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Abstract

Often, measurement of biological components generates
results, that are corrupted by noise. Noise can be caused by
various factors like the detectors themselves, sample prop-
erties or also the process of data processing and appears in-
dependently from the applied technology. When measuring
two identical samples it can be observed that similar sig-
nal intensities may have inherent but varying levels of noise
and that the ratio of noise decreases with increasing sig-
nal intensities. In this paper a statistical approach is intro-
duced to estimate the noise inherent in the measured data.
Based on this estimation, it is possible to provide informa-
tion about the reliability of a measured signal and whether
the difference between intensities is mainly caused by noise
or by biological relevant cellular alterations.

1. Introduction

Cellular bio-molecules became accessible by different
high throughput technologies and are the target of system-
atic analyses in order to define and reveal the molecular
basis of life. From the biological perspective, it is very
important to compare the measured intensities (amounts)
for the same item (mRNA, proteins etc.) under different
conditions and to conclude unambiguously (i) whether they
differ significantly and (ii) to reveal the level of regula-
tion. These conditions can be e.g. variable environmental
settings (e.g. aerobe vs. anaerobe), or a different genetic
background (wild type versus mutant). Systems biology
nowadays would like to describe complex cellular processes
quantitatively with the ultimate goal to establish predictive
biological models. Thus, the confident detection of almost
any relevant alteration certainly will play a decisive role in

such projects.

On the one hand one should consider a signal to be noise
if it can not be assigned exclusively to an individual item.
This can be caused by the noise of amplification circuitries
of the used detector but also be complicated by incomplete
separation of individual items. On the other hand a statis-
tical procedure should not simply reject data that might be
corrupted by noise since the amount of biological samples
is often limited and the applied analytical strategies are time
and cost intensive. Therefore, bioinformatic strategies have
to improve both the statistical characterisation of regulatory
information and as a prerequisite the definition whether dif-
ferences in the intensities are only caused by noisy measure-
ments or actually by biological events.

In this paper, a statistical approach is introduced to es-
timate the noise inherent in the measured data. Based on
this estimation, it is possible to provide information about
the reliability of a measured intensity and whether the dif-
ference between intensities is mainly due to noise or caused
by biological factors. In the context of microarray expres-
sion data, Bayesian approaches are very popular to estimate
posterior probabilities of differential expressions [2, 3, 5] in
order to determine whether observed differences in expres-
sions are significant or not. The approach in this paper is
based on the classical frequentist approach in statistics. Of
course, it can be argued that for such a classical approach
in principle an implicit prior can be computed, so that the
Bayesian setting might be considered as the more general
and explicit one. Noteworthy, our approach offers more
flexibility in modelling the noise that has to be paid off by
higher computational costs. Furthermore, we can also pro-
vide confidence intervals for the intensities and the proba-
bilistic interpretation of our results is slightly different than
in the Bayesian setting.

The paper is organised as follows: Section 2 describes



the considered problem and the model assumptions in more
technical terms. A maximum likelihood estimator for the
model parameters is derived in section 3. The confidence
intervals and p-values for differences in intensities can then
be computed based on the estimated model parameters (sec-
tion 4). This new approach was applied to one example of
a representative protein quantificiation by an iTRAQ-LC-
MS/MS experiment. The results are summarised in section
5. Section 6 concludes the applied methods and results.

2. Problem Description

Basically intensities are measured for a fixed (mRNA,
metabolites) or variable (proteins) set of components
(items) from cells presenting different conditions that
should be analysed comparatively. The biological question
is which items have significantly differing intensities un-
der these two conditions. Without any further knowledge
or assumptions about the underlying biological and mea-
surement process, it is almost impossible, to formulate a
suitable model for the noise inherent in the data. This pa-
per focuses on a more specific setting where for one condi-
tion at least two independent measurements of the intensi-
ties are available. The repetition of experiments under the
same biological and analytical condition is accepted nowa-
days as a prerequisite in order to define standard variations
and to validate the reliability of the measurements. Even in
the case, when no repeated experiments are available, the
method proposed in this paper can be applied, if additional
information is available, for instance: For microarray data
there might be a subset of genes that should not change
their expressions in different conditions. Also, for many
experiments only a small number of the items will change
their intensities so that an estimation of the noise based on
all items will lead to conservative, but still feasible results.
Even if two or more independent measurements of the in-
tensities under the same condition are available, some addi-
tional pre-processing or normalisation might be necessary.
The pre-processing could also include a logarithmic trans-
formation of the intensities, that is always part of state-of-
the-art data-processing techniques used in microarray-aided
mRNA expression analyses (see for instance [8, 4]). After
the pre-processing, we assume that the structure of the data
set is as follows:(
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We have n items and each tuple
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represents ki noisy measurements of the same unknown
(pre-processed) intensity µi. The following approach was
established based on the assumption that ki is always ≥ 2,

whereas it is not necessary that all ki have the same value.
Under certain ideal conditions ki would be 4 for all 1 ≤
i ≤ n if an experiment was repeated four times. However,
in some of the experiments the intensities for a few items
could not be measured. In this case, the ki-values will not
be identical. Typical values for n range between 100 and
a few thousand, whereas the ki-values usually range only
from 2 to 10.

Figure 1. Normalised logarithmic intensities
for a repeated experiment.

We assume that the subsample (2) originates from inde-
pendent samples with normally distributed data, with un-
known mean µi and unknown variance σi. Note that in
most cases the values x

(j)
i are the pre-processed intensities,

so usually at least a logarithmic transformation is applied
to the data. The original measured intensities cannot follow
a normal distribution, since they will never yield negative
values. It is, of course, impossible to make meaningful esti-
mations for µi and σi based on a very small sample of size
ki. Furthermore, it would not really help to know the distri-
butions for some specific intensities. From experiments we
know that the variances follow a certain tendency. Small in-
tensities are less reliable (more noisy) than larger ones. Fig-
ure 1 illustrates this effect. The (pre-processed) iTRAQ re-
porter intensities of 123 peptides were measured using two
different reporters. In the ideal case, for each peptide the
two intensities derived from the reporters would be identi-
cal. Each point in figure 1 represents the two intensities for
a peptide, so that in the ideal case without noise, all points
would lie on the diagonal. From this typical diagram it can
be seen that the noise tends to become smaller for larger in-
tensities. In order to take this into account, we assume that



we have

σ(µ) = h(µ; a, r, λ) = a + re−λµ (3)

with a, r, λ ≥ 0. a represents the absolute noise in the mea-
surement. r and λ determine the intensity-dependent noise
and its decrease. Our approach can be generalised easily to
other noise models in the form σ(µ) = h(µ; θ) where θ is a
parameter vector, in our case θ = (a, r, λ).

The estimation of the parameters a, r and λ based on the
sample (1) requires that we estimate µi for each subsample
(2). We only know that the values in the subsample are
noisy measurements of the same intensity µi, but we do not
know µi. We carry out a maximum likelihood estimation
based on an expectation maximisation (EM) strategy.

3. A Maximum Likelihood Estimator Based on
an Expectation Maximisation Scheme

Applying the maximum likelihood principle to estimate
the unknown parameter vector θ = (a, r, λ) of the noise
model of the previous section, leads to the likelihood
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The factors are simply the densities of normal distributions
with mean µi and deviation σi = h(µ; θ) = a + re−λµi .

The maximisation of L does not only involve the deter-
mination of the parameters a, r and λ, but also the estima-
tion of the µi. Assuming the parameters a, r and λ to be
fixed at the moment, we estimate the µi-values by max-
imizing the corresponding log-likelihoods. When the pa-
rameters a, r and λ are fixed, the µi-values can be optimised
independently. Therefore, the resulting log-likelihoods are
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ki∑

j=1

(
− ln(

√
2π) − ln(h(µi; θ)) − (x(j)

i − µi)2

2h2(µi; θ)

)
.

(5)
In order to maximise L̃i it is necessary that
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holds. With h′(µi) = −λre−λµi and multiplying (6) by
(a + re−λµi )4eλµi , we obtain
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Solving (7) for µi yields the maximum likelihood estima-
tion for µi for fixed parameters a, r and λ. We apply a sim-
ple bisection strategy. As one boundary for bisection, we
choose the mean value of the x

(j)
i . The second one is de-

termined by a systematic search left and right of this value
until the sign of (7) changes.

The optimisation of the parameters a, r and λ is carried
out by a brute force algorithm, an evolution strategy with
adaptive mutation rates (see for instance [1]). The fitness
of a parameter combination θ = (a, r, λ) is given by (4),
where the µi are determined by solving (7).

The maximum likelihood estimation uses bisection and
evolution strategies. Since these methods are very general,
our approach can easily be extended to other noise models
of the general form σ(µ) = h(µ; θ). However, since we
cannot provide an analytical solution for the parameter es-
timation, we have to pay the price of high computational
costs (minutes up to a few hours for very large data sets on
a standard PC).

As another example for a noise model, assume that the
noise consists of two components, an absolute and a relative
one. Then we would choose

σ(µ) = h(µ; a, r) = a + rµ

instead of (3). The use of this formula in (6) instead of (3)
can be handled in the same manner as (7).

4. Confidence Intervals and Error Probabili-
ties for Differential Expressions

So far, we have provided a method to estimate the model
parameters. Once we know these model parameters, we can
derive confidence intervals for intensities as well as p-values
for significant differences in intensities. As a first step, the
estimation of confidence intervals is described in the follow-
ing. The computation of p-values will be explained at the
end of this section. When an intensity x (with noise) was
measured, it is important to know the probable candidates
for the true intensity. Without assuming a prior probability
distribution on the intensities as in the Bayesian approach, it
is impossible to specify a (posterior) probability distribution
for the possible intensities. But it is possible to compute for
any intensity, the probability – taking the noise into account
– that it would produce an intensity like the measured one.

Assume, we want to find a ”confidence interval” for the
confidence level (1−α). Let Xµ denote the random variable
with normal distribution N(µ, h(µ; θ)). As the upper bound
for the ”confidence interval” we define the smallest intensity
µmax that can generate an intensity lower than or equal to



the measured one with a probability of at most α. Similarly,
for the lower bound we have to find the smallest intensity
µmin that can generate an intensity greater than or equal to
the measured one with a probability of at most α.

For the upper bound of the confidence interval we require

α = P (Xµmax ≤ x) = P

(
Z ≤ x − µmax

h(µ; θ)

)
(8)

where Z is the standard normal distribution with mean 0
and variance 1. Therefore, we have to solve the equation

Φ
(

x − µmax

a + re−λµmax

)
− α = 0 (9)

for µmax where Φ is the cumulative distribution function
of the standard normal distribution. This is again done by
simple bisection. One boundary is chosen as x, the other is
determined by searching in the entourage of x for a change
of the sign of (9). Analogously, for the lower bound we

require α = P (Xµmin ≥ x) = P
(
Z ≥ x−µmin

h(µ;θ)

)
which

can be solved in the same way as (8).
Note that we have not assumed any prior distribution of

the intensities, so that α is not the probability that the true
(preprocessed) intensity lies in the interval [µmin, µmax]. It
only means that a true intensity outside this range will pro-
duce a value like x with a probability lower than α.

For the question, whether two measured intensities of an
item under different conditions can be considered as sig-
nificantly different, a p-value for such a hypothesis can be
computed. When two (preprocessed) measured intensities
x1 and x2 with x1 < x2 are considered, it is important to
know, whether the true intensity of x1 is also smaller than
the true intensity of x2 or whether this is just an effect of
noise. Let µ1 and µ2 denote the (unknown) true intensi-
ties of x1 and x2, respectively. Furthermore, assume that
µ1 ≥ µ2 holds, i.e. the true intensities are not in the same
order as the measured intensities. This happens with proba-
bility

2 · P (Xµ2 ≥ x2) · P (Xµ1 ≤ x1). (10)

The factor 2 reflects that we do not consider the order (in
time) in which x1 and x2 were measured. Without the factor
2 it would mean, we first measure the smaller value x1 and
then the larger value x2. We have to find µ1 and µ2 with
µ2 ≤ µ1 such that (10) is maximised. It is obvious that
µ2 should be as large as possible, whereas µ1 should be as
small as possible. With the constraint µ2 ≤ µ1, (10) will
only achieve its maximum if µ1 = µ2 holds. This means,
maximising (10) is equivalent to maximise

2 · P (Xµ ≥ x2) · P (Xµ ≤ x1) (11)

with the single parameter µ. (11) is equivalent to the objec-
tive function

g(µ) = 2 ·
(

1 − Φ
(

x2 − µ

h(µ; θ)

))
· Φ
(

x1 − µ

h(µ; θ)

)
. (12)

Figure 2. Comparison between regulatory in-
formation and reporter signals. Protein quan-
titation of two identical samples: bright dots
correspond to peptides found in the sample
labelled with 114.1, dark dots correspond to
peptides found in the sample labelled with
116.1.

The maximisation of (12) is done again by a brute force al-
gorithm, an evolution strategy with adaptive mutation rates.
The maximum value of g(µ) is the maximum probability
that two true intensities with the reverse order of x1 and x2

can produce values like x1 and x2. The result is not the
probability that the true intensities for x1 and x2 are in the
reverse order. As mentioned before, a prior distribution on
the intensities is required in order to compute this probabil-
ity. The computed probability is the highest possible prob-
ability that two true intensities µ1 and µ2 with µ2 ≤ µ1 can
result in a pair of detected intensities like x1 and x2.

5. Application Example

The presented noise estimation was applied to a quan-
titative protein analysis strategy that requires LC-MS/MS
and the mentioned state-of-the-art peptide labelling strat-
egy, known as iTRAQ [7]. Figure 2 shows the result of
protein quantification of two identical samples. Conse-
quently, the regulation factors for all peptides is expected
to be nearly 1. However, the regulation factors often differ
from 1 and this effect is more significant for lower reporter
intensities compared to higher intensities that clearly better
approximate to 1. This effect can be ascribed to intensity-
dependent noise.

The iTRAQ report presented in table 1 summarises the
following information: Protein ID of the identified pro-
tein P14314, the peptides (Peptide) that were sequenced



Prot. ID Prot. Score Peptide Pep. Score 114.1 corr 114.1 RF Interval Perr 117.1 corr 117.1 RF Interval Perr

P14314 279,93

ILIEDWK 45.66 143.42 167.2 1 [92.42 ... 220.16] 0.5 337.82 368.6 2,36 [220.07 ... 516.78] 0,01

SLEDQVEMLR 62.55 43.95 51.18 1 [26.56 ... 68.72] 0.5 58.02 65.13 1.32 [35.99 ... 90.09] 0.19

KILIEDWK 23.98 52.67 61.42 1 [32.41 ... 81.96] 0.5 74.57 83.22 1.42 [46.99 ... 115.26] 0.14

SLKDMEESIR 33.62 100.61 117.3 1 [64.21 ... 154.91] 0.5 133.76 147.8 1.33 [86.06 ... 205.44] 0.17

KSLEDQVEMLR 35.59 8.61 10.14 1 [0.0 ... 15.46] 0.5 19.14 21.22 2.2 [9.09 ... 31.2] 0.5

TVKEEAEKPER 27.1 109.62 128.7 1 [70.16 ... 168.64] 0.5 260.89 283.6 2.38 [169.6 ... 399.37] 0

LGGSPTSLGTWGSWIGPDHDK 28.45 1 0 1 [0.0 ... 3.94] 0.5 9.14 10.13 9.14 [0.0 ... 16.24] 0.5

Table 1. Example of iTRAQ result for two different samples.

and contribute to the identification, the total (Protein Score)
and the peptide associated score (Peptide Score). The in-
formation of the first four columns were obtained from
the MASCOT database search engine [6] that is used for
protein identification based on LC-MS/MS data routinely.
The fifth and tenth column respectively contain the abso-
lute measured iTRAQ reporter intensities for each peptide
at the masses of 114.1 and 117.1 respectively, the sixth and
eleventh column respectively contain the normalized and
from isotopic impurities corrected intensities for each pep-
tide at the masses of 114.1 and 117.1 respectively. The next
column presents regulation factors for each peptide (RF of
114.1 set to 1 as reference). Intervals (column 8 and 13) are
computed with the presented new approach: lower and up-
per bounds for true intensities are calculated. Within these
bounds the true intensities of the measured intensities are lo-
cated with the probability of a given confidence level (here:
95%). Columns Perr give estimated probabilities that for
two measurements x1 and x2 with x1 < x2 , the true inten-
sity of x1 is also smaller than the true intensity of x2. Low
probabilities (< 0.1) represent significant measurements.
Based on this statistical validation our approach contributes
to the biological interpretation of the data with a high con-
fidence.

6. Conclusions

We have developed a method to improve the credibil-
ity of biological data that are acquired nowadays systemati-
cally in many laboratories. The goal of these investigations
is the comprehensive and reliable detection of relevant al-
terations often presented as individual regulation factors for
the analysed components. We designed a strategy to esti-
mate the noise inherent in the measured data. Our approach
is independent from both the type of the applied technology
that provides the data and from the underlying noise model.
Hence, the noise can be estimated for data from various
measurement systems. Our approach can be applied to other
noise models by simple variations of (3) and the computa-
tion of the corresponding model parameters as presented in
section 3. We use a maximum likelihood estimator to cal-
culate both the absolute noise in the measurement and the

intensity-dependent noise, that decreases with growing in-
tensities. After estimating absolute and intensity-dependent
noise the calculated model parameters can be used to cal-
culate error probabilities and confidence intervals for every
measured intensity. Our noise estimation strategy was ap-
plied to mass spectrometry results (iTRAQ) and we are able
to distinguish between significant and insignificant regula-
tory information and to determine an interval for the true
intensity for every measured noisy intensity.
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