally refers only to approximately xq. Thus, when speaking
of crisp points or sets in a vague environment, we have to take into account the
indistinguishability or similarity induced by that environment. Let us return to the
simple representation of inexactness as it was considered in the beginning of this
Section, i.e. we identify two values if their distance is less than a (fixed) value . In
this case, the crisp value zq induces the interval [xq—¢, 29+ ¢] — the set of points that
are e—indistinguishable to zo. As we had already mentioned, we generally do not
fix one value for ¢, but consider a whole set of such tolerance bounds. A reasonable
representation of what we associate with a crisp point zg would then be the set of
intervals induced by varying the tolerance bound ¢ between 0 and 1, i.e. xg could
be associated with the set

{[ro —¢,z0+¢] | e €[0,1]}. (4)

Of course, this representation is a bit clumsy. Therefore we make use of the
equality relation E characterizing our vague environment X and associate with the
crisp element zo € X the mapping

Hag : X — [071]7 T = E(l’o,l'), (5)

specifying for each x to which degree = is equal to xg. The mapping p., is a fuzzy
set, which could be characterized as the fuzzy set of all + € X that are equal to
xg with respect to the vague environment. In a vague environment each crisp point
is associated with a fuzzy set. In this sense, we can interpret certain fuzzy sets
as representations of crisp points in a vague environment described by an equality
relation (which is not necessarily specified explicitly).

Definition 2.7 Let E be an equality relation on the set X. For xg € X the fuzzy
set iz, given in (5) is called the singleton corresponding to xo.



Note that in the literature the term fuzzy singleton is often used for fuzzy sets
that assign the membership degree 1 to exactly one point and 0 to all others (see
for example [16]). This notion is not in contradiction to Definition 2.7. Since
usually nothing is assumed about a vague environment, we might consider the (crisp)
equality relation

1 ifxz=42
0 otherwise.

E: X xX —[0,1], (:1;,:1;’)»—>{

For this equality relation the singletons in the sense of Definition 2.7 are fuzzy
singletons in the usual sense.

In the same way a crisp point leads to a fuzzy set in a vague environment, we
have to associate with a crisp set the corresponding fuzzy set of all points that are
‘equal’ to one of the points in the crisp set. Analogously to the representation (4)
for the point z( in a vague environment, we associate with a subset M C X the set

{U[x—e,x—l—e”ee[(),l]}.

reM

U.enl® —¢, 2+l is the set of points that are e-indistinguishable to at least one
of the elements in M. Again, this clumsy notation can be abbreviated in terms of
the corresponding equality relation, leading to the following definition.

Definition 2.8 Let F be an equality relation on the set X. For a set M C X the
fuzzy set
par s X — [0,1], v sup{E(m,z)|me M}

is called the extensional hull of M.

Note that Definition 2.8 is a generalization of Definition 2.7, since p,, = piiz01
holds.

Example 2.9 Let X = IR and let £ = Ej be the equality relation induced by the
standard metric as in Example 2.2. The singleton corresponding to 2y € IR is the
fuzzy set pz, () =1 — min{|xg — x|, 1}. Note that u,, is a triangular membership
function. O

Example 2.10 If we consider the interval [a, b] instead of the point zq in Example
2.9, the extensional hull i, 3 of [a, b] is given by the trapezoidal membership function

1 fa<z<b
fag(z) = max{l —a+2z,0} ifz<a
max{l —x + 56,0} ifb<uz



Triangular or trapezoidal membership functions with steeper or less steeper
slopes can be obtained by using an equality relation with a scaling factor as de-
scribed in Example 2.3. Examples 2.9 and 2.10 show that triangular or trapezoidal
membership functions have a very appealing interpretation in the setting of vague
environments. They can be justified from a theoretical point of view based on the
concept of the canonical metric on the real numbers, not only as fuzzy sets that
are easy to store and lead to simple computations. Note that, when we use the
more general concept of a scaling function for the definition of an equality relation
as in Example 2.5 the fuzzy sets obtained in this vague environment are in general
no longer piecewise linear. Depending on the scaling function any type of convex,
piecewise differentiable fuzzy set — for instance bell-shaped fuzzy sets — may appear
as the extensional hull of a point.

In order to illustrate the concepts of singletons and extensional hulls let us con-
sider the following example.

Example 2.11 Consider the set X = 7 x 7 of grid points as a subset of the Eu-
clidean plane. Without taking any indistinguishabilities or similarities into account,
the specification of one point zo € X intuitively corresponds to ‘lifting or picking
up’ this point from the grid, while all other points stay in the plane.

But what happens if X is a vague environment? To illustrate that, we connect
each grid point to the plane by an elastic rubber band. We also connect the neigh-
bouring grid points by elastic rubber bands that reflect the degree of equality of the
two neighbouring grid points, i.e. the less elastic the connecting rubber band is, the
more are the two points ‘equal’. If we now try to lift or pick up a single element
of the grid other points will also be lifted up. The farther away they are from the
chosen point, the less they are lifted up. What we obtain is a representation of the
singleton (fuzzy set) representing the chosen point in the vague environment.

For the construction of the extensional hull we have to consider the same model.
But instead of lifting one point, we pick up a set of points. a

2.3 Mappings

Until now we only considered one vague environment. Now we turn to the problem of
handling more than one vague environment. Let us consider two vague environments
X and Y which are characterized by the equality relations ¥ and F', respectively. If
@ is a mapping from X to Y, then ¢ should respect the equality relations in some
sense. A reasonable requirement for ¢ is that, if * and 2’ are ‘equal’ to a certain
degree in X, then the images ¢(x) and ¢(2’) of these two elements should also be
‘equal’ to some degree in Y. This motivates the following definition.

Definition 2.12 Let E and F be equality relations on X and Y, respectively. A
mapping ¢ : X — Y is called extensional if

E(z,2") < F(p(x), ¢(2"))
holds for all x,2' € X.



The extensionality of a mapping requires that the degree to which the images
of two elements are equal is not less than the degree to which the originals are
equal. We can also interpret extensional mappings as error— or tolerance—preserving
mappings, as shown in the following example.

Example 2.13 As we have seen in the beginning of Section 2.1, equality relations
are related to the relations R. as described in (2), where the relation R. contains
all pairs of elements that are e—indistinguishable. ¢ can be interpreted as an error
bound in the case of indistinguishability and as a tolerance bound in the case of
similarity, in the sense that we identify two elements x and 2’ (with respect to R.)
if E(xz,2') > 1 —¢e. Or, in other words, if the equality relation F is defined as in
(1), then a and 2’ are identified (with respect to R.) if the distance between them
is less than or equal to the error— or tolerance bound . We denote the relations
R. corresponding to the equality relations F and F' by R and RéF), respectively.
Then the extensionality of the mapping ¢ : X — Y can be characterized in the
following way.

¢ is extensional <= V 2,2’ € X : E(z,2') < F(p(2),¢(z"))
— Va2 eX,Veel0l]:
<E(:1;,:1;') >1—c= F(p(x),¢(z) >1-— 5)
— Vo, EXV€€[0 1] :
((r.2) € RO = (o). 0la") € R
= Vee[0,1]:(pxe) (RP)C R (6)
Considering ¢ as a tolerance— or error bound, (6) characterizes extensionality as
tolerance— or error—bound-preserving. This means that if  and 2’ are identified,
because the distance between them is less than the tolerance— or error bound &, then

also their images ¢(x) and @(2') are identified with respect to the same tolerance—
or error—bound e. O

Another problem that arises, when we have to take more than one vague en-
vironment into account, is to find an appropriate equality relation on the product
space of the vague environments. The following Theorem proposes a solution to this
problem.

Theorem 2.14 Let Fy,..., F, be equality relations on Xy,...,X,, respectively.
Define
El,...,n : (Xl X ... X Xn)2 — [0, 1],

((:1;1, cey @)y (T ,:1;%)) — min{ By (zy,2)), ..., Eu(z,, 2))}. (7)
(a) Er..,. is an equality relation on X1 x ... x X,,.

(b) The projection m; : X1 X ... x X, — X;, (w1,...,2,) — x; is extensional with
respect to F ., and E; for all i € {1,...,n}.

10



(c) If E is an equality relation on X1 X ... x X, such that all projections ;
v =1,...,n) are extensional, then £ < F; __, holds.
9 9 ) [EER)

Proof.

(a) Fi,., obviously satisfies conditions (i) and (ii) of Definition 2.1. The third
condition is also fulfilled, since

E17...7n<(:1;1, cey )y (T ,:1;%)) + E1n<(:1;’1, ce ), (2. ,:1;%)) —1

= min {Fi(z, )} 4+ min {E(2),2))} —1

1e{l,...,n} je{1,...,n}

< min {Ei(x; 7)) + E (xh,2f) —1}
1e{l,...,n}

< E 0 "

< emin B 7))

=

El,...,n((xlv s 7xn)7 (xlllv | Z))

Ervn((21, @), (@4, s2))) <0 B, )
E¢<7T¢(:1:1,...,:1;n),7ri(:1;'1,...,x;)»

(¢) According to the extensionality of the projection 7; with respect to F’ and F;
we obtain for all ¢ € {1,...,n}

El<($1, ce ), (2, )) < Ei(xg,x}),
and therefore ' < Fy . a

Theorem 2.14 characterizes the equality relation F; _, as the coarsest (great-
est) equality relation on Xy x ... x X, such that all projections are extensional
(tolerance— or error—bound—preserving). Of course, there are other equality relations
on
X1 x ... x X,, making all projections extensional. In the case that the equality
relations F; are induced by the standard metric, it might be reasonable to consider
other equality relations on the product space X; x...x X, than (7). In the same way,
anorm || . || on the vector space IR" (inducing the metric 6 by é(x,2') = ||z —2'||)

can be defined by

n 1/p
| (21, ) = (Z |$1|p> 7 (8)

we obtain an equality relation on the product space X; x ... x X, by

n

1/p
B((x1,..xn), (2, al)) =1 — (2(1 —Ei(xi,x;))p) ,

=1

11



where p > 1 is a fixed constant. Using Minkowski’s inequality it follows directly
that F is an equality relation. Actually, F is the equality relation induced by the
metric corresponding to the norm (8) in the sense of Example 2.2. Obviously, the
projections are extensional with respect to F. Note that in the case of vector spaces
often p = 2 is chosen, leading to the Fuclidean norm.

2.4 Equality Relations Induced by Fuzzy Partitions

In Definition 2.7 we saw that certain fuzzy sets can be interpreted as representa-
tions of crisp points in a vague environment. As shown in Example 2.9 triangular
membership functions are obtained, when the equality relation characterizing the
vague environment is induced by the standard metric. A prerequisite for this in-
terpretation of fuzzy sets is the specification of an appropriate equality relation in
advance. Although it might be possible or even natural in some cases to specify an
equality relation directly, the general methodology is to specify fuzzy sets without
providing a corresponding equality relation. If we are given a set of fuzzy sets, we
might suspect that the person who defined these fuzzy sets had an equality relation
in mind (perhaps not consciously), and the fuzzy sets correspond to representations
of crisp points in a vague environment. The problem we have to solve, is to find an
appropriate equality relation. Formally, the given problem can be stated as follows.

Let (pi)ier be a family of normal fuzzy sets on X. (y;)ier is also called a
fuzzy partition. Let (2;);er € X be a family of elements of X such that
pi(z;) =1for all ¢ € I.

Is there an equality relation F on X such that p; = p., for allz € I, i.e.
such that the fuzzy sets (u;):er are representations of the crisp elements
(2;)ier in the vague environment X7

Let us illustrate the problem by an example.

Example 2.15 Let X = [—4,4]. Figure 1 shows a typical fuzzy partition. In
this partition the five fuzzy sets finb, fins, flzero, fpss Hpb appear. We associate to
these fuzzy sets the crisp values zn, = —4, 20 = =2, 2per0 = 0,2ps = 2,20, =
4, respectively. For each of these values the corresponding fuzzy set yields the
membership degree 1.
It is easy to find an answer to the question if there is an equality relation on
X such that the five fuzzy sets of the fuzzy partition can be interpreted as repre-
sentations of the values —4,—2,0,2,4 in the vague environment X. Recalling the
Examples 2.3 and 2.9 we define the equality relation £ on X by choosing ¢ = 0.5 in
equation (3). The equality relation F is not the only solution for this problem. We
will give an example for another solution differing from FE later on.
O

If the characterizing equality relation of a vague environment is not as simple as
in Example 2.15, it might be very convenient to specify the fuzzy partition directly

12



Hnb Mns Hzero Hps Hpb

Figure 1: A typical fuzzy partition.

instead of defining the equality relation and choosing crisp points, that induce the
fuzzy sets of the fuzzy partition in the form of singletons. A fuzzy set can be
understood as a local specification of an equality relation in the neighbourhood of
the element for which the membership degree is equal to 1.

We now answer the question, when the fuzzy sets of a fuzzy partition can be
interpreted as representations of crisp points in a vague environment.

Theorem 2.16 Let (1;)ier be a family of normal fuzzy sets on X and let (;);er € X
be a family of elements of X such that p;(x;) =1 for all i € I. The following two
statements are equivalent.

(i) There exists an equality relation E on X such that the fuzzy sets p; correspond
to the singletons induced by the elements x;, i.e.

fi = fla, (9)
holds for all 1 € 1.
(i) The inequality
sup{pi(e) + pj(z) =1} < inf {1 —|pi(y) — i (y)[} (10)
reX yeX

holds for all 1,5 € 1.

Proof. (i) = (i7). Let £ be an equality relation satisfying (9). We prove (10) by
showing that

ig}g{m(x) +pj(x) =1} < Bz, @) (11)

13



and

E(aizj) < mf {1 — |uily) — 15 ()} (12)

are satisfied for all 4,7 € I. From the assumption (9) we obtain

ig}g{m(:ﬁ)irm(x)—l} < igg{E(:ﬁmxHE(%x)—l}
< igg{E(%%)}
= E(:z;“x])

Thus (11) holds. We prove (12) by deriving the inequality

Bz, o) <1 —|pily) — pi(y)]

for all y € X. Without loss of generality let E(x;,y) > FE(x;,y). Taking (9) into
account, we get

BE(zi,a;) = 1= E(eny)+ (B(zny) + Ele, ;) —1)

< 1= FBzi,y) + E(zj,y)
= 1= [uily) — ()l
(7¢) = (2). Define
E:XxX—]0,1], (z,2")~ 1221{1 — () — pi(2"}- (13)

According to the representation theorem of Valverde [21], F is an ‘indistinguishabil-
ity operator’ (with respect to the Lukasiewicz t—norm), which is nothing else than
an equality relation in in the sense of Definition 2.1.

pi(x;) =1 implies

E(x“x)
;rg{l — | (x5) — py ()|}
1 —|pi(ws) — pi()]

= pi().

What remains to be proved is p;(2) < p,,(2) for all € X. This means that we
have to show that

:uxz(x)

IN

pi(r) <1 —|pj(@e) — py(2)] (14)
holds for all j € 1.

Let us firstly consider the case where p;(x;) < p;(x) is satisfied, implying that
the right—hand side of (14) becomes

U= pj(e) 4+ pi(xi) = 1= 1 —pi(x)| —pi(z) +1
= 1= |pi(wi) — ()| = py(x) +1

14



> Anf {1 — |ui(y) — pi(y)} — pi(e) +1

(?2gmem®—H—m@+l
> i)+ () =1 — pi(e) +1
= pi(z).

For the case p(x) < p;(x;) we obtain

V=) +pi(x) = 1+ pi(a) = () + pi(ei) = 1)
> 1+uj(x)—sg;{uj(x)+m(x)— 1}
2 o) = inf 1= () — )l
> 1) = (1= |pi(x) — ()]
= (@) + [pax) — pi(2)]
> pi(z).

a

The necessary and sufficient condition (10) for the existence of an equality rela-
tion under which the fuzzy sets of a fuzzy partition can be interpreted as represen-
tations of crisp points seems to be very technical. But we can provide an intuitive
interpretation for it. We replace the left—hand side of inequality (10) by

sup{T'(pi(2), pj(2))} (15)

reX

where T is the Lukasiewicz t—norm. (15) yields the greatest degree to which an
element of X belongs to the fuzzy set u; and to the fuzzy set pu;, i.e. (15) is the
degree to which y; and p; are not disjoint. Recalling Example 2.6, the right-hand
side of (10) represents the degree to which p; and p; are equal. Therefore, all what
2.6 requires of the fuzzy partition is a disjointness condition, namely, that for each
two fuzzy sets of the fuzzy partition their degree of non—disjointness must not exceed
their degree of equality. For crisp sets this means nothing else than that two sets of a
partition should either be disjoint or equal. The condition (10) and its interpretation
was first discovered in [7]. Tt can be generalized to other t—norms [13].

Note that although condition (10) in Theorem 2.16 only guarantees the existence
of an appropriate equality relation, one adequate equality relation is explicitly de-
fined in the proof of Theorem 2.16 in equation (13). Of course, there is in general
more than one equality relation such that the fuzzy sets correspond to singletons
(see Example 2.18).

Theorem 2.16 describes a necessary and sufficient condition for the existence of
an underlying equality relation for a fuzzy partition. Although we gave an intu-
itively appealing interpretation of this condition, it might be tedious to check its
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validity. The following Theorem provides a sufficient condition for the existence of
an appropriate equality relation that is easily verified.

Theorem 2.17 Let (y;)ier be a family of normal fuzzy sets on X and let (x;);er € X
be a family of elements of X such that p;(x;) =1 for alli € I. If

Vee X wlr)+p(x) <1 (16)

holds for all i # j, then the fuzzy sets p; correspond to the singletons induced by the
elements x; with respect to the equality relation (13), i.e. p; = pz, holds for all i € I.

Proof. According to Theorem 2.16 it is sufficient to prove that condition (10) is
satisfied. For ¢ = j the right—hand side of (10) yields 1, which is surely not less than
the left—hand side. Taking (16) into account, the left—hand side of (10) is zero for

i . 0

Condition (16) can be rewritten as T'(u;(x), g;(x)) = 0, where T is the Lukasie-
wicz t-norm, which means that the fuzzy sets y; and p; have to be disjoint with
respect to the intersection induced by the Lukasiewicz t—norm. This disjointness
condition is satisfied for many of the fuzzy partitions used in fuzzy control, where
it is very often assumed that ‘neighbouring’ fuzzy sets meet at the height 0.5.

Example 2.18 We consider the fuzzy partition given in Figure 1, which obviously
fulfills condition (16), so that Theorem 2.17 guarantees the existence of an equality
relation such that the fuzzy sets correspond to the singletons induced by the points
—4,—2,0,2,4. This is not very surprising, since an appropriate equality relation
was already specified in Example 2.15. Although this equality relation looks very
natural, since it is induced by the standard metric (modulo the scaling factor 0.5)
on [—4,4], it does not coincide with the equality relation £ (see (13)) constructed
in the proof of Theorem 2.16.
For x € {—4,—2,0,2,4} and for all ' € X we obtain

E(z,z') =1—min{]0.5 -2 — 0.5 2'|,1}.

But we also have E(—3,3) = 0.5 and £(—3,0) = 0, which seems very peculiar, since
FE(-3,3) > E(-3,0), in spite of —3 < 0 < 3. This paradoxical phenomenon can be
explained, when we take the definition of F into account and derive

B(a,a’) 2 1—sup {max{pi@), (@)} } +inf {minfpi(e), pi(a)}

> 1= sup { max{pta), (e} (17)
1€
The term (17) is simply the maximum of the degrees to which a and 2’ are covered
by the fuzzy partition. This means that elements that are only ‘partially’ covered
to the degree a have a degree of equality not less than 1 —a. For z = —3 and 2/ =3
(17) yields for the fuzzy partition in Figure 1 the value 0.5.
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If condition (9) of Theorem 2.16 is satisfied, then (13) is the coarsest (greatest)
equality relation for which the fuzzy sets of the fuzzy partition can be understood
as singletons. Therefore, for practical purposes one should use this equality relation
only if a canonical equality relation as in Example 2.15 cannot be specified. O

3 Fuzzy Control Based on Vague Environments

Now that we are armed with the necessary background of vague environments pro-
vided in Section 2, we can apply these concepts to knowledge—based or fuzzy control.

3.1 Vague Environments and Mamdani’s Model

Let us first describe the (simplified) formalization of the control problem that we
want to consider here. We are given n input variables &;,..., &, taking values in
the sets X1,..., X, respectively. For reasons of simplicity we assume that we have
one output— or control variable n with values in the set Y. The problem we have
to solve is to find an adequate control function ¢ : X7 x ... x X, — Y, that
assigns to each input tuple (z1,...,2,) € Xi x...x X, an appropriate output value
y=o(x,...,2,) €Y.

Before we introduce knowledge—based control based on the notion of vague en-
vironments, we shortly recall how Mamdani’s fuzzy control model [18] is defined,
since we will see later on that we obtain also Mamdani’s model as a result of our
approach. The control function ¢ is specified by k linguistic control rules R, in the
form

R, if & s Agll) and ... and &, is AE:}T then n is B;, (r=1,...,k),

7

(1)

2'177,7 ey

where each linguistic term AN " A" B

i17T7 ' inﬂ,’ ir
/LE:?T, i, on Xq,..., X, Y, respectively. If we are given the input tuple (z1,...,2,) €
X; x ... x X, the output of Mamdani’s fuzzy controller is the fuzzy set

is associated to a fuzzy set p

P, Y = 00) g max {minall) (o), onl (o) ()}

on Y. In order to obtain a crisp output value, the fuzzy set p2''P"l has to be
defuzzified. A very common defuzzification strategy is the center of area method,
but also the mean of maximum— and the max criterion method are applied (see for
example [17]). For our purposes, it is sufficient to know that these defuzzification
strategies compute a crisp value from a fuzzy set, the exact algorithm for each
method is not of importance for this paper.

We now come to the presentation of a concept of knowledge—based control based
on vague environments, which looks at first glance completely different from Mam-
dani’s model, although there are parallels to the rationale behind Zadeh’s compo-

sitional rule of inference [23, 24]. But it turns out that the same computations are
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carried out. Thus we are able to provide a reasonable semantics for Mamdani’s
model.

The first step in the design of a controller based on vague environments is the
specification of appropriate equality relations Fy, ..., F,, F'on thesets Xy,..., X, Y,
respectively. These equality relations are intended to model the indistinguishabil-
ity or similarity of values as described in Section 2. Remember that there are two
different concepts of indistinguishability. In fuzzy control we mainly have to deal
with intended indistinguishability, which is not enforced by difficulties in measuring
exact values, but which is intended to model the fact that arbitrary precision is not
needed. Later on we can make use of this fact, since it will be sufficient to specify
controller outputs only for certain ‘typical” values. Taking the (intended) indistin-
guishability into account, we can extend this partially defined control function to a
fully defined one.

It is possible to define the equality relations representing the indistinguishability
directly, but a more convenient way is to define them as in the Examples 2.2 —
2.5. Especially scaling functions are very appealing, since they have a reasonable
interpretation. Small scaling factors imply a low distinguishability, meaning that
in this area the control action changes only slowly with varying input values. A
greater scaling factor indicates a high distinguishability, i.e. even small variations of
the inputs might lead to greater alterations in the control action.

In the next step a control expert has to provide a set of input—output tuples,
i.e. tuples ((:I;Y),...,:z;?(f)),y(TU €E(Xyi x...xX,)xY (r=1,...,k). The tuple
<($Y), ey :1;7(17“)), y(T)> simply means that y(") is the appropriate output value for input
(J}Y), e ,:1;7(17“)). These k input—output tuples correspond to a partial specification of
the control function, since they can be understood as the function

vo: {7 ey e (1, kY =Y, (@ ey sy,

which is a partial mapping from X; x ... x X, to Y.

Our task is now to determine an appropriate output value ¢(xy,...,2,) =y € Y
for an arbitrary input (a1,...,2,) € X1 x...x X, from the knowledge given by the
equality relations and the partial control function. In order to solve this problem
and to illustrate our approach, we recall, how we can derive the value y = ¢(x)
for an ordinary mapping ¢ : X — Y by drawing the graph G, of . We obtain
y = ¢(x) by projecting the graph at = to the set Y. The method is shown in Figure
2.

Unfortunately, instead of the control function ¢ we only know the partial map-
ping g and are in the unlucky situation illustrated in Figure 3. But fortunately,
Figure 3 does not contain all available information, since it shows only the speci-
fied input—output tuples without taking the equality relations on Xy,..., X, and
Y into account. Instead of the crisp graph G, of the partial mapping o we should
consider the extensional hull of (G, according to Definition 2.8 and Examples 2.9
— 2.11. Before we can compute this fuzzy set, representing the extensional hull, we
have to combine the equality relations defined on Xy,..., X, and Y to an equality
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Figure 2: Obtaining y = ¢(x) from the graph G, of ¢.
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Figure 3: y = @o(x1,...,2,) is not defined.
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relation F on X; x...x X, xY. Being cautious, we recall Theorem 2.14 and choose
the coarsest equality relation on X; x ... x X, x Y such that all projections are
extensional, i.e.

E((:L'l,...,xn,y),(xll,...,x;,ylﬁ = min{ Fy(z1,2}),..., Eu(z,,2)), Fy,y')}.

The extensional hull of the graph G, with respect to this equality relation is,
according to Definition 2.8, the fuzzy set

[G o, (T1y.e oy Tnyy) = Ter{rllax . {E( ;1;5 )7 e ;](;7(%7)7 y(T))7 (T1y.0yTp, y))}
on X1 x ... x X, xY. To obtain an ‘output’ for a given input tuple (z1,...,2,)
we compute the projection not of the graph G, but of its extensional hull at
(21,...,2,), which leads to the fuzzy set

p gy = max {ming Byl o). B @) PO Y)08)

on Y. Remembering Definition 2.7 we can rewrite the fuzzy set (18) in the form

(7317 77377,)

plro (y) = max {mindp o (@n), (@), o (9)1 (19)

re{l,...k}

since El(:zjgr), Dy ,En(:zjy), ), F(y"), ) corresponds to the singleton (fuzzy set)

Ha s e Lty respectively.

Now we are able to see the connection to Mamdani’s model. For our approach
we started with the specification of equality relations on the sets Xy,..., X,,,Y and
a partial control mapping ¢g: X7 x ... x X, = Y in the form of the set

({72l [ re {1, k) (20)

Taking into account that due to the equality relations we are working in vague
environments, this partial mapping can be interpreted as k control rules of the form

R, : if & is approximately J}Y) and ... and &, is approximately :1;7(;") (21)
then n is approximately y*) (r=1,...,k)

where approximately J}Y), ..., approximately :1;7(170), approximately y(") is represented

by the singleton (fuzzy set) Ha s e Lyt ) respectively. Taking the above

control rules together with these fuzzy sets, we can define a fuzzy controller in the

sense of Mamdani and obtain for the input (z1,...,2,) the fuzzy set ,uoutplfgf,n as

output. This fuzzy set coincides with the fuzzy set ,u(@ol’ ’x"), which is the output

derived in our knowledge—based control model based on vague environments. Let
us put this remarkable fact into a Theorem.
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Theorem 3.1 Let Fy,..., E,, F be equality relations on Xy,..., X, Y, respectively.
Furthermore, let o : X1 x ... x X, = Y be a partial (control) mapping given by
the set (20). From this we obtain a fuzzy controller in the sense of Mamdani by
taking (21) as control rules where we associate to the linguistic terms approximately

J}Y), ..., approximately :1;7(170), approximately y") the fuzzy sets [h(r)y e ey J (7Y Hy(r)
respectively. 1 ’

Then the output fuzzy set pQ™® in Mamdani’s model coincides with the output
fuzzy set ﬂ(@ﬁl""’x") of the controller based on vague environments.

Theorem 3.1 states that we can translate our control approach to Mamdani’s
model and obtain in both models the same output (before defuzzification).

The obvious question that turns up is, whether a fuzzy controller in the sense
of Mamdani can be translated to a controller based on vague environments. The
answer is yes if the fuzzy partitions used in Mamdani’s model satisfy condition (10)
of Theorem 2.16 or the stronger, but easier to check condition (16) of Theorem 2.17,
which is fulfilled in many applications. In this case, we can derive equality relations
induced by the fuzzy partitions, for example by using (13). The fuzzy sets of the
fuzzy partitions then correspond to the singletons induced by the elements where
they reach the membership degree 1. The partial control mapping ¢ can be derived
from the control rules in Mamdani’s model by replacing the linguistic terms by the
elements that induce the corresponding fuzzy sets as singletons.

3.2 Extensional Control Mappings

In the previous Subsection we have provided a knowledge—based control model based
on vague environments, that can be translated to Mamdani’s model. The pre-
requisite for this approach is the specification of appropriate equality relations and
of a partial control mapping. By considering the extensional hull of the graph of the
partial control mapping we were able to derive an output fuzzy set for each input.
In this subsection we discard this graph theoretical view and catch on the idea of an
extensional (control) function. Starting from equality relations and a partial control
mapping ¢, we look for a control function ¢ : X7 x ... x X, — Y that is

(i) identical with g for those elements for which ¢g is defined

(ii) extensional with respect to the equality relation £ on Xy x ... x X, and F
on Y where F is the equality relation given by formula (7) induced by the
equality relations Fy,..., F, on Xy,..., X,.

Condition (i) is an obvious requirement for the control function. (ii) is a very strict
claim. But it can be justified by interpreting extensional mappings as tolerance— or
error bound preserving as in Example 2.13. If a control function is not extensional,
this means that there are input values wich are highly indistinguishable. But their
corresponding outputs differ significantly and are highly distinguishable. This is not
coherent with the idea that the vague environments reflect the indistinguishability
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inherent in the control prblem. If we do not distinguish very well between two input
values, their corresponding outputs should also be almost similar. In this sense
extensionality is a reasonable concept.

The two conditions (i) and (ii) do in general not determine a unique control
function. They provide only a criterion to evaluate a given control function. A pos-
sibility to define a control function is for example to choose a defuzzification strategy
for Mamdani’s or for our control model based on vague environments. Applying the

defuzzification strategy to the fuzzy set ,u;llltpugn or ﬂ(@ﬁl""’x"), respectively, yields for
each input (w1,...,2,) a crisp output y € Y and therefore determines a control
function.

Let us now investigate the restrictions that the extensionality requirement im-
poses on the control function . We consider a controller based on vague environ-
ments with the partial control mapping given by (20) and the equality relations
Ey,....,FE,, Fon X{,..., X,,Y, respectively.

Let (x1,...,2,) € Xq X ... x X, be an input tuple. In order to be extensional ¢
has at least to satisfy the condition

E((J}Y), oY (e, l’n)> < F(y(T), o(x1,. .., l’n)> (22)
for all r € {1,...,k}. Recalling the definition of the equality relation F and taking
into account that we can rewrite Ei(:zjy), ) (i=1,...,n) and F(y"), .) as the

singletons (fuzzy sets) p_» and pu ), respectively, (22) translates to

iegi{}n}{Ei(xﬁ”,wi)} = emin Apgn (i)}
S F(y(T)v(S‘Q(xlv"'vxn)) (23)

= pryn (21,00, 20)).

Let us abbreviate

ar = _min {0 ()}

If we consider the translation of our controller based on vague environments to
Mamdani’s model, then «, is the degree to which the antecedent of the rule R, is
satisfied. (23) requires to choose @(z1,...,,) from the a,—cut of the fuzzy set .
Since (23) has to be satisfied for all » € {1,...,k}, ¢(x1,...,2,) should be in the
intersection of the a,—cuts of the fuzzy sets p, . This intersection is illustrated in
Figure 4.

The requirement of an extensional control function ¢ which coincides with the
partial control mapping ¢ for those elements for which g is defined is a very
restrictive condition. In some cases such a function does not exist at all, for example,
if the intersection indicated in Figure 4 is empty. Even if such a mapping exists, it is
in general not uniquely determined, nor is it easy to find. What we obtain from the
conditions (i) and (ii) is a criterion to evaluate a given control function. If a control
function is not extensional, it should not necessarily be rejected, but it might be
unreasonable to have a control function that is far from being extensional.
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Figure 4: For ¢ to be extensional, ¢(x1,...,x,) has to be chosen from the indicated

set.
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Note that the extensionality requirement for the control function can also be
stated in Mamdani’s model, since we have seen in the previous Subsection that we
can translate Mamdani’s model to our approach if the fuzzy partitions in Mamdani’s
model satisfy condition (10) of Theorem 2.16.

4 Design of a Fuzzy Controller in Vague Envi-
ronments

In this Section we summarize the results of Section 3 by investigating the method-
ology of Mamdani’s model and our approach. The first decision, the designer of a
fuzzy controller has to make, is which model he prefers. We consider only Mam-
dani’s and our approach here. Let us first describe the tasks to be carried out when
applying our concept of vague environments.

4.1 Fuzzy Control Based on Equality Relations

The control expert has to specify appropriate equality relations for the sets of val-
ues for the input— and output variables. These equality relations are intended to
reflect indistinguishability (according to problems in obtaining exact measurements
or data) and similarity (modelling the idea that the control expert does not always
need high precision values). Note that we usually have to deal with similarity, when
we want to establish a knowledge—based controller.

It is not recommendable to try to define an equality relation directly. A very
convenient and reasonable way to specify an equality relation is provided by the
methods proposed in the Examples 2.3 — 2.5. The scaling factors used in these
Examples have a canonical interpretation in the sense that they characterize how
strong (scaling factor < 1) or how week (scaling factor > 1) the indistinguishability
or similarity in a certain region is. In applications it is reasonable to choose a large
scaling factor in the range where the process is very sensitive to small changes. In
ranges where great tolerance for the output value is acceptable a low scaling factor
is adequate (compare Example 2.4). Of course, the first choice of the scaling factors
and the ranges where they are valid might not be optimal, and a fine tuning later
on in order to obtain the desired control actions should be considered.

In addition to the equality relations we need a partial control mapping that
assigns appropriate outputs to certain inputs. This partial control mapping should
be defined by the experienced control expert or it can be derived from data gained
from observing a control expert.

To make use of the equality relations and the partial control mapping for a
controller, we have to decide, whether we accept the graph theoretical view for
determining a control function as we have presented it in Subsection 3.1. This
graph theoretical view provides for each input (x1,...,2,) the fuzzy set ﬂ(@ﬁl""’x")
as output by considering the extensional hull of the graph of the partial control
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mapping and projecting it at (xq,...,2,) to the set of possible output values. A
defuzzification strategy is necessary to obtain a crisp output value.

If the very restrictive condition of extensionality for the control function is re-
quired, then the condition (23) illustrated in Figure 4 should be satisfied by the
control function induced by the defuzzification strategy. If the graph theoretical
view and a defuzzification strategy are not accepted, the restrictions imposed by
condition (23) can be used to define a control function. An extensional control func-
tion does not necessarily exist and extensionality does not lead to a unique control
function in general. It is also reasonable to judge a control function by considering
how far it is from being extensional, i.e. how strong it violates condition (23).

4.2 Fuzzy Control Based on Fuzzy Sets

In Mamdani’s model instead of equality relations and a partial control mapping
fuzzy partitions and a rule base have to be specified. Mamdani’s model can stand
for itself alone, but we can also translate it to our approach. From this translation
we might get some insights about good or bad behaviour of the controller induced
by Mamdani’s model.

In order to translate Mamdani’s model to our approach we have to compute the
equality relations from the given fuzzy partitions. Corresponding equality relations
exist if condition (10) of Theorem 2.16 or the stronger requirement (16) of Theorem
2.17 is satisfied for the fuzzy partitions. In this case, the equality relations can
be defined by equation (13), which leads to the coarsest solution for the equality
relations. As pointed out in Example 2.18, there might be other appropriate equality
relations, that can be defined as in Example 2.18. The control expert should check
the equality relations and decide whether they reflect the indistinguishabilities and
similarities he has in mind for the process. A rejection of the equality relations can
lead to a revision of the fuzzy partitions.

When satisfactory equality relations are derived from the fuzzy partitions, the
partial control mapping can be defined taking the linguistic control rules into ac-
count. Since the fuzzy sets in Mamdani’s model correspond to singletons in our
approach, we can associate with each fuzzy set the crisp value which induces the
fuzzy set as the corresponding singleton. In this way, a rule translates to an ‘input—
output’ tuple where each linguistic term is replaced by the crisp value that is associ-
ated with the fuzzy set representing the linguistic term. The control expert should
judge whether the partial control mapping derived from the rules looks reasonable.

If extensionality of the control function is desired, then condition (23) has to
be satisfied by the control function induced by the defuzzification strategy. If the
extensionality condition is not fulfilled, then either the defuzzification strategy, the
rules (the partial control mapping), or the fuzzy partitions (equality relations) have

to be modified.
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5 Application to Engine Idle Speed Control

In the previous Sections we introduced a new theoretical and semantic approach to
fuzzy control. It has to be checked, whether the basic concept of equality relations
and the presented results are appropriate for solving existing control problems of
industrial practice.

For this reason in cooperation between Volkswagen AG, Wolfsburg, Germany,
and the Department of Computer Science of the University of Braunschweig a fuzzy
idle speed controller for the Volkswagen 2000cc 116hp spark ignition engine of the
Golf GTT model has been developed.

The controller is based on an analysis of the underlying motor process and
consists of a Mamdani fuzzy controller which is embedded in a so—called “meta—
controller”. It turns out that the fuzzy controller has a better performance than the
corresponding production—line controller. Therefore the new methods will also be
applied to idle speed control problems with respect to other spark ignition engines

of Volkswagen AG and Audi AG, respectively.

5.1 A Short Introduction to Idle Speed Control

Nowadays the intended performance standards of spark ignition engines make it
necessary to decrease fuel consumption and pollutant emission. One specific problem
in this field is the reduction of the engine idle speed, since the increased application of
luxury equipment that raises motor load, like, for example, air—conditioning system
or power steering, require a flexible control mechanism, since decreased RPM can
lead to critical speed drops.

Generally there are two different kinds of engine idle speed control:

e Spark advance
e Volumetric control

In order to be most effective, our fuzzy controller only realizes volumetric control,
while the sparking advance of the production—line car was retained.

The principle of volumetric control is shown in Figure 5.

On the existing vehicle a sudden drop of engine speed may have various reasons:

— switching on electrical units, which put an additional load on the motor
via the three—phase alterator

— switching on the air—conditioning system, which puts an additional load
on the motor via the air—conditioning compressor (including the addi-
tional cooling fan)

— activation of power steering, which adds the hydraulic circuit pump to
the motor load
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Figure 5: Principle of idle speed control

The task of volumetric control is to compensate the speed drop by increasing the
cross—section. In this case the number or revolutions should get the target rotation
speed as correct and as fast as possible.

One of the main problems is the low torque in range of low revolutions, because
in extreme situations, like simultaneous switching—on of the air—conditioning system
and the power steering, very strong and rapidly occurring speed drops can occur.

The above-mentioned lacking quality of engine speed information refers to the
imprecision of the available signal of the Hall-pick—up in the ignition distributor (i.e.
differences in the number of revolutions up to 4+ 30 rpm result from manufacturing
tolerances, gear clearances and torsional vibrations).

Another problem arises from the plurality of additional stochastic processes in
the system. As an example, bad combustions or deviations of ignition and fuel-
injection have to be mentioned, because in this case a volumetric controller should
not react on a differing engine speed in order to prevent an oscillation of the idle
speed.

However, the delay of the automatic control system turns out to be the hardest
problem, since it passes about ten sequences of ignition after changing the fuel inlet,
until the motor delivers the changed torque (essential reason: air transfer time).

5.2 Design of the Fuzzy Controller

In order to solve the problems of engine idle speed control mentioned in Section
5.1, we chose an integrated conception of two controllers, where a Mamdani fuzzy
controller (MFC) forms the basic unit, embedded in a meta—controller (Figure 6).
The fuzzy controller is implemented as a C program on a 386—processor lap-
top. The data communication takes place through the control device of the engine
management system. The inputs are the number of revolutions REV0_LO, the tar-

27



fuzzy controller

l—l—meta Controller—l

AARSRENV
—_ state qREV
detect. M control

REV0_LJ | data AARCUJ AARCURIN
S prep and F — range | —————~

1 MFC [gREV imit.
JATRCON o= C fimit
—_— activ.

| !

pilot value for air conditioning system

Figure 6: Structure of the fuzzy controller

get rotation speed AARSEV and the state flag dATRCON of the air—conditioning
system (on/off).

The electrical current AARCURIN for the auxiliary air regulator serves as out-
put.

The meta—controller consists of three components: data modification, state de-
tection (including MFC activation) and security stage. The data modification com-
putes the mean of the incoming noisy data and supplies engine speed information
for evaluation. If required, the state detection activates the MFC, and a new control
value is determined using the modified and the original data.

A security stage behind the MFC takes care of limiting the control range.

At the time of switching on the air—conditioning system, the MFC is not acti-
vated, and a pilot output value has to be chosen to get the best control action.

The deviation dREV of the number of revolutions to the target rotation speed
and the gradient gREV of the number of revolutions (to be understood as the
difference of numbers of revolutions w.r.t. two measurement points) are the two
input variables. The change of current dAARCUR for the auxiliary air regulator
serves as the output variable.

5.3 How to Develop the Controller by Equality Relations

With respect to the general problems of engine idle speed control mentioned in
Section 5.1, from a physical modeling point of view, the underlying motor process
seems to be intractable. Furthermore, our experience with motor engineers has
shown that even experts in their field are often not in the position to deliver at least
a restricted description of the motor process by linguistic control rules.

For this reason the analysis was based on measurement data obtained by idle
speed experiments with a real spark ignition engine of the considered type.

The analysis of the available data resulted in the specification of equality relations
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E, (v € {dREV,gREV,dAARCUR}) on the domains X, induced by integrable
mappings ¢, : X — [0,00), as we have already motivated them in Example 2.5.

The underlying domains are X (4REV) [—70,70] (rotations per minute),
X (EREV) — 140,40] (rotations per minute), and Y(IAARCUR) — [_95 951 " wwhere
the latter one is to be interpreted as a linear transformation of the real value of the
current change dAARCUR.

The scaling function czrrv is, for instance, defined as follows:

CgREV - X(gREV) — [0, OO)7

;—S,if—40§x < =7
0,if —7< 2 <-4
1 ,if 4< 2 <=2
T 0,if —2< o <2
1,if 2< 2 <4
0,if 4< 2 <7
;—S,if 7T< x <A40.

The basic principle for obtaining ¢, is to fix appropriate partitions of the sets
X and to calculate constant scaling factors for them.

In this connection it should be emphasized that the imprecision of the measured
dREV values suggests the choice of minor distinguishability in an environment of 0
in order to avoid control actions that refer to stochastic error processes rather than
to important state changes.

The next step of the development of our fuzzy controller is the partial specifica-
tion g @ XAREV) oo X (8REV) _, y(dAARCUR) of the control mapping, which is also

computed by the given experimental data, and shown in Table 1.

sREV
s 401 6] 3] 0] 3] 6
0 20]15] 5] 10] 10] 5] 5
50 20 15| 0] 10] 10] 5

30 15]10] 5] 5] 5] 0] 0

dREV

30 0 0 0} -5 -5]-10|-15
30 O(-5| -5]-10|-15]-15 | -20
704 -5|-5]-10]-15|-15|-15|-15

Table 1: The partial mapping o for idle speed control

Then, with the aid of the equality relations F, and the partial mapping ¢q a
fuzzy controller can be constructed. Figure 7 illustrates the induced look—up table,
where the selected defuzzification method is COA (center of area).
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Figure 7: Performance characteristics of the MFC

Based on our presented new methodology of creating fuzzy controllers by the
concept of equality relations, a promising final step of the development is to trans-
fer the obtained controller into a Mamdani fuzzy controller, applying the technique
described in Section 3.1. The main advantage of this transformation is the op-
portunity of using the available standard tools for an efficient implementation of
Mamdani fuzzy controllers. In our example the resulting singletons are associated
with linguistic terms negative big (nb), negative medium (nm), negative small (ns),
approximately zero (az), positive small (ps), positive medium (pm), and positive big
(pb), respectively.

Figure 8 illustrates the corresponding partition of the set X (REV),

Note that in this application there is no extensional control function ¢ which
coincides with the partial control mapping ¢ for those elements for which ¢q is
defined.

But non—extensionality is acceptable in this case (comp. Section 3.2), since it only
arises from slightly modified control values in order to avoid vibration phenomena
in extreme situations.
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Figure 8: : The fuzzy partition of X @FFV)

A comparison between the production—line controller and the fuzzy controller in
real situations showed that the fuzzy controller has superior performance character-
istics.

6 Conclusions

Fuzzy control in vague environments is based on the idea of interpolating a partially
specified control function by exploiting the information hidden in the indistinguisha-
bility or similarity in the vague environments. It should be emphasized that the
control rules of a fuzzy controller are not interpreted as logical implications, but as
vague descriptions of crisp control actions in crisp situations. This is in accordance
with the methods applied in fuzzy control where generally disjunctive instead of
conjunctive rule bases are considered.

Our approach provides a semantical background for fuzzy control, which eluci-
dates the concepts of fuzzy control and provides a clear explanation in which way
the fuzzy sets and the control rules can be interpreted. The insights gained by
our model can be used to understand and to carry out the design and the tuning
of a fuzzy controller as described in Section 4. Although we have only discussed
the connections of our model of fuzzy control in vague environments to Mamdani’s
fuzzy control approach, there are also relations between vague environments and the
Sugeno-type fuzzy controller [19], namely that we have to consider the input space
as a vague environment, whereas we deal with a crisp output space in the case of
the Sugeno—type fuzzy controller.

We have interpreted equality relations in a very narrow sense, mainly in terms
of a nearness measure, in order to simplify and clarify their meaning in the setting
of fuzzy control, since in control applications the underlying sets are usually subsets
of the real numbers. Of course, all other more general interpretations of equality
relations in terms of indistinguishability operators or similarity relations are also
admissible.

31



The justification we gave for Mamdani’s fuzzy control model does not provide a
concrete defuzzification strategy. Only in the case of extensional control functions
certain restrictions have to be satisfied by the defuzzification strategy. Defuzzifica-
tion methods, although intuitively compelling, are still not examined in a rigorous
theoretical framework.

The aim of this paper is to provide a formal framework for a controller based on
knowledge—based interpolation. As one of our results we obtain a reformulation of
Mamdani’s fuzzy control model with vague environments as a background so that we
gain insight in this methodology and can use this insight for fuzzy controller design,
tuning, and also for the development of learnable or adaptive fuzzy controllers.

Further research will be directed to control theoretic aspects of fuzzy control in
vague environments like stability analysis or robustness. Taking the vague environ-
ments into account, it should be possible to modify these notions accordingly.

Acknowledgments. We would like to express our thanks to H.—J. Bohn (Volkswa-
gen AG, Wolfsburg, Department of Powertrain) for his important support during
the implementation of the controller.
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