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Abstract

In many applications of fuzzy sets, especially in fuzzy control, the
notions of fuzzy points and fuzzy functions play an important role. Nev-
ertheless, these concepts are usually understood and used on a very in-
tuitive basis without providing a formal definition. In this paper we
discuss an approach to clarify and formalize these notions and show
some consequences for fuzzy control and fuzzy interpolation. One of
the main results shows that the Mamdani fuzzy controller provides a
solution to the system of fuzzy relational equations induced by the if-
then-rules if it determines a partial fuzzy function.

1 Introduction

When L.A. Zadeh introduced the notion of a fuzzy set in his seminal paper [24]
in 1965 he was motivated by the idea to model vague (linguistic) concepts like
small, long, etc. The generalization from crisp membership of an element to
a set to a gradual membership requires to transfer definitions and operations
for crisp sets to fuzzy sets. This is often done by formalizing the concept to
be generalized for ordinary sets in classical logic and then extending this defi-
nition to a [0, 1]-valued (fuzzy) logic. An example of this approach is Zadeh’s
extension principle [26], that proposes a method to extend a function defined
on a crisp domain to fuzzy sets. The extension principle is a good example for
a general problem in fuzzy set theory that often appears when crisp concepts
are generalized. Taking a closer look at the extension principle it consists of
two steps. Starting with an ordinary function f : X — Y (defined on points)
the first step extends f to the power sets of X and Y in the usual way by



defining f[M] = {f(z) | * € M} for a subset M C X. Then this definition
of a function on sets is extended to fuzzy sets in the second step. This means
that the extension to fuzzy sets does not preserve the (fuzzified) properties of
a function, but properties of (fuzzy) set-valued set function.

A good example for the problems connected with this approach is fuzzy
arithmetics, where operations like the sum or the product of real numbers
are extended to fuzzy numbers or fuzzy sets (for details see for instance [16]).
Fundamental laws like distributivity or the group axioms for + no longer hold
in fuzzy arithmetics. The reason for this is not the extension to fuzzy sets but
the first inherent step where the arithmetic operations are extended to sets of
real numbers. Already in this first step many of the algebraic properties are
lost.

The crucial point is that when dealing with sets the concept of a singleton
or point — a set with just one element — does no longer play an important role
and is often not considered separately when operating with sets, although it is
not a formal or principal problem. Thus a suitable definition of the concept of
a fuzzy point is needed in order to distinguish between general fuzzy sets and
fuzzy singletons.

A very naive approach to fuzzy points simply defines a fuzzy point as a
fuzzy set with membership degree 1 for exactly one element and zero mem-
bership for all other elements. However, such fuzzy sets are not typical for
applications. Furthermore, the idea of a fuzzy point should in some way be
an appropriate model for a vague value like approximately zero. The funda-
mental concept on which the concept of a fuzzy point is based in this paper is
the notion indistinguishability or fuzzy equality. Starting with notion a fuzzy
point corresponds to the fuzzy set of all elements that are indistinguishable
from (or fuzzy equal to) a given crisp point. Therefore we first introduce fuzzy
equality in Section 2 in order to discuss the concept of a fuzzy point in Section
3. Section 4 is devoted to fuzzy functions and establishes the close connections
to fuzzy control and fuzzy interpolation.

2 GL-Monoids and Fuzzy Equality

In the setting of fuzzy systems for our considerations we essentially need a
continuous t-norm together with induced operations like residuated implication
and biimplication. The fundamental formal properties we need do not come
from the rich structure of the unit interval, but mainly from the concept of
residuation. In order to concentrate on the essential structure we choose GL-
monoids as the more general formal framework for our investigations instead
of the unit interval. From [5], we recall the definition of a GL-monoid.

Definition 1 (L, <,x*) is a GL-monoid if



1. (L, <) is a complete lattice,

2. (L,*,1,0) is a commutative monoid with unit 1 and zero element 0, i.e.
the operation x : L X L — L is associative and commutative and the
equations 1 x a = a and a0 = 0 hold for a € L,

3. * 1s 1sotone, i.e.
a<f = axy< fxr,
4. (L, <,%) is integral, i.e. 1 =V L
5. (L, <, %) is the dual of a divisibility monoid, i.e.
a < [ implies the existence of v € L such that a = 8 % 7,
6. (L, <,%) is residuated, meaning that there exists a binary operation —

on L satisfying
axf <y &= a7, (1)

7. the infinite distributive law holds, i.e.
Q * \/ﬁ, = \/(a*ﬁi).
iel i€l

For some basic properties of GL-monoids we refer to [5, 12]. Unless other-
wise stated we assume (L, <, %) to be a GL-monoid. V can be considered as
the valuation function of a disjunction, A and * as two alternatives for a con-
junction in an L-valued logic. The binary operation — is uniquely determined
by the adjunction property (1):

a—f = \V{ eL|ax\<pbl) (2)

— can be viewed as the valuation function for the implication (associated with
the conjunction x). In a straight forward manner we define the biimplication

a+f = (a—=P)AN (B — a).

For a more detailed discussion of GL-monoids and their properties we refer
to [5, 12] and [6], the latter one being devoted to the relation between logical
calculi and structures like GL-monoids.

In the framework of fuzzy sets L is the unit interval with the usual linear
ordering. * can be any continuous t-norm (a commutative, associative, non-
decreasing binary operation on [0, 1] having 1 as unit).

Example 1 Let L = [0,1] be the unit interval with the usual ordering. Then
a < [ = max{a, f} — min{q, 5}
holds [22]. Tt is easy to check that based on the choice of * the following

formula can be derived for — and <« (cf. [9, 16]).
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ax*f | max{a+3—1,0} | min{a, 8} -
. 1 ifa<p 1 ifa<lp
a— B | min{l—a+p,1} { B otherwise { B otherwise
1 ifa=pg1[1 ifa=p
af|1—|a—p { min{a, 8} otherwise { E;I;EZ% otherwise

An L-fuzzy (sub)set (or simply a fuzzy set) of the set X is a mapping
p: X — L, assigning to element x € X its membership degree u(x) to pu.

Definition 2 An equality relation (w.r.t. the operation %) on the set X is a
mapping E : X X X — L satisfying the axioms:

(E1) E(z,z) =1, (reflexivity)
(E2) E(z,y) = E(y,2), (symmetry)
(E3) E(z,y)* E(y,2) < E(z, 2). (transitivity)

When L is the unit interval and depending on the choice of the operation
%, sometimes F is also called a similarity relation [25, 17], indistinguishability
operator [21], fuzzy equality (relation) [8, 13], fuzzy equivalence relation [20]
or proximity relation [2].

Interpreting indistinguishability as the dual concept to distance, a (pseudo-
Jmetric § on a set X induces an equality relation w.r.t. the Lukasiewicz t-norm
ax*f=max{a+ [ —1,0} (L=[0,1]) by E(z,y) =1 —min{d(x,y),1}. Vice
versa, an equality relation F w.r.t. the Luksaiewicz t-norm induces a (pseudo-
Jmetric by d(z,y) =1 — E(z,y).

An equality relation F is intended to model gradual indistinguishability
between elements. For the usual crisp equality we can substitute equal elements
in any formula or predicate without effecting the truth value of the formula.
In the context of fuzzy sets we call this substitution property extensionality.

Definition 3 A fuzzy set j € L~ is called extensional w.r.t. the equality rela-
tion F on X if

() * E(z,y) < pu(y)

holds for all x,y € X.
The fuzzy set

fi = N{v|p<v and v is extensional w.r.t. E}
is called the extensional hull of p w.r.t. E.

The extensional hull of a fuzzy set is the smallest extensional fuzzy set
containing this fuzzy set. Taking the residuation property into account we can
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directly derive from the definition of extensionality that a fuzzy set p € LY is
extensional w.r.t. the equality relation E if and only if

wz) < ply) > E(z,y) (3)

holds for all z,y € X.

For any fuzzy set 1 we can define an equality relation E,(z,y) = p(z) <
u(y), having the property that it is the coarsest equality relation for which g
is extensional. Theorem 1 in the following section will provide a more general
result.

The extensional hull of a crisp set M or an element z( is defined in the
canonical way by building the extensional hulls of the characteristic functions
of M and {x}, respectively. Thus the extensional hull of M is given by

M(z) = \/ E(z,m),

meM

whereas the extensional hull of xg is simple
fO(x) = E(l‘,LEO).

We obtain an interesting example of an extensional hull of point xy when we
consider the equality relation on the real numbers induced by the standard
metric on IR, i.e.

E(z,y) = 1 —min{|z —y|,1}.

In this case, the extensional hull of the point z, is the fuzzy set with the tri-
angular membership function, having a membership degree of one at x, and
a membership degree of 0 at zyp — 1 and xg + 1. Other triangular member-
ship functions and even other shapes as extensional hulls are obtained when
a scaling of the metric or problem dependent (monotonous) transformation is
applied to the real line [11].

When we consider a singleton as a set with exactly one element, i.e. at
least and at most one element, we can easily generalize this definition in the
context of fuzzy sets.

Definition 4 A fuzzy set p € LY is called a singleton w.r.t. the equality rela-
tion E on X if

(i) p(x) * p(y) < E(z,y)

(it) Vyex p(z) =1
hold.

(i) reflects that when x and y belong both to the singleton x then x and y
must be equal. (ii) ensures that x is not empty.

It is easy to check that the extensional hull of an element is a singleton.
However, it is not necessary that a singleton corresponds to the extensional
hull of an element.



Example 2 Let X = (0,1), L = [0,1] and let * be the Lukasiewicz t-norm.
We consider the equality relation £ on X induced by the standard metric.
The fuzzy set p(z) = z is indeed a singleton, but it is not the extensional hull
of any element of X, since 1 does not belong to X.

A similar notion of a singleton was already introduced in [4].

3 Fuzzy Points

Before we take a closer look at singletons have to establish another connection
between fuzzy sets and equality relations. In the previous section we have
introduced the extensional hull of fuzzy set w.r.t. to an equality relation. Now
we construct an equality relation for a given set of fuzzy sets such that all
these fuzzy sets are extensional.

Theorem 1 Let F C L* be a set of fuzzy sets. Then

Er(z,y) = N (u(x) < p(y)) (4)

neF

is the coarsest (greatest) equality relation on X such that all fuzzy sets in F
are extensional w.r.t. Er.

Proof. It is obvious that Er is reflexive and symmetric. The transitivity of
E r follows from

Er(o,y) + Brly,2) (/\ (u(z)eu(y)))*(/\<u<y>eu<z)))

HeEF veF

A (@) < n) * (v(y) © v(2)

uveF

A (@) < w(v) « (uy) < w(=)))

neF

N (n(x) & p(2))

HEF
= Ex(z,2)

IN

IN

IN

where we made use of the facts

ax N\ B < N(axp)

1€l el
and
(@ BBy < aory

that are valid in any GL-monoid (see for instance [12]).
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The extensionality of the fuzzy sets in F follows directly from Equation (3)
and the definition of Er.

Finally, we have to show that Er is the coarsest equality relation making
all fuzzy sets in F extensional. Let E be an equality relation such that all fuzzy
sets in F are extensional w.r.t. E. By Equation (3), E(z,y) < p(z) + p(y)
holds for all p € F which implies E(z,y) < Ex(z,y). O

In the setting of L = [0, 1] the equality relation (4) already appeared in
Valverde’s representation theorem [23].

We now return to our considerations on fuzzy points. In the previous
section we have seen an interesting aspect of equality relations. A crisp set
induces a fuzzy set as its extensional hull and in the very special case of
Example 2 the fuzzy set induced by a point has a triangular membership
function. Interpreting a fuzzy set as the extensional hull of a single point,
i.e., as a kind of vague value, will provide a deeper insight to a variety of fuzzy
systems, especially fuzzy controllers. Therefore, in the following we investigate
the question when a given set of fuzzy sets can be interpreted as ‘fuzzy points’,
i.e., as extensional hulls of crisp points.

Theorem 2 Let (u;)ic; € LY be a family of fuzzy sets and let (z;)ic; € X be
a family of elements of X such that p;(z;) = 1 holds for all i € I. Then the
following two statements are equivalent.

(i) There exists an equality relation on X such that the extensional hull of
x; with respect to E equals p; for all i € 1, i.e.

wi(z) = E(x,x;). (5)
(i) For alli,j eI

V(i) * () < A (mly) & wi(y) (6)

zeX yeX

holds.

Proof. We first prove that (i) implies (ii). We have to show that for any
x,y € X the inequality

() * pi(x) < pily) < p(y) (7)

holds. According to (i) there exists an equality relation E such that (5) holds
so that we can rewrite (7) as

E(x,x;) * E(x,z;) < E(y,z;) < E(y, ;)
= (E(y,@:) = E(y, ;) A (E(y, z;) = E(y, ).
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For reasons of symmetry it is sufficient to prove

E(x,z;) * E(z,z;) < E(y,xz;) = E(y,x;). (8)
Using the adjunction property (8) is equivalent to

E(z, ;) * E(z,25) x E(y,2;) < E(y,z;)
which is satisfied because of the transitivity of E so that we have proved (i)
implies (ii).
To show that also the other implication (ii)=-(i) holds, let
E(z,y) = N () < ply)). (9)
iel

Theorem 1 guarantees that E is an equality relation. Furthermore, from the
fact that oo <+ 1 = « holds in any GL-monoid we derive

E(x ;) < px) < i)
= ui(z) 1

(

(
i(7)
(

)

=

What remains to be proved is p;(x) < E(z, ;). For this we have to show that

<
pi(z) < pi(x) < pi(z) = (pi(e) = pi(xi) A (g () — pi(e))

holds for all j € I, or equivalently that

pi(r) < py(x) = (i) (10)
and
pi(r) < pyas) — py(z) (11)
are satisfied.
Using the adjunction property for (10) we have to prove

i) (@) < pug(). (12)

Because of the assumption (6) we have

pi(w) + i) < (mil2) * 5(2))

< /\X (1i(y) < p(y))

IN

pi(:) < (i)
= 14 p;(z)
= pj(zi)
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so that (10) is proved.
Using the adjunction property for (11) we need to prove

pi(x) * i (i) < (),

or equivalently, again by adjunction

i) < pi(x) — pi(z). (13)

Taking the assumption (6) into account we obtain

) = uy(a) > pale) o (o)

A (1i(y) < 1i(y))

yeX

v

v

V (1i(2) * p(2))

z€X
pi (i) * puj(2s)
= L py(zi)

= pj(@).

Thus (13) also holds. O

There are some interesting remarks to Theorem 2.

(a)

The necessary and sufficient condition (6) can be interpreted in the sense
that the degree of non-disjointness of the fuzzy sets p; and p1; must not
exceed their degree of equality/equivalence. In the crisp case this is
the usual requirement that two equivalence classes are either equal or
disjoint.

The necessary and sufficient condition (6) can be weakened to a sufficient
one by requiring that the fuzzy sets are disjoint w.r.t. %, i.e., for all ¢ # j
we have p;(x) * pj(x) = 0 for all x.

The proof is constructive in the sense that in case condition (6) is sat-
isfied, a corresponding equality relation is explicitly given by formula

(9)-

Condition (6) was only needed for the last part of the proof showing
that p;(x) < E(z,x;) holds. Thus the equality relation (9) always fulfills
E(z, ;) < pi().



(e) A proof of this theorem for L = [0,1] and % a continuous t-norm was
already given in [16]. The proof provided in the more general framework
of GL-monoids is significantly shorter and simpler than the one for the
unit interval.

(f) The first formulation of this theorem appeared in [7].

Corollary 1 Let (p;)ier € LY be a family of fuzzy sets and let (x;)ic; € X be
a family of elements of X such that p;(z;) = 1 holds for all i € I. If condition
(6) of Theorem 2 holds, then the equality relation (9) is the coarsest equality
relation satisfying condition (5) of Theorem 2.

Proof. According to Equation (3) and the definition (9) of the equality rela-
tion E, the fuzzy sets u; are extensional with respect to E. For any equality
relation E satisfying condition (5) the fuzzy sets j; are extensional with respect
to F because of the transitivity of E:

,ui(x)*E(xay) = E(SE,%)*E(JZ,y) < E(yﬂxl) = Ml(y)

But due to Theorem 1 E is the coarsest equality relation making the fuzzy
sets u; extensional. a

Theorem 3 Let (u;)ic; € LY be a family of fuzzy sets and let (x;)ic; € X be
a family of elements of X such that p;(z;) = 1 holds for all i € I. If condition
(6) of Theorem 2 holds, then the equality relation

1 ifr=y
E(z.y) = \/ (pi(z) * pi(y)) otherwise (14)

is the smallest (finest) equality relation satisfying condition (5) of Theorem 2.

Proof. Obviously, E(z,z) = 1 holds and F is symmetric. To prove the
transitivity of F we use condition (6).

E(z,y)« E(y,z) = \ V (i) = pi(y) * p1;(y) * 11;(2))

< VvV (1) (vX (s < e ) 152

< VV (o) </\ (6) & 15(5D)) 12|

iel jel ex
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IN

IN

IN

VOV () = (i) < (@) « p15(2))

iel jel

VOV () = () = (@) « p1y(2))

i€l jeI

V V (i) * p1(2))

i€l jeI

V (5(2) # 115(2))

jeI

E(z,2)

which shows that E is transitive.
Since p1;(z;) = 1, we have

Bz, xj) = \ (uilwy) = pa(x)) = plg) « piz) = py(x).

el

Using again p;(z;) = 1 and (6), we obtain

E(x,z;) =

IN

IN

IN

IN

<

() * E(z,25)

V (@) * pa(zz) * pa(x))

V (( V ((y) *m(y))) *m(fﬂ))

-\/1 (( /\X (115 (y) uz-(y))) * uz-(fr))
V (((z) < pi(x)) * pa(z))

iel

V ((hi(@) = p;(2)) * pa(z))

iel

V (i) A ()

i€l

115 ()

so that together with (15) E(x,x;) = p;(z) is proved. .
Finally, let E be an equality relation also satisfying E(z,z;) = p;(z).

Because

E(z,y) 2 B(z,2:) * E(xi,y) = pu(@) * pi(y)

11

(15)



holds for all i € I, we conclude E(z,y) < E(x,y) for all z,y € X. O

Corollary 2 Let L = [0,1] and x = A. Let (p;)ier € L~ be a family of fuzzy
sets and let (x;)ic; € X be a family of elements of X such that p;(z;) = 1
holds for alli € I. If for each x € X there exists a pair (i,7) € I x I such that

pi(x) # p;(z), then there is at most one equality relation satisfying condition
(5) of Theorem 2.

Proof. According to Theorem 2 there exists an equality relation satisfying
condition (5) only if (6) holds. In this case, the equality relation (14) is the
smallest one satisfying condition (5) (see Theorem 3). Due to Corollary 1 we
also know the greatest equality relation that has property (5), namely the one
given in (9).

Recalling Example 1, we have for L = [0,1] and x = A

1 ifa=p
a N otherwise.

aHﬁ:{

Taking this fact into account as well as the assumption that for each z € X
there exists a pair (i,7) € I x I such that u;(z) # p;(z), we can rewrite the
greatest equality relation (9) satisfying condition (5) in the form

1 ifr=y
E(:E, y) = /\ (Mz(x) A Mz(y)) otherwise
el

which is smaller than or equal to the smallest solution (14). Thus, the smallest
and greatest solution coincide. O

The equality relation (14) was already defined in [18, 20] where a version
of Theorem 2 for arbitrary t-norms is proved, however, assuming in addition
that the considered fuzzy sets cover the underlying set X to the degree 1. In
this way, a one-to-one correspondence between equality relations and fuzzy
partitions as they are defined in [20] can be established. In [19] weaker notions
of fuzzy partitions are considered and the corresponding structures replac-
ing equality relations for establishing a one-to-one correspondence with these
weaker fuzzy partitions are investigated. Since (fuzzy) partitions are not our
main concern, we do not dive into a deeper discussion of this topic.

4 Fuzzy Functions

Now that we have clarified our understanding of a fuzzy point, we start our
investigations on fuzzy functions. But before we start with the formal consider-
ations we take brief look at fuzzy relations in approximate reasoning, especially
in fuzzy control.
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In approximate reasoning if-then rules of the form
If € is A, then nis B, (16)

are very common where ¢ and 7 are variables with domains X and Y, respec-
tively. A and B are linguistic terms like positive big or approximately zero
(see, e.g., [15]). These linguistic terms are usually modelled by suitable fuzzy
sets, say puq € L* and pup € LY. In addition to such general rules one has
specific information like

Eis A (17)

where A’ is represented by the fuzzy set pa € L* (or simply by u € LY).

The application of a single rule of the form (16) to the information (17) is
usually formalized on the basis of a computing scheme of the following form.
The rule is encoded as a fuzzy relation of the form

o(r,y) = oo(,y) = pa(z) © up(y) (18)

where © is either the operation * or the residuated implication —. For a given
input information in the form of the fuzzy set ps € L~, the ‘output’ fuzzy
set Veonclusion 18 computed as the composition of the fuzzy relation g and the

fuzzy set par, i.e.
olpal(y) = \/X{M (z) * o(z,y)} (19)

for all y € Y (cf., e.g., [1, 3, 15]). This scheme is called sup-*-inference. In
fuzzy control, for instance, usually * = min = ©® is chosen.
For a collection of if-then rules of the form

If € is A;, then 7 is B, (iel), (20)

where the linguistic terms A4; and B; are modelled by the fuzzy set pa, € L*
and pp, € LY the output fuzzy set for a given ‘input fuzzy set’ u € L is
usually computed either by
iel
when the fuzzy relations p; are of the type o_,, or by
\V eilul, (22)
iel

when the fuzzy relations o; are of the type p,. In other words, we associate
with the collection (20) of if-then-rules either the fuzzy relation

ov(z,y) = Nos(zy) = Awi(z) = vi(y)) (23)

1€l el
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or the fuzzy relation

or(z,y) = Voulz,y) =V (lz) *vi(y)) (24)

iel iel
Considering (20) as the system of fuzzy relational equations
olw] = v (i €1),

where the fuzzy sets u; and v; are given and solution of the system in the form
of a fuzzy relation p has to be constructed, then it is well known that oy is
always a solution if there exists a solution at all [3]. In this case, gy is the
greatest solution. g7 might not be a solution, even if there exists a solution of
the system.

In some applications of approximate reasoning, especially in fuzzy control,
the if-then-rules (20) are intended to describe a functional dependence between
the variable £ and 7. In this case we would expect the fuzzy relation oy or of,
constructed from these rules to behave like a fuzzy function. But what do we
mean by a fuzzy function? A fundamental property of a function is that it is
a relation that does never assign two or more elements from the codomain to
one element of the domain. Thus we need the concept of a one-element (fuzzy)
set again which means that we have to assume suitable equality relations on
the domains X of the variable £ and Y of the variable 7. In our considerations
we will usually choose the equality relation (4) on X respectively Y that is
induced by the fuzzy sets appearing in the rules. But for the moment we do not
need this assumption, we just have to assume that there is an equality relation
E on the set X and an equality relation F' on the set Y. We require a similar
extensionality property from a fuzzy relation as from fuzzy sets (compare also
[4, 10]).

Definition 5 Let E and F be equality relations on the sets X and Y, re-
spectively. A fuzzy relation o € L**Y is called extensional w.r.t. E and F

if
(i) o(z,y) * E(z,2) < o(a’,y) and
(i1) o(z,y) * F(y,y') < o(z,y)
hold.

The extensionality of a fuzzy relation simple says (in fuzzy terms) that we
can replace equal elements in the first and second place of the relation.

A partial function is a relation that assigns to each element of its domain
at most one element of the codomain. In other words, if the (crisp) relation
R C X xY is a partial function then we know

(r,y) € R and (x,y') € R implies y = ¢/'.

The following definition extends this notion to fuzzy relations.

14



Definition 6 Let E and F' be equality relations on the sets X and Y, respec-
tively. An extensional fuzzy relation o € LX*Y is called a partial fuzzy function
if

o(@,y) * o(z,y') < F(y,y) (25)
holds for all x € X and for all y,y' € Y.

For a fuzzy function we still need the definition of a fully defined fuzzy
relation.

Definition 7 Let E and F be equality relations on the sets X and Y, re-
spectively. An extensional fuzzy relation o € L**Y s called a fully defined

if
V oo(z,y) = 1

zeX

holds for all y € Y.

Definition 8 Let E and F' be equality relations on the sets X and 'Y, respec-
tively. An extensional fuzzy relation o € LX*Y is called a fuzzy function if it
15 a fully defined partial fuzzy function.

Definition 9 Let E and F be equality relations on the sets X and Y, re-
spectively, and let f : X — Y be an ordinary partial function. f is called
extensional if

E(z,a") < F(f(x), f(2"))
holds for all z,2" € dom(X), where is dom(f) C X denotes the domain of f,
i.e. the set of elements ' € X for which f(x) is defined.

Extensionality of a partial function means that it maps indistinguishable
elements to indistinguishable elements. In general, the characteristic function
of an extensional partial function f will not be extensional as a fuzzy rela-

tion (compare Definition 5). Therefore, we define the following fuzzy relation
induced by f:

or(z,y) = \/ ( )E(x,x') x F(y, f(z")).
z'edom(f

Lemma 1 Let E and F' be equality relations on the sets X and Y, respectively,
andlet f : X —'Y be an ordinary extensional partial function. Then the fuzzy
relation oy is a partial fuzzy function.

Proof. We first prove the extensionality of o;.
of(x,y) * E(z,2") = \V  (BE(z,2")« F(y, f(2")) x E(z,z"))

z” €dom(f)

< V  (BEL2")«Fy.f")

z” €dom(f)
= 0Of (SE’, y)
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or(z,y) * Fy,y) = \/()(E(fﬂax’)*F(y,f(z”))*F(y,y’))
' €dom(f

<V (B« P, f()

z'edom(f)
= 0Or (ZE, y,)

Thus oy is an extensional fuzzy relation. Furthermore, we have

Qf(fL“,y) * Qf(xayl)

=V (B« Fly, f@") = B, ")« F(/, [(2"))

2!z edom(f)

< Vo (E@@,2")« F(y, f(2) = F(y, f(z")))

2! z' edom(f)

< Vo F(f@), f@") = Fly, f(a) = F(y, f(2")))

z!,z" €dom(f)
< F(y,y)

so that g is a partial fuzzy function. O

When we start with an extensional function instead of an extensional par-
tial function, the term for o can be simplified and gy is a fuzzy function.

Lemma 2 Let E and F' be equality relations on the sets X and 'Y, respectively,
and let f : X — 'Y be an ordinary extensional function. Then

or(z,y) = Fl(y, f(2))

holds.
Proof.
o(x,y) = m/\e/X (E(z,2) * F(y, f(2')))
<V (B @), f@) « Fly, ()
< }E(;(,f(x))

or(r.y) =\ (E(z,2") = Fy, f(a"))
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Corollary 3 Let E and F be equality relations on the sets X and'Y , respec-
tively, and let f : X — Y be an ordinary extensional function. Then the
fuzzy relation oy is a fuzzy function.

Proof. By Lemma 1 we have that o is a partial fuzzy function. Using Lemma

2 we have
Voos(@y) = V F(f(z),y) = 1
yey yey
so that oy is fully defined. O

Let us now return to the fuzzy relations gy and p; that are induced by
the collection of if-then-rules (20). The following theorem shows that they are
extensional when the considered fuzzy sets are extensional.

Theorem 4 Let E and F' be equality relations on X andY , respectively. If the
fuzzy sets p; and v; (i € 1) in (20) are extensional w.r.t. E and F, respectively,
then the fuzzy relations oy, and oy defined in (23) and (24) are also extensional.

Proof. The extensionality of g; follows directly from its the definition and
the extensionality of the fuzzy sets p; and v;.

Using the GL-monoid law a * (a« — ) = a A 8 (see for instance [5]), we
obtain

vi(ty) > pi(x) Aviy)
= pi(w) * (ui(w) — viy))
> i) * Bz, a') x (pi(z) — vi(y))-

By residuation and then taking the infimum over i € I we get

N(E(@,2') = (pi(z) = viy)) < AQua) = vi(y)))

icl iel
which proves E(z,z') * oy (x,y) < oy(z',y). Using the GL-monoid law (o —
B)xv < a— (Bx*7) (see for instance [12]) we obtain

ou(@,y) * Fly,y) < A(mi(w) = vi)) * Fly, )

< Api(z) = (vily) « F(y, "))

i€l

< /\(Mz(iﬂ) — v(y'))

iel
so that oy is also extensional. O
Now we take a look at the fuzzy relation p; and examine when it provides

a solution to the system of fuzzy relational equations induced by the if-then-
rules.
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Theorem 5 Let the fuzzy sets j; and v; appearing in the if-then-rules (20) be
normal. (A fuzzy set u is normal if there exists an x such that p(x) = 1 holds.)
The fuzzy relation of, defined in Equation (24) is a solution to the system of
fuzzy relational equations o[p;] = v; (i € I) if and only if

(Vi,j € I) (\/ (ui(2) * py(2)) < A\ (ily) < Vj(y))) (26)

reEX yey

holds.

Proof. From the definition of g it is obvious that oy [u;] > v; is always

satisfied when the fuzzy sets are normal. So the only interesting question is
whether o7 [1;] < v; holds for all i € I.

(Vi e I) (on[p] < vs)

— (Viel)(WyeY) ( Vo (@) = p(x) * vi(y)) < w(y))

= (Vi,j € )(Vo € X)(Vy € V) (ui(x) * p; () x v(y) < wily)) (27)
= (Vi,j e )(Ve € X)(Vy € Y) (i) * pj(w) < v (y) = vily))

PR (i e (Ve € X)(Yy € Y) (uax) * pi(z) < v;(y) & v(y))

= (Vi,j €l (\/ (ui(@) * pi(@)) < N\ (ily) < v y)))
zeX yey
The following theorem justifies why Mamdani fuzzy controllers are usually
associated with the notion of fuzzy functions. The fuzzy relation p; induced
by the Mamdani fuzzy controller with the rule base (20) is a solution of the
corresponding system of fuzzy relational equations if and only if oy is a partial

fuzzy function.

Theorem 6 Let the fuzzy sets v; appearing in the if-then-rules (20) be normal.
The fuzzy relation of defined in Equation (25) is a solution to the system of
fuzzy relational equations o[p;] = v; (i € 1) if o has the property (25) of a
partial fuzzy function w.r.t. to the equality F' on Y induced by the fuzzy sets
vi, (i € I) using Equation (4).

Proof. If p; has the property (24), then o7,(%,9) * 01.(%,9") < F(y,7') holds
forallz € X and all 7,9’ € Y, i.e.

(Vi e X)(Vy,9' €Y)

18



( V(@) % 15(@) « 15(0) 5 v5(0)) < A (1509) & V;;(?J')))

i,5€l kel

<~

(Vi,j. ke (Vi € X)(Vi, 7 € Y)
(13 (@) # p15(2) = v3() v (7) < v (5) > (7))

<~

(Vi,j. ke (Vi € X)(Vi, 7 € Y)
(13(3) # p15(2) = v3() * v (7') < v (§) = (@)

<~

(Vi,j, ke (Vi € X)(Vi, 7 € Y)
(13(3) # p15(2) = v3(9) * v () * v (§) < v(37)) (28)

When we choose i = i,] = j,if = 4,72 = z,4 = y and ¢ such that
vi(9) = »5(g) = 1 in (28), we get (27) which is equivalent to the fact that
or, is a solution of the system of fuzzy relational equations according to the
proof of Theorem 5. O

When we choose the equality relation F' on Y as in Theorem 6 and the
crisp equality as the equality relation on X, then the fuzzy relation gy is
always extensional w.r.t. F and F' according to Theorem 4. Therefore, oy is a
solution to the system of fuzzy relational equations induced by the if-then-rules
if oy, is a partial fuzzy function.

Equation (26) in Theorem 5 can be interpreted as the requirement that the
degree of non-disjointness of fuzzy sets j; and p1; must not exceed the degree
of equality of the corresponding fuzzy sets v; and v;. When we require the
fuzzy sets p; (i € I) to be pairwise disjoint w.r.t. *, then this condition is
automatically satisfied. In this case we can even provide an equality relation
on X such that the fuzzy sets correspond to the extensional hulls of single
points.

With this stronger assumption we can establish another connection between
or,, oy and fuzzy functions.
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Theorem 7 Let E and F be equality relations on X and Y, respectively, such
that the fuzzy sets p; and v; correspond to the extensional hulls of the points
x; and vy;, respectively (i € I). If the ordinary partial function f(z;) = y; is
extensional w.r.t. E and F, then the fuzzy relation or, is a partial fuzzy function
and o1, = oy holds.

Proof. By definition of p; and g, we have

o(r,y) = V(u(x) * vi(y))
= Qf(fL',y)

Since oy is a partial fuzzy function according to Lemma 1, g, is also a partial
fuzzy function. O

In the same context the fuzzy relation gy is a fully defined fuzzy rela-
tion, but usually not a partial fuzzy function. The proof is obvious from the
definition of .

Corollary 4 Let E and F be equality relations on X and Y, respectively, such
that the fuzzy sets p; and v; correspond to the extensional hulls of the points
x; and y;, respectively (i € I). Then

V ov(z,y) =1

yey

holds.

Let us now formulate an important theorem and discuss its consequences
for fuzzy control after the proof.

Theorem 8 Let F and F' be equality relations on X and Y, respectively, and
let f: X — Y be an (ordinary) extensional function. Let {x; |i € I} C X be
a set of elements of X and let f; denote the (ordinary) partial function defined
by fr(x;) = f(x;) for i € 1. Let p; denote the extensional hull of the point
x; w.r.t. E, and let v; denote the extensional hull of the point f(x;) w.r.t. F.
Then

oL = 0, < o < ovu
holds.

Proof. The first equation was proved in Theorem 7. The first inequality holds
by definition. We only have to prove the last inequality. From

E(x,z:) « Fy, f(x)) < F(f(z), f(x:) * Fly, f(z)) < F(y, f(2:))
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we obtain by residuation

Fy, f(z)) < E(w,2:) = F(y, f(2:)) = pi(x) = vily)

for all 7 € I. With Lemma 2 we finally have

or(z,y) = Fy, f(2) < A(pilz) = viy) = ov(z,y).
1€l

O

We can interpret Theorem 8 in the context of fuzzy control in the following
way. Fuzzy control aims at determining an (unknown) control function f :
X — Y. This function is described by if-then-rules of the form (20). The fuzzy
sets u; and v; appearing in the rules are considered as extensional hulls of single
points x; and y;. Thus the rules specify the partial control function f;.
course, the underlying equality relations must be related to the control function
in the sense that the control function f is extensional. This means simply that
we choose narrower fuzzy sets where exact values are quite important for a good
control and wider fuzzy sets where even a rough controller output provides
a reasonable control. Since the partial control function f; does not specify
controller outputs for all inputs, we have to take the information encoded
in the fuzzy sets (or in the equality relations) into account. Therefore we
consider the extensional hull of the partial control function f; that is equal
to the fuzzy relation g, in other words, to the Mamdani-type fuzzy control
scheme. This provides a lower approximation for the extensional hull of the
(unknown) control function f. The fuzzy relation gy can be seen as an upper
approximation of the extensional hull of f. Similar considerations on lower
and upper approximations of functions or relations can be found in [14].

Let us conclude this section with a corollary following from Theorem 7 and
Corollary 4.

Corollary 5 Let E and F' be equality relations on X and Y, respectively, such
that the fuzzy sets u; and v; correspond to the extensional hulls of the points
x; and y;, respectively (i € I). Let the ordinary partial function f(x;) = y; be
extensional w.r.t. E and F. If

0L = Qu

holds, then o5, and oy are fuzzy functions.

5 Conclusions

In this paper we have provided a possible to the concept of a fuzzy function and
established a strong connection to fuzzy control. The Mamdani fuzzy controller
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can be interpreted in the sense of a partial fuzzy function. This interpretation
is only admissible when the fuzzy sets satisfy certain restriction, i.e. when they
can be seen as fuzzy points. This view clarifies a rational behind fuzzy control
and why not arbitrary fuzzy sets are used in fuzzy control.

As a final remark we point that the equality relations are not only important
for the interpretation of the fuzzy sets as fuzzy points, but also characterize an
indistinguishability that is inherent in any fuzzy system. In [12] it was shown
in quite general term that the output of a fuzzy system does not change when
the input is replaced by its extensional hull. And the output is always an
extensional fuzzy set. In this sense, the indistinguishability inherent in fuzzy
partitions cannot be overcome.
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