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Abstract

Fuzzy reasoning mechanisms are designed to cope with vague and
uncertain knowledge and information. In this paper we demonstrate
that from the vagueness inherent in a fuzzy system a canonical indis-
tinguishability of objects can be derived which cannot be overcome by
the standard reasoning schemes. We discuss also the consequences for
fuzzy logic in the narrow sense.

1 Introduction

The fundamental concept in fuzzy systems is the notion of membership de-
gree, generalizing from the idea of an element having crisp membership to a
set, to gradual membership. Therefore, most fuzzy systems are based on a
fuzzification of the predicate € (is element of). Another concept closely re-
lated to gradual membership is similarity or indistinguishability which may
be modelled as a fuzzification of equality. A formalization of this notion in
the general framework of GL-monoids is given in Section 2. The unit interval
endowed with the usual ordering and a continuous t-norm is a special example
of a GL-monoid. We prefer the more general notion of GL-monoids since in
this context the fundamental concept — namely residuation which establishes
a connection between many-valued conjunctions and implications — becomes
more obvious than in the unit interval with its rich structure. Section 3 reviews
some results on the indistinguishability inherent in standard approximate rea-
soning schemes that can be formalized in terms of fuzzy relations. Finally, in
Section 4 these results are discussed in the view of fuzzy logic in the narrow
sense.



2 GL-Monoids and Fuzzy Equality

As already mentioned in the introduction, we use GL-monoids as the formal
framework for our investigations instead of the unit interval. From [4], we
recall the definition of a GL-monoid.

Definition 1 (L, <,x*) is a GL-monoid if
1. (L, <) is a complete lattice,

2. (L,*,1,0) is a commutative monoid with unit 1 and zero element 0, i.e.
the operation * : L x L. — L 1is associative and commutative and the
equations 1 x a = a and a0 = 0 hold for a € L,

3. x 18 isotone, i.e.
a<f = axy< fxy,

4. (L, <, %) is integral, i.e. 1 =\ L
5. (L, <, %) is the dual of a divisibility monoid, i.e.
a < 3 implies the existence of v € L such that a = 3 * 7,
6. (L,<,%) is residuated, meaning that there exists a binary operation —

on L satisfying
axf <y &= a7, (1)

7. the infinite distributive law holds, i.e.

ax\/ B = \(axp).

el el

Unless otherwise stated we assume (L, <, %) to be a GL-Monoid. L will
be considered as the set of ‘truth’ values of a many-valued logic. V can be
considered as the valuation function of a disjunction, A and * as two alterna-
tives for a conjunction. The binary operation — is uniquely determined by
the adjunction property (1):

a—=pB =\ eL|ax)<p) (2)

— can be viewed as the valuation function for the implication (associated with
the conjunction *). From this implication we can derive in a canonical way a
valuation for the negation by defining —a = a — 0. Note that in a GL.-monoid
the zero element of * is also the universal lower bound, i.e. 0 = A L. We define
the biimplication <+: L x L, — L by

aef = (a—=PB)AN(B—a).
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For a more detailed discussion of GL-monoids and their properties see [4, 8]
and [5], which is devoted to the relation between logical calculi and structures
like GL-monoids.

Interesting for applications is the case when L is the unit interval with
the usual linear ordering. * can be any continuous t-norm (a commutative,
associative, non-decreasing binary operation on [0, 1] having 1 as unit). = is
understood as an alternative to the lattice operation A (in the case of the unit
interval simply min) for the valuation function of a conjunction.

Example 1 Let L = [0,1] be the unit interval with the usual ordering. Then
a < f = max{a, f} — min{e, 5}

holds [23]. Tt is easy to check that based on the choice of x the following
formula can be derived for —, <+, and — (cf. [7, 11]).

ax* 3 | max{a+(3—1,0} | min{a, 3} o-f
_ 1 ifa<p 1 ifa<p
a— [ | min{l—a+p,1} { f  otherwise { 5 otherwise
1 ifa=p61/[1 ifa=p
at f1-]a—p| { min{a, 3} otherwise { ﬁ;ﬁ{zgi otherwise
1_ 1 ifa=0 1 ifa=0
@ @ 0 otherwise 0 otherwise

Interpreting L as the set of truth values, an L-fuzzy (sub)set (or simply
a fuzzy set) of the set X is a mapping p : X — L. The value pu(x) € L is
understood as the degree or truth value of x being an element of the (sub)set

Lb.

Definition 2 An equality relation (w.r.t. the operation %) on the set X is a
mapping E : X X X — L satisfying the axioms:

(E1) E(z,z) =1, (reflexivity)
(E2)  E(r,y) = E(y, ), (symmetry)
(E3) E(z,y)* E(y,2) < E(z, 2). (transitivity)

In the unit interval, depending on the choice of the operation %, sometimes
E is also called a similarity relation [25, 15], indistinguishability operator [22],
fuzzy equality (relation) [6, 9], fuzzy equivalence relation [21] or proximity
relation [2]. Although these different names are used for the same concept,
the underlying philosophy is the same, namely to have a notion that certain
objects may be identified to a certain degree.



Considering the relation element of (€) for ordinary sets, equal elements
may be exchanged, i.e. we have

re€Mandzx=y = ye€ M. (3)

Replacing the crisp equality in this statement by an equality relation and the
notion of a set by fuzzy set, we obtain the following definition.

Definition 3 A fuzzy set yu € LY is called extensional w.r.t. the equality rela-
tion E on X iff

p(z) x E(r,y) < p(y)
holds for all x,y € X.
The fuzzy set

i = N{v|p<vand v is extensional w.r.t. E}
is called the extensional hull of p w.r.t. E.

Obviously, an extensional fuzzy set coincides with its extensional hull and
the extensional hull has the following properties.

(1) Alx) = V{p(y) * E(z,y) [y € X},
(ii) f is extensional w.r.t. E,
() fi=

It should be noted that a fuzzy set u € L is extensional w.r.t. the equality
relation E if and only if

wz) < ply) > E(z,y) (4)

holds for all z,y € X.

Note that for any fuzzy set © we can define an equality relation E,(z,y) =
w(x) <> p(y), having the property that it is the coarsest equality relation for
which p is extensional. Theorem 1 in the following section will provide a more
general result.

3 Equality Relations in Approximate Reason-
ing

After we have introduced the notions of equality relations and extensional
hulls in the previous section, we present some results that demonstrate the
relevance of equality relations in approximate reasoning, in the sense that they
characterize the indistinguishability inherent in a fuzzy system. For proofs
and more details we refer to [8]. The equality relation that is defined in the
following theorem will be of great importance for the rest of this paper.
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Theorem 1 Let F C LY be a set of fuzzy sets. Then

Er(z,y) = N (u(z) < pn(y)) ()

HEF

is the coarsest (greatest) equality relation on X such that all fuzzy sets in F
are extensional w.r.t. Er.

The equality relation (5) already appeared in Valverde’s representation
theorem [24] which he proved for L = [0,1]. This theorem states that Er is
an equality relation if and only if there is a set F of fuzzy sets such that F
can be written in the form (5).

In [8] it was proved that the set Ag of all fuzzy sets that are extensional
w.r.t. the equality relation E has the following closure properties. For any
BC Ag, p € Ag, and a € L we have:

Vice versa, for a set A of fuzzy sets fulfilling these axioms there exists a
unique equality relation — namely the one given in Theorem 1 — such that A
coincides with the set of all extensional fuzzy sets w.r.t. this equality relation.
It is interesting to remark that, because an equality relation is uniquely deter-
mined by its set of extensional fuzzy sets, Valverde’s representation theorem
is also valid in the more general context of GL-monoids.

The above mentioned properties characterize equality relations in an alge-
braic sense. Another interesting approach is described in [16, 17, 18, 19, 20, 21]
where connections between equality relations (or related concepts) and fuzzy
partitions or fuzzy coverings establish are provided.

In approximate reasoning if-then rules of the form

If £ is A, then nis B, (6)

are very common where ¢ and 7 are variables with domains X and Y, respec-
tively. A and B are linguistic terms like positive big or approximately zero
(see, e.g., [10]). These linguistic terms are usually modelled by suitable fuzzy
sets, say pus € L~ and pp € LY. In addition to such general rules one has
specific information like

Eis A (7)



where A’ is represented by the fuzzy set pa € L* (or simply by u € LY).

The application of a single rule of the form (6) to the information (7) is
usually formalized on the basis of a computing scheme of the following form.
The rule is encoded as a fuzzy relation of the form

o(,y) = 0o(r,y) = pa(z) © up(y) (8)

where ® € {A,*,—}. For a given input information in the form of the fuzzy
set pa € LY, the ‘output’ fuzzy set Veonclusion 15 computed as the composition
of the fuzzy relation gs and the fuzzy set pa/, i.e.

(paono)(y) = V {pa(z)Mo(z,y)} (9)

reX

for all y € Y, where M € {A,*} (cf., e.g., [1, 3, 10]). This scheme is called
sup-A-inference. In fuzzy control, for instance, usually M = min = © is chosen.

The following two theorems show that for such typical inference schemes
the indistinguishability inherent in the fuzzy sets cannot be overcome.

Theorem 2 Let p, s € L, ugp € LY. Furthermore, let E be an equality
relation on X such that ps is extensional w.r.t. E. Let os be defined as in
Equation (8). Then for the combinations © =— and =%, @ = % and 1 = x,
©® = A and N = %, the equation (cf. Equation (9))

(Lonoe) = (fton 0s)

18 valid.

When we interpret Theorem 2 in the sense that the fuzzy sets pu4 and up
represent the linguistic terms A and B of an if-then rule of the form (6), then
it states that for the mentioned combinations of operations for a given input
w1 the output fuzzy set pon gs inferred by the rule does not change when we
replace p by its extensional hull. Although not explicitely mentioned, the case
M = A is also included in the theorem, namely when we choose * = A for our
GL-monoid.

For the output fuzzy sets we have an analogous result, namely, that the
output fuzzy set is always extensional.

Theorem 3 Let p, g € LY, pg € LY. Furthermore, let F be an equality
relation on Y such that pp is extensional w.r.t. F. Let oo be defined as in
Equation (8). Then for the combinations © =— and I =%, ® = % and 1 = x,
® = A and 1N = *, the fuzzy set (1 on o) (cf. Equation (9)) is extensional
w.r.t. F.



The results of Theorems 2 and 3 can be easily extended to a set of if-then
rules of the form

If £ is A;, then 7 is B;, (1€1),

where the linguistic terms A; and B; are modelled by the fuzzy set pa, € L*
and pp, € LY. The output fuzzy set for a given ‘input fuzzy set’ p € L* is
usually computed either by

A (10)

i€l

V (1 or 0:). (11)

iel

or

This does neither effect Theorem 2 nor Theorem 3 according to the closure
properties (a) and (b). The theorems are also valid for fuzzy rules with more
than one premise using the Cartesian product of equality relations (combining
them by the minimum). For details see [8].

4 Equality Relations and Fuzzy Logic

In this section we extend the results derived in the previous section to fuzzy
logic in the narrow sense. It would lead us astray to give a complete definition
of first order fuzzy logic. A thorough introduction to this topic can be found
in [12, 13]. What we mainly need to know for the context in which we consider
fuzzy logic here is that fuzzy logic admits by truth values evaluated logical
formulae. We concentrate on the predicates which correspond to fuzzy sets,
i.e., an n-ary predicate is associated with a fuzzy set on X", when X is the
underlying domain for variables. The question that we will examine is how
well can objects in X be distinguished, when we consider a set of elementary
predicates and take all predicates into account that can be formulated using the
elementary predicates and the logical connectives and quantifiers. Formally,
the question can be formulated in the following way. We are given a set A (the
fuzzy sets associated with the elementary predicates) of fuzzy sets. What is
the coarsest equality relation such that all fuzzy sets that fuzzy sets that can
be defined with the fuzzy sets in A and the logical connectives are extensional?

Let us first restrict to unary predicates. Thus A C L~. The set of fuzzy
sets we can build from A with the logical connectives is the smallest set A*
satisfying

(i) AC A
(ii)) Ag C A* = (A Ag) € A* and (V Ap) € A*

(i) pe Ayae€ L= (a—pu) € A and (g — a) € A*
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(iv) pve A* = (u—v) € A* and (u*v) € A*

Note that the extensionality of x and v does in general not imply the
extensionality of ;4 — v or pu % v. Thus the coarsest equality relation making
all fuzzy sets in A* extensional will be finer than the coarsest one making all
fuzzy sets in A extensional.

Theorem 4 Let A C L be a set of fuzzy sets and let A* C L™ be the smallest
set of fuzzy sets satisfying the above mentioned properties (i)-(iv). Then

E.A*(xay) = /\ (EA(may))k (12)

kelN

holds for all x,y € X. The exponent k is meant w.r.t. the operation x.

Proof. Let E(z,y) denote the right hand side of equation (12). We prove
that F is an equality relation making all fuzzy sets in A* extensional which is
not smaller than F4«. This implies that E is equal to F 4+, since E 4+ is the
coarsest equality relation making all fuzzy sets in A* extensional.

An important property which we need in the proof is that in a GL-monoid
we have that the idempotency of an element o € L, i.e. a *x a = «, implies
axfi=aAfforall 3 € L. (For a proof of this fact see [4].) From the definition
of E it is clear that for all z,y € L, E(x,y) is an idempotent element of L.

E is obviously reflexive and symmetric. Making use of the idempotency of
the values that F takes, we can prove that E' is not only transitive w.r.t. x but
even w.r.t. A.

(/\ <EA<x,y>>’“) A A Eatra”)

k€N melN

_ (/\ (EA(x,y))k) * ( A (EA(?JaZ))m>

keIN meIN

IN

( A\ (EA(ffay))k*(EA(y,Z))m)

k,meN

IN

( /\ (E.A(xa y))k * (EA(ya Z))k)

keIN

< N (Ba(z,2)".

kEIN

Thus FE is also transitive.



Define
B = {u € L | pis extensional w.r.t. E}.

B is closed under the closure properties (a)-(d) mentioned in the previous
section. But B is also closed w.r.t. the operations — and *. To see this, let
u, v € B. Making again use of the idempotency of E(z,y), we derive

ple) xv(x) « E(r,y) = plo)«v(z) « E(z,y) « E(z,y)

IA
=
s
*
<
<

i.e., E/ is closed w.r.t. .
To prove the extensionality of u — v, i.e.

(u(z) = v(z) * E(z,y) < uly) — v(y),

it is sufficient to prove

wy) * (u(z) = v(z)) * E(z,y) < v(y)

according to the residuation property.

w(y) * (u(x) = v(z)) * E(r,y) = E(z,y) * py) * (u(z) — v(x)) * E(z,y)

< @) * (z) = v(z)) * E(z, y)
= (u(z) Av(z)) * E(z,y)

< v(z)* E(x,y)

< v(y),

where we have made use of the property a * (a — ) = a A (3 (see [4]).

Since E(x,y) < E4(z,y) holds, any fuzzy set that is extensional w.r.t. E4
is also extensional w.r.t. F, which implies A C B. Since B satisfies the closure
properties required for A*, we have A* C B, and therefore

Ep > Es = Eg = E.
In order to prove E 4« < E, we need the laws
e (aApB)F < of ABE, which is easily proved by induction, and
e (a— B)F < of — B*. This formula is derived by residuation from

g5 > (anp)f = (ax(a—=p))F = ¥« (a—= p)r.

These two laws imply (o <> 8)¥ < of < p*. Thus, taking (4) into
account, we have for all © € A

(u(x) < p@)" > p@)k < py)* > Ba,
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since p* € A* and therefore 1% has to be extensional w.r.t. E 4. This proves
also E4 < FE. O

We only considered unary predicates that are associated with fuzzy sets on
X. If we consider also n-ary predicates, we only need to consider the additional
unary predicates that we obtain by instantiating all variables but one of the n-
ary predicates. In this way, we can again compute the corresponding equality
relation F 4 on the basis of the enriched set A. Obviously, the fuzzy sets
pu(xq, ..., x,) associated with the n-ary predicates are then extensional w.r.t.
the equality relation

E((x1,y. . 2n), W1y oy yn)) = Ea(z1,951) %o % Ege (T, Yn). (13)

But since the values E 4« (z;,y;) are idempotent, we may replace * in (13) by
A.

Another interesting remark is that for x = A, we have F4 = E 4, i.e., it is
sufficient to consider only the elementary predicates in this case.

Usually, fuzzy logic in the narrow sense with L = [0, 1] as the underlying
lattice is based on the Lukasiewicz implication & — = min{l — « + (3,1},
meaning that * is the Lukasiewicz conjunction a* § = max{a+ [ —1,0}. The
reason for this is that for soundness and completeness the implication has to
be continuous and the Lukasiewicz implication is — up to isomorphism — the
only continuous residuated implication [14]. Since the Lukasiewicz conjunction
is nilpotent, this means that the equality relation E 4« coincides with the crisp
equality — at least if for all z,y € X, x # y, there exists a fuzzy set u € A
(elementary predicate) such that p(z) # p(y) holds. This means that this
logic still maintains the potential for distinguishing objects well. Also when
the product is chosen as the underlying t-norm the corresponding logic has
the potential for distinguishing objects well. More generally, this applies to all
t-norms whose only idempotent elements are 0 and 1.
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