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Abstract

Fuzzy set theory is based on a ‘fuzzification’ of the predicate €
(element of), the concept of membership degrees is considered as fun-
damental. In this paper we elucidate the connection between indis-
tinguishability modelled by fuzzy equivalence relations and fuzzy sets.
We show that the indistinguishability inherent to fuzzy sets can be
computed and that this indistinguishability cannot be overcome in
approximate reasoning.

For our investigations we generalize from the unit interval as the
basis for fuzzy sets, to the framework of GL-monoids that can be
understood as a generalization of MV—-algebras. Residuation is a basic
concept in GL-monoids and many proofs can be formulated in a simple
and clear way instead of using special properties of the unit interval.

1 Introduction

Fuzzy set theory is based on the idea that many non—mathematical properties
cannot be described in terms of crisp sets comprising those elements that



fulfill a given property. Therefore the notion of membership is considered as
a gradual property for fuzzy sets.

Similarity or indistinguishability is another important concept for which
a crisp model is often inadequate. A possible formalization of similarity or
indistinguishability is the notion of fuzzy equivalence or equality relation.

In this paper we examine the relations between fuzzy equivalence rela-
tions and fuzzy sets. As the underlying formal framework, we abstract from
the unit interval to GL-monoids — a structure in which residuation plays
a fundamental role. Examples for GL-monoids are complete MV-algebras
or the unit interval endowed with the usual ordering and a left continuous
t—norm.

Section 2 provides the formal basis for this paper by a brief review of
the definition of GL-monoids including some useful properties and examples
as well as the definitions of fuzzy equivalence relations and extensionality
which requires that a fuzzy set behaves well with respect to a given fuzzy
equivalence relation.

In Section 3 we take a closer look at the extensionality property and
show how a suitable fuzzy equivalence relation, which describes the implicit
indistinguishability in fuzzy sets, can be derived from a given collection of
fuzzy sets.

Our main results are presented in Section 4, where we prove that the
indistinguishability inherent to fuzzy sets cannot be overcome by the usual
approximate reasoning schemes so that fuzzy equivalence relations provide a
useful description of this indistinguishability.

2 GL-Monoids, Fuzzy Sets and Similarity Re-
lations

In this Section we briefly introduce the notions on which our considerations
are based. The underlying structure for our investigations are GL-monoids.
From [8], we recall the definition of a GL—monoid and some properties which
we will use.

Definition 2.1 (L, <, *) is a GL-monoid iff

1. (L, <) is a complete lattice,



2. (L,*) is a commutative monoid, i.e. the operation * : L X L — L 1s
associative and commutative and has a unit 1 € L,

3. (L,*) has a zero element 0 € L fulfilling o x 0 = 0,

4. * ts 1sotonic, 1.e.
a<f = axy<fBx7,

5. (L, <, %) is integral, i.e. 1 = \/ L is also the universal upper bound of
L

6. (L, <, %) is the dual of a divisibility monoid, i.e.

a < B implies the existence of v € L such that a = 3 x v,

7. (L, <, %) 1s residuated, meaning that there exzists a binary operation —
on L satisfying
axB<y <= a<f oy, (1)

8. the wnfinite distributive law holds, 1.e.

ax\ B = \(axp).

i€l i€l

For the rest of this paper we assume (L, <, *) to be a GL-Monoid. L will
be considered as the set of “truth”—values of a many—valued logic.
The binary operation — is uniquely determined by the adjunction prop-
erty (1):
a—0B=\{AeLl|laxX<p}L (2)

— can be viewed as the valuation function for the implication (associated
with the conjunction ). From this implication we can derive in a canonical
way a valuation for the negation by defining o = a — 0. Note that in
a GL-monoid the zero element of * is also the universal lower bound, i.e.

0 = A L. We define the biimplication <+: L x L — L by
af = (a—=P)AN (B — a).

Interesting for applications is the case when L is the unit interval with
the usual linear ordering. * can be any continuous t-norm (a commutative,



associative, non—decreasing binary operation on [0, 1] having 1 as unit). * is
understood as an alternative to the lattice operation A (in the case of the
unit interval simply min) for the valuation function of a conjunction.

Note that a GL—monoid is a complete MV-algebra (see, e.g., [1, 4]) if and
only if the ‘negation” @ — 0 is involutory, i.e. =—a = (e = 0) = 0 = a.
However, for practical applications with the unit interval as the underlying
lattice L, considering only MV-algebras is very restrictive, since a x § =
max{a + 3 — 1,0} is the only choice for the operation * up to isomorphism.
This holds for the following reason. Because — is an involution and non-
increasing, in accordance to the isotonicity of %, — is also continuous. For
MV-algebras,  satisfies also the equation (cf. Lemma 1.4(6) of [8])

a*/\ﬂi = /\(a*ﬁi);

i€l i€l

so that together with the infinite distributivity of * over arbitrary joins, we
obtain that * is also continuous. This implies that — is continuous, since we

have (cf. Lemma 1.4(3) of [8])
a—=f = (ax8) = (ax(B8—0)) = 0.

But if the unit interval is the underlying lattice of the GL-monoid whose
operation — is continuous, then ([0, 1], <, *) is isomorphic to the GL-monoid

(MV-algebra) ([0,1], <, *z) with
ax*pf = max{a+ 03— 1,0} (Lukasiewicz conjunction)
(see, e.g., [19]).

Example 2.2. Let L = [0,1] be the unit interval with the usual ordering.
Then

a < B = max{a,B} — min{a, 5}
holds [22].

The following table provides some examples for the operation * and the
induced operations —, <+, and = (cf. [12, 18]).



axf || max{a+B—1,0} | min{a, B} a-f
] 1 fa<p 1 fa<p
a— B | min{l—a+p3,1} { B otherwise { g otherwise
1 fa=p8 |1 if o =g
asf|1l—]a—p { min{a, 8} otherwise { z{:{{{zg}; otherwise
1 1 fa=0 1 fa=0
e @ 0 otherwise 0 otherwise

If we choose * = A, then (L, <, %) is a Heyting algebra, where we obtain
for L = [0, 1] the Gédel implication (see the third column in the table above)
as the operation —.

Let us collect some useful properties of GL-monoids which we need in
this paper.

Lemma 2.3. In any GL-monoid (L, <, *), the following properties are valid:
(a) a B =ax(a—p),
(b) ax /\ﬁZ < /\(a * 3;),

(c) (a = B)*(B—7)<a—7,

(d) (a < B)*x (B 7) <ay,

(¢)a<pB = Bory<a—y,

(f) (axB) = v=0a—(8—7),

(9) a<B = vy a<y—p,

(h) (= B)*xy <a—(Bx7),

(1) a = (BAv)=(a—=B)A(a—7),

(1) (o1 <> B1) A (g <> B2) < (a1 A az) < (81 A Ba).

Proof. (a), (f), and (i) are proved in the Lemmas 1.1(2) and 1.2(3) of [8]

(b) The monotonicity of * implies a * A;c;B; < ax G; for all j € I.
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(c) In accordance to the adjunction property, we have to prove that

a*x(a—=B)*x(B—7v) < 7.

Using (a), we obtain:

ax(a—=B8)x(B—7v) = (aAB)*x(8—7)
B*(B—)
BNy

.

VAN

VAN

(d) By applying (b) and (c), we get:

(@ B)x(Bv) = (@a=B)AB—=a))x((B—=7)A(y—B)
((a=B)x(B=))A((v—B)* (B —a))

<
< (a=Y)A(y—a)

= a<7y.
(e) and (g) are direct consequences of the isotonicity of * and equation (2).
(h) In accordance to the adjunction property, we have to prove that

ax(a—B)xy < Bx7.

Due to (a), the left hand side of this inequality is simply (a A 8) * ¥
which is less than or equal to 8 * 4 because of the isotonicity of .

(j) Using (i) and (e), we obtain:
(aa Nag) < (B AB2) = ((auAaz) = (B1APB2))
A((B1 A Ba) = (au A ag))

= ((ou ANag) = B1) A ((a1 A az) — Ba)
A((B1 A B2) = a1) A ((Bi A Ba) = az)

(a1 = Bi) A (Br — 1)
Alag = Ba) A (B2 — az)

v

= (a1 ¢ B1) A (02 > Ba).



As we have already mentioned, we interpret L as the set of truth values.
Thus a generalization of definitions of classical concepts is necessary. Here
we restrict ourselves to the notions of subsets and equivalence relations.

Definition 2.4. An L-fuzzy (sub)set (or simply a fuzzy set) of the set X is
a mapping p: X — L.

The value u(z) € L is understood as the degree or truth value of z being
an element of the (sub)set p.

Definition 2.5. An L—fuzzy equivalence relation (or simply a fuzzy equiva-
lence relation) (with respect to the operation %) on the set X is a mapping
E : X x X — L satisfying the azioms:

(E1) E(z,z)=1, (reflexivity)
(E2) E(z,y) = E(y,=), (symmetry)
(E3) E(z,y)* E(y,2) < E(z, 2). (transitivity)

Note that for L = {0,1}, E is a fuzzy equivalence relation if and only if it
is the characteristic function of an ordinary equivalence relation. Depending
on the choice of the operation *, sometimes E is also called a similarity
relation [24], indistinguishability operator [21], fuzzy equality (relation) [9,
16] or proximity relation [6].

Example 2.6.

(1) If ~ is an equivalence relation on X, then its characteristic function

1 fz=y,

Eg(z,y) = { 0

otherwise,

is a fuzzy equivalence relation with respect to any choice of the oper-
ation *. Especially the characteristic function of the crisp equality on
X is a fuzzy equivalence relation.

(ii) Let L = [0,1] and let * be the Lukasiewicz conjunction. Then E
is a fuzzy equivalence relation on X with respect to x if and only if
1 — E is a pseudo—metric on X. Thus pseudo—metrics bounded by



one and fuzzy equivalence relations with respect to the Lukasiewicz
conjunction are dual concepts. If a pseudo—metric § is not bounded by
one, we can enforce this property by considering the pseudo-metric § =
min{d(z,y), 1}, which coincides with é for “small” distances. Thus any
pseudo—metric induces a fuzzy equivalence relation on X with respect
to the Lukasiewicz conjunction by

E(z,y) = 1 —-4(z,y) = 1 — min{d(z,y),1}.

(iii) We obtain the same duality as in (ii) when we replace the notion of
metric by ultra—metrics and the Lukasiewicz conjunction by the mini-
mum.

When we interpret an ordinary equivalence relation & on the set X in the
sense that equivalent elements cannot be distinguished or may be identified,
then only those subsets M C X satisfying

ctEMande~y => yeM (3)

“behave well” with respect to ~. In other words, a subset M fulfills condition
(3) if and only if it equals a union of equivalence classes of ~. The following
definition generalizes the axiom (3) for fuzzy equivalence relations and fuzzy
sets.

Definition 2.7. A fuzzy set u € L% is called extensional w.r.t. the fuzzy
equivalence relation E on X iff

p(z) * E(z,y) < u(y)
holds for all z,y € X.

If a fuzzy set p is not extensional with respect to the considered fuzzy
equivalence relation E, we may consider instead of p the smallest extensional
fuzzy set which contains pu.

Definition 2.8. Let E be a fuzzy equivalence relation on X and let u € LX.
The fuzzy set

fi = N{v|p <v and v is extensional w.r.t. E}

1s called the extensional hull of p w.r.t. E.



Proposition 2.9. Let E be a fuzzy equivalence relation on X and let p €
LX. Then

(i) i(z) = V{p(y) * E(z,y) |y € X},

(11) [ is extensional with respect to p,

(iii) fi = .

Proof.
(1) Let us abbreviate the right hand side of (i) by fi. fi is extensional w.r.t.
E because
fi(z) « E(z,y) = ) * V{u(2) x E(y,2) | z € X}

V{M )% E(z,y)* E(y,2) | 2 € X}

V{u(z) * E(y,2) | 2 € X}
fi(y).

VAN

We also have that

= V{uy) x E(z,y) |y € X} > p(z)* E(z,2) = p(z),

which implies g > f.
In order to prove i < [i, let v be an extensional fuzzy set of X w.r.t.
E such that v > u. Since

v(z) > vly)* B(z,y) > ply) * E(z,y)

holds for any y € X, we have also g < ji.

A

(ii) In the proof of (i) we have already shown that g = [ is extensional
w.rt. E.

(iii) follows directly from (ii) and the definition of f. O

Proposition 2.9(i) states that g can be interpreted as the union of all
elements that are equivalent with respect to F to at least one of the elements
of p. In [10, 12] extensional fuzzy sets are called *—eigenvectors of E. In
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[12] it is proved, for the case, L = [0,1] that a fuzzy set p on the set X is
extensional (a *—eigenvector of the fuzzy equivalence relation E) if and only
if it 1s a “generator” of E, meaning that

plz) < ply) > E(z,y) (4)

holds for all z,y € X. In the more general framework of GL-monoids we can
provide a simpler proof of this fact using only the adjunction property.

Theorem 2.10. Let E be a fuzzy equivalence relation on X and let u € LX.
Then p is extensional w.r.t. E if and only if (4) holds for all z,y € X.

Proof. Let u be extensional w.r.t. E. According to the adjunction property
we can rewrite the extensionality condition y(z)* E(z,y) < p(y) in the form
E(z,y) < p(z) — p(y). Therefore, we have

E(z,y) = E(z,y)\E(y,z)
< (p(z) = py) A (ply) = p(z))
= p(z) < p(y).

To prove the other implication, let us assume that (4) holds. This implies
E(z,y) < pu(z) < p(y) < p(z) — p(y). Again by the adjunction property,
we obtain u(z) * E(z,y) < p(y). O

Example 2.11. We can define the extensional hull M of a crisp subset M
of X w.r.t. any fuzzy equivalence relation E as the extensional hull w.r.t. £
of its characteristic function

(2) = 1 feeM
HMIZ) = o otherwise,

l.e. M = ﬁ,M

Let X = 1R, L =[0,1], and let * be the Lukasiewicz conjunction. Let us
consider the fuzzy equivalence relation induced by the usual metric on the
real numbers, i.e. E(z,y) = 1 — min{|z — y|, 1} (cf. Example 2.6). Then,
as already pointed out in [16], the extensional hull w.r.t. E of a crisp point
zo — precisely: of the one—element set {zo} — is the triangular fuzzy set
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{;;}(m) = 1 — min{|zo — |,1}, and the extensional hull w.r.t. E of the
interval [a, b] is the trapezoidal fuzzy set

- 1 fa<z<b
[a,b(z) = { max{l—a+ 2,0} ifz<a
max{l —z + 5,0} ifb<e.

By using a scaling function of the usual metric on the real numbers triangu-
lar and trapezoidal fuzzy sets with other slopes than 1 can be obtained as
extensional hulls w.r.t. E of single elements and intervals, respectively [13].

3 Relations Between Fuzzy Sets and Similar-
ity Relations

In the previous section we have seen how a crisp set induces a fuzzy set
as its extensional hull with respect to a fuzzy equivalence relation. Thus,
assuming the indistinguishability modelled by a fuzzy equivalence relation
as a basic concept, fuzzy sets can be viewed as induced concepts, i.e. we
obtain membership degrees starting from (fuzzy) indistinguishability. In this
section we will take a closer look at the connection between fuzzy sets and
the corresponding indistinguishability. As a main result, we show how the
indistinguishability inherent to a given collection of fuzzy sets can be derived.

Theorem 3.1. Let F C L* be a set of fuzzy sets. Then

Ex(z,y) = A (n(2) < u(y)) (5)

HEF

is the coarsest (greatest) fuzzy equivalence relation on X such that all fuzzy
sets in F are extensional w.r.t. Er.

Proof. It is obvious that Er is reflexive and symmetric. The transitivity of
Er follows from

Br(o,y) « Brly,2) — ( A (M(m)w(y)))*(/\(u(y)w(z)))

< A (k@) p) * () < 1)

11



< A (=) & p(@) * (0ly) © n(2)))

< /\T(M(w)HM(Z))
= Er(z,2)

where we made use of the facts (b) and (d) stated in Lemma 2.3.

The extensionality of the fuzzy sets in F follows directly from Theorem
2.10 and the definition of Ef.

Finally, we have to show that Er is the coarsest fuzzy equivalence relation
making all fuzzy sets in F extensional. Let E be a fuzzy equivalence relation
such that all fuzzy sets in F are extensional w.r.t. E. By Theorem 2.10,
E(z,y) < p(z) <> p(y) holds for all u € F which implies E(z,y) < Ex(z,y).
O

The fuzzy equivalence relation (5) was already defined in Valverde’s rep-
resentation theorem [23] which he proved for L = [0, 1]. This theorem states
that Er is a fuzzy equivalence relation if and only if there is a set F of fuzzy
sets such that £ can be written in the form (5).

The formula (5) can be interpreted in the following way. Two elements
“cannot be distinguished by a (fuzzy) set” if they are either both elements
of the same set or its complement, but not one in the set and the other one
in the complement. Thus u(z) < u(y) represents the degree to which the
elements ¢ and y cannot be distinguished by the fuzzy set p. Therefore,
Ex(z,y) is the degree to which z and y cannot be distinguished by the set
F of fuzzy sets.

The paper [11] is devoted to minimal sets of fuzzy sets that induce a fuzzy
equivalence relation via (5). In [12] a geometric characterization of the set
of fuzzy sets that are extensional with respect to a given fuzzy equivalence
relation is described. We provide an algebraic characterization of the set
of fuzzy sets that are extensional with respect to a given fuzzy equivalence
relation.

Interpreting the elements of the lattice L as constant fuzzy sets, we have
the following

Theorem 3.2. Let E be a fuzzy equivalence relation on the set X. Let
Ag C L denote the set of fuzzy sets that are extensional with respect to E.
For all p € Ag, B C Ag, a € L the following statements are valid:

12



Proof. (a) follows directly from the infinite distributive law for GL-monoids.
(b) is implied by Lemma 2.3(b). (c) is obvious.
For (d), we have to prove that

E(z,y) x (p(z) = o) < ply) = o

for any p € Ag. In accordance to the adjunction property, this is equivalent
to prove that

u() * B(z,9) * (u(z) + @) < a. (6)
The extensionality of y implies that the left hand side of (6) is less than
or equal to p(z) * (u(z) — a) which is equal to a A u(z) by Lemma 2.3(a)
and therefore less than or equal to a.
In accordance to the adjunction property, it is sufficient to prove that

E(z,y) x ax(a = p(z)) < ply) (7)
for (e). Since a * (a — p(z)) < p(z) by Lemma 2.3(a) and because of the
extensionality of p, (7) is also satisfied. O

Theorem 3.3. Let A C L™ be such that A has properties (a),. .. ,(e) stated
i Theorem 3.2. Then there exists a fuzzy equivalence relation E on X for
which the corresponding set of extensional fuzzy sets is exactly A, 1.e. Ag =
A. Furthermore, E is uniquely determined by Equation (5) (with F = A).

Proof. We first prove that A = Ag for the fuzzy equivalence relation

E(z,y) = A (u(z) < u(y)).

neA

13



By the definition of E and in accordance to Theorem 2.10, all fuzzy sets in
A are extensional w.r.t. E, i.e. A C Ag.

In order to show the other inclusion, let u € Ag. For z € X, define the
fuzzy set p, by setting for any = € X:

pela) = ()< B(e,2) = A (ax () = B) 1 (89 = v(2))) ),
veA
where a = pu(z) and B{*) = v(z). Due to the closure properties (b), (c), (d),
(e) of A, we have that u, € A.
Since p is extensional with respect to £ we obtain

pe(z) = p(z) x E(z,2) < p(a).
This implies, together with p.(2) = p(z) * E(z,2) = p(z), that

p=\
zeX
which is again an element of A by property (a). Thus we have also proved
the other inclusion concluding A = Ag.

Let us now turn to the uniqueness of E. Let E be a fuzzy equivalence
relation such that A = Ag. In accordance to Theorem 3.1, we have E<E.
To show that E < F also holds, let z,y € X. Define the fuzzy set vy(z) =
E (z,y) which is obviously extensional w.r.t. E, therefore it is an element of
A and thus also extensional w.r.t. E. Furthermore, we have v,(y) = 1. We
finally conclude that

E(z,y) = E(z,y)*1 = E(z,y) *v,(y) < ylz) = E’(m,y).
O

Theorems 3.2 and 3.3 establish a one-to—one correspondence between the
fuzzy equivalence relations on a set X and the set of all fuzzy sets on X fulfill-
ing the closure properties (a),...,(e) described in Theorem 3.2. (a) and (b)
state that extensionality is preserved by arbitrary unions and intersections.
(c) and (e) can be interpreted as some kind of cutting and lifting condition,
respectively, that maintain extensionality. (d) means that extensionality is
preserved under a generalized complementation, where a = 0 corresponds to
the usual complementation.

For MV-algebras the conditions (a),...,(e) can be simplified.

14



Theorem 3.4. Let (L,<,*) be a complete MV—-algebra (i.e. a GL-monoid
satisfying (o — 0) — 0 = a). Let A C L be such that A has the properties:

(i) BCA = VBeA,

() a€ Land pe A = (p— a) € A
Then A satisfies the closure properties (a),...,(e) stated in Theorem 3.2.
Proof.

(a) is identical with (i). In accordance to Lemma 1.4(1) of [8], we have
that

(Ao >0 = Via~0)

i€l iel
and therefore
AB = (\/(u—>0)) — 0,
veB
so that (b) also holds. Lemma 1.4(3) of [8] states that

a—fB = (ax(8—0)) —0. (8)

Thus we can rewrite a * g in the form
(b= (a—0)) -0 = ((,u*((a—>0)—>0))—>0) —0 = u*a,

so that (c) is also fulfilled. (d) is just (ii). Using Equation, (8) we can rewrite
a — p by
a—p = (ax(p—0))—0.

Since we have already shown that A satisfies (c), we have also proved (e). O

Theorem 3.4 shows that when the underlying GL-monoid is a complete
MV-algebra, the algebraic characterization of the set of extensional fuzzy
sets simplifies to the closedness with respect to arbitrary unions and to the
generalized complementation y — a.

In this Section we have discussed connections between fuzzy sets and fuzzy
equivalence relations. For a given collection of fuzzy sets, the fuzzy equiv-
alence relation (5) characterizes the indistinguishability inherent to these

15



fuzzy sets. In the following section we will show that this indistinguisha-
bility cannot be overcome in typical approximate reasoning situations with
fuzzy sets.

At the end of Section 2 we have explained how crisp points and sets induce
fuzzy sets in the presence of a fuzzy equivalence relation. Since it is sufficient
for our purposes to characterize the indistinguishability inherent to a given
collection of fuzzy sets, in this paper we do not pursue the question when a
given collection of fuzzy sets can be interpreted as extensional hulls of crisp
elements or sets with respect to a suitable fuzzy equivalence relation. This
question is treated in [13, 18, 20], for an overview see [14].

4 Similarity Relations in Fuzzy Reasoning

In [15, 18], it was shown that fuzzy control can be interpreted as interpola-
tion in the presence of indistinguishability characterized by fuzzy equivalence
relations whenever the fuzzy sets used for the fuzzy partitions satisfy some
reasonable restrictions. The corresponding fuzzy equivalence relations can
be computed on the basis of formula (5).

In this Section we will show that in typical applications of fuzzy rea-
soning — not only for fuzzy control — these fuzzy equivalence relations are
of importance since they characterize an indistinguishability that cannot be
overcome.

In approximate reasoning one has often to deal with if-then rules of the
form

If £ is A, then nis B, (9)

where £ and 7 are variables with domains X and Y, respectively. A and B are
linguistic terms like positive big or approximately zero (see, e.g., [17]). These
linguistic terms are usually modelled by suitable fuzzy sets, say us € L* and
UB € LY.

The rules of the form (9) represent general knowledge about the consid-
ered problem. In the actual situation, in addition to this general knowledge,
the information

Eis A (10)

is given, where A’ is represented by the fuzzy set ps € L*X (or simply by
p € LX). Of course, as a special case pus can also stand for a crisp value

16



2o in which case pa(z) would yield the value one for ¢ = z, and zero
otherwise. Thus, an inference scheme is needed that derives from the fuzzy
sets p4, up, appearing in the rules, and the fuzzy set p4/, representing the
actual information, a fuzzy set Veonclusion that describes the restriction or
possible values for the variable  under the given rules and the actual input
information (10).

Let us first only consider a single rule of the form (9). A very convenient
possibility to represent such a rule is in the form of a fuzzy relation o € LX*Y.
Usually p is defined on the basis of one of the operations A, *, and —, i.e.

o(z,y) = eo(z,y) = pa(z)© pa(y) (11)

where ® € {A, *, —}. For a given input information in the form of the fuzzy
set par € L, the “output” fuzzy set veonclusion is computed as the composition
of the fuzzy relation gy and the fuzzy set p4,. The composition of a fuzzy
relation and a fuzzy set is defined as a generalization of the composition of
an ordinary relation R C X x Y with an ordinary set M C X.

MoR ={yeY |(Fz € X)(z € M and (z,y) € R)}

Valuating the existential quantifier in this formula, as usually, by the supre-
mum and the conjunction by the operation M € {A, *}, we obtain the follow-
ing definition of the composition of a fuzzy relation p € L*¥*Y and a fuzzy

set pu € LX:
(mono)y) = V {u(z)Me(z,y)} (12)

for all y € Y, where M € {A, x} (cf., e.g., [5, 7, 17]).

Example 4.1. Let L = [0, 1] with the usual ordering. For M = A = min and
® = A, (12) becomes

(moo)ly) = \/Xmin{ﬂ(w),MA(w),MB(y)}, (13)
- o(z,y) = min{pa(z), us(y)}. (14)

This is the usual inference scheme for a single rule in fuzzy control, where
in most cases u is the characteristic function of a set with a single element
representing the crisp input value zo € X. In this case, (13) simplifies to

(e 0 0)(y) = min{pa(zo), ur(y)}-

17



Another interesting example is 1= A = min, *x = A, and ® =—. In this
case @ i1s the Godel implication, so that we have

{ 1 if pa(z) < pa(y), (15)

o(z,y) = pe(y) otherwise.

Both fuzzy relations (14) and (15) play an important role for the solution of
fuzzy relation equations of the form

pace = pp (16)
with given fuzzy sets p4 and pp and unknown fuzzy relation . For the usual
sup—min composition, the operation o is defined on the basis of M = A. If the
fuzzy relation Equation (16) has at least one solution p, then (14) and (15)
are also solutions (see, e.g., [7]). The greatest solution (15) is also very useful
for systems of fuzzy relation equations, since, by taking the minimum over
the solutions of the single equations, one obtains a solution of the system of
equations when there exists a solution of the system at all.

Let us remark that it is not reasonable to consider all possible combina-
tions of the choices for M and © in (12) with p = pg in Equation (11), as the
following lemma shows.

Lemma 4.2. Let uy € L* be a normal fuzzy set, i.e. there exists x € X
such that pa(z) = 1 holds, and let up € LY. Define o as in Equation (11).
Then the equation

(Baono)y) = V{u(z)No(z,y)} = us(y) (17)

zeX

1s satisfied for all y € Y for the combinations ® =— and [ = %, ® = x and
M=%, @=*xandMN=A, O=AandM =%, @ =A and 1 = A.

Proof.
(i) ®©=— and N = *.

Taking the normality of p4 and Lemma 2.3(a) into account, we obtain:

(raomo)(y) = \/X{MA(m) * (pa(z) = pe(y))}

=V {pa(=) A ps(y)}

zeX

= ws(y).

18



(ii) ® =* and M = *.
The normality of u, immediately yields

(maono)(y) = \/X{MA(m)*(MA(w)*MB(y))} = ps(y).

(i) ® =% and M = A.
The normality of u, gives

(haono)(y) = \/X{MA(w)/\(MA(w)*MB(y))} = us(y).

(iv) ® = A and M = *.
Again using the normality of g4 we obtain:

(haono)(y) = \/X{MA(w)*(MA(w)/\MB(y))} = us(y).

(v) ®= A and I =A.
Finally, the normality of p4 also ensures

(kaono)(y) = \/X{MA(m)/\(MA(w)/\MB(y))} = us(y).

Example 4.3. For the missing combination ® =— and N = A in Lemma 4.2
equation (17) does in general not hold. Let L = [0, 1] be endowed with the
usual ordering and the Lukasiewicz conjunction *. Consider X =Y = {a, b},

pala) =1, pa(b) =0.9, pp(a) =1, pp(b) = 0.8. Then we obtain:

(naono)(b) = max{pa(a) A (pa(a) = pg(b), pa(b) A (ra(b) = p5(b))}

= max{0.8,0.9}
= 0.9
> ,U,B(b).

We are now prepared to formulate two interesting and important theo-
rems about applying if-then rules and the indistinguishability inherent to

the corresponding fuzzy sets.
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Theorem 4.4. Let p,ps € LX, up € LY. Furthermore, let E be a fuzzy
equivalence relation on X such that pus 1s extensional w.r.t. E. Let pg be
defined as in Equation (11). Then for the combinations ® =— and I = x,
© =% and N =%, ® = A and 1 = %, the equation (cf. Equation (12))

(konee) = (fioneo)
1s valid.
Proof. i > p, together with the isotonicity of M, implies that

(,“ on Q@) < (ﬂ on Q@)

for any choice of ® and M. Therefore we only have to prove the other in-
equality.

(i) ®©=— and N = *.

(Boneo)y) = V {i=) (z) = us(y))}

_ ”\/GX{ ) * B(z,2)) * (1a(z) = nn(y))}

<V {#() « Bz, o) « ((E(z,2)  pa(a") = ps(y)) }
= VA Be) « (B2 = (1) maw)}
- \/GX {u(") = (B(z,2) A (nalz’) — ns(%))) }

<V {u {1(=) * (wa(=) = ps(y))}

= (ponoe)ly).

In the second line we used the infinite distributive law, in the third the
extensionality of p4 together with Lemma 2.3(e), in the fourth Lemma
2.3(f), in the fifth Lemma 2.3(a), and in the sixth the isotonicity of x*.
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(ii) ® =* and M = *.
In accordance to the infinite distributive law and the extensionality of
i, we have that

(ioneo)) =V {ula)x Blwa') = pa(e) = o (v)}
< \/X{M « un(y) |

= (ponoo)(y).

(i) ® = A and I = x*.

(Ao e0)(y) = vX{y )* B(2,2) * (pa(2) A pn(y))}
<V {8 * ((E(z,2') * pa(@)) A (E(=,2') * ps(y))) }

<V {n) « (pale’) A ()}

z'eX
= (koneo)y)-
In the second line we applied Lemma 2.3(b). O

When we interpret Theorem 4.4 in the sense that the fuzzy sets p4 and
pp represent the linguistic terms A and B of an if-then rule of the form (9),
then it states that for the mentioned combinations of operations for a given
input p the output fuzzy set ponpe inferred by the rule does not change when
we replace p by its extensional hull. This means that the indistinguishability
inherent to the fuzzy set p4 cannot be avoided, even if the input fuzzy set
p stands for a crisp value. Note that if g is a crisp set, the choice of the
operation 1 has no influence in Equation (12).

From Theorem 4.4 we derive also an answer to the question of fuzzy
inputs. A fuzzified input does not change the outcome of a rule as long as
the fuzzy set obtained by the fuzzification is contained in the extensional of
the original crisp input value. From Theorem 4.4 we also learn that it does
not make sense to measure more exactly than the indistinguishability admits.
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The cases, that are covered by Theorem 4.4, include the most common
and useful formalizations of if-then rules (see [2, 3]), namely the scheme
® = A and M = * with * = A as well as the scheme ® =— and M = % with
* = A.

The following example shows that Theorem 4.4 does not hold for the
other combinations.

Example 4.5. For all counterexamples we assume L = [0, 1] endowed with
the usual ordering and the Lukasiewicz conjunction.

(i) ® =— and M = A.
Let X = {mlamZ}a Y = {y1;y2}7 :u’A( ) =
pB(y2) = 1, B(zy,23) = 0.5, p(z1) = 1,
(fon 00)(y )—05>0—(M0n9®)( 1)-

(i) ® =x*and M= A.

Let X ={0,0.5,1}, Y = {y1,y2}, pa(z) = z, pp(y1) = 1, ps(y2) = 0,
E(z,z') =1 — min{|z — 2’|, 1}, p(0) = 1, u(0.5) = (1) = 0. Then we
have (4 on g0)(y1) = 0.5 > 0 = (1 on 00)(y1)-

(i) ® = A and M = A.

1, pa(zs) = 0.5, pp(y1) = 0,
p(zs) = 0. Then we have

Let X = {m17m27m3}7 Y = {y17y2}7 :u’A(ml) = 17 :u’A(mZ) = 057 :u’A(m?’) =
0, uB(y1) = 0, pB(yz) = 1, B(z1,2) = pa(z), z € X. E(2;,23) = 0.5,
p(zs) =1, p(z1) = p(z2) = 0. Then we have (fionpg)(y1) = 0.5 >0 =

(1 on 00)(y1)-

Theorem 4.4 shows that the indistinguishability induced by the fuzzy set
representing the linguistic in the premise of the rule cannot be overcome.
The same holds for the output of the rule, i.e. the output can never be more
precise than the indistinguishability induced by the fuzzy set modelling the
linguistic term in the conclusion of the rule.

Theorem 4.6. Let p,pus € LY, up € LY. Furthermore, let F be a fuzzy
equivalence relation on Y such that pp s extensional w.r.t. F. Let pg be
defined as in Equation (11). Then for the combinations ® =— and I = x,
O =xand M=% O = A and [N = %, the fuzzy set (uon pe) (cf. Equation
(12)) is extensional w.r.t. F.

Proof.
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(i) ®©=— and N = *.

Taking Lemma 2.3(g), (h) and the extensionality of up into account,

we obtain:

(Lonee)(y)* Fly,y) =

VAN

VAN

(ii) ® =* and M = *.

(1 on 00)(y) * F(y,y)

(i) ® = A and I = x*.

\/X e ) = us(y)) = Fy,y) }
\/X{M )% (pa(e) = (ua(y) = F(y,9))) }
\/X{u ) = us(y))}

(1 on 00) ')

- \/X{M « up(y) * F(y,y)}
< \/X{M «u(y)}

= (ponoe)).

Using Lemma 2.3(b), we get

(Lonee)(y)* Fly,y) =

<

VAN

VX e (2) A us(y) * F(y,y)}
VX {u(z) *

((m(m) « F(y,y) A (ns(y) * Fy,9")) }
VX e « up(y')}

(1 on 00)(y')-
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In Theorems 4.4 and 4.6 we have only considered a single pair of fuzzy
sets py and pp that model the linguistic term in the premise, respectively
the conclusion of a single if-then rule of the form (9). However, our results
can easily be extended to the more realistic case of a set of if—then rules.

Consider the set of rules

If £ is A;, thennis B, (z € I),

where the linguistic terms A; and B; are modelled by the fuzzy set 4, € Lx
and pp;, € LY.

Given an “input fuzzy set” u € L¥, the output of this set of rules is com-
puted in the following way: as a first step, a combination of the operations
® and T is chosen. Let us assume that one of the three cases in Theorems
4.4 and 4.6 is considered. Then for each single rule, the corresponding fuzzy
relation g;(z,y) = pa, © pp; and also on this basis, the corresponding output
fuzzy set p on g; is computed. Finally, these outputs are aggregated usually
either by taking the infimum or supremum, i.e. either

A\ (pon e:) (18)
el

or
V (won 0:)- (19)
el

Generalizing Theorem 4.4 to a set of rules, the result remains the same
since in accordance to Theorem 4.4, replacing u by its extensional hull, does
not change the fuzzy set p on p; so that neither (18) nor (19) is affected.

The result of Theorem 4.6 is also valid for a set of rules, i.e. the output
fuzzy set is extensional, since, due to Theorem 3.2, infima and suprema
maintain extensionality.

The only important thing is that one has to consider fuzzy equivalence
relations E and F on X, respectively Y, such that all fuzzy sets pa, (respec-
tively pp,;) are extensional with respect to E (respectively F'). Of course,
the most interesting fuzzy equivalence relations are the coarsest ones since
they characterize the indistinguishability inherent to the given fuzzy sets and
yield the greatest extensional hulls. The coarsest fuzzy equivalence relation
making a given collection of fuzzy sets extensional, is described in Theorem

3.1.
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Figure 1: A typical fuzzy partition.

Example 4.7. Let L = [0,1]. We consider a typical “fuzzy partition” of
isosceles triangles on the real numbers, i.e. the set of fuzzy sets {y; | 1 € 7}
where p;(z) = 1 — min{|z — 1|, 1} (see Figure 1).

For the most often applied approximate reasoning schemes for if~then
rules described in Example 4.1, we have to choose *x = A. Therefore the
fuzzy equivalence relation induced by these fuzzy sets is

E(z,y) = /\ (pi(z) < piy))

i€l
1 ifz =y,

min{s +1—z,z —1,1+1—y,y —i} if 2 € 7Z and
1<,y <i+1,

0 otherwise.

Figure 2 illustrates the extensional hulls of the crisp values 0.5 and 1.75
with respect to this fuzzy equivalence relation, i.e. the fuzzy sets pos(z) =
E(z,0.5) and py75(z) = E(z,1.75). The greatest indistinguishability is
reached at the intermediate points (z + 0.5) (z € 7Z) whereas the exten-
sional hull of the points z € 7 remains crisp leading to optimal accuracy.

It should be emphasized that the choice of * = A leads to the greatest
distinguishability since the minimum is the greatest t—norm. For any other
left continuous t—norm, the implication obtained by residuation and therefore
also the corresponding biimplication, yields greater values than the implica-
tion, respectively biimplication, induced by the minimum so that the fuzzy
equivalence relation leads also to greater values (higher indistinguishability).
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Figure 2: The extensional hulls of the crisp values 0.5 and 1.75.

The if-then rules considered had only one variable in the premise and the
conclusion. Nevertheless, these variables may also be vectors so that we have
included the cases of multiple inputs and outputs as well. In such cases the
corresponding fuzzy equivalence relations are defined on multi-dimensional
product spaces. In some cases it is however possible to compute a lower
approximation of a fuzzy equivalence relation in a product space by fuzzy
equivalence relations in one—dimensional spaces.

Let us assume the if-then rules are of the form

“If £, is Agl) and ... and &, is Ag"), then n is B;,”

with Xi,..., X, as the underlying domains for the variables £i,...,&,. The
linguistic terms Agk) are modelled by the fuzzy sets ,ugk) € L%, We are
interested in the fuzzy equivalence relation induced by these fuzzy sets on
the product space X; x ... x X,,. Therefore it is necessary to know how the
and—expression appearing in the if-then rules is interpreted. Let us assume
that, as usually, the rule is evaluated by using A for the and—expression.
Then we could rewrite the rules in the form

“If (&1,...,&) is (Agl), . .,Ag")), then n is B;,” (z€ 1),

(]
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where the linguistic term (Az(l), ceey A§”)) is represented by the fuzzy set

(/n\,u,z(k)) c LXIX'"XX".
k=1

Thus the corresponding fuzzy equivalence relation on the product space X; x

. X X, based on formula (5) is

n n k
B((@r, - 2n)y (21,0 2)) = A\ (( A b9 (@) & (A ul >(m;))) .
IY=y ) k=1 k=1
(20)
The following theorem shows that a lower approximation for this fuzzy
equivalence relation can be derived from the fuzzy equivalence relations in
the one—dimensional spaces.

Theorem 4.8. Let ,u(k) € LX, G el ke {l,...,n}). Let E be the fuzzy

(]

equivalence relation defined in (20). Define

Ei(z,y) = A (4(2) < 1”(v))

i€l
for all ©,y € Xj. Furthermore, let

n
E((z1,...,2n), (x4, ..., 2)) /\ (T, T},)-

Then E is a fuzzy equivalence relation on X; X ... x X, and E < E.

Proof. The fuzzy sets ,u(k)

(k)
: S
LXXX&n by defining

€ L** can be interpreted as fuzzy sets fi;

(]

—(k k
i (21, 2a) = pP ().
Thus E can be rewritten in the form

E((21,.2n), (2, 02h) = AN (@7 (@1, ) 0 @0, 20)

1€l k=1

and is therefore, by Theorem 3.1, a fuzzy equivalence relation on X; x... X X,.
Lemma 2.3(j) leads immediately to £ < E. O
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Let us finally remark that we did not consider the defuzzification problem
here. Although defuzzification aims at “deleting” the indistinguishability or
imprecision inherent to a fuzzy set, our result that the indistinguishability
inherent to a given set of fuzzy sets cannot be overcome by a suitable defuzzi-
fication strategy, since defuzzification is usually applied to the final output
fuzzy set of an approximate reasoning scheme. But this fuzzy set remains
the same when the input fuzzy set is replaced by its extensional hull, so that
defuzzification will also yield the same crisp output value.

5 Conclusions

We have shown that fuzzy equivalence relations are a useful model to de-
scribe the indistinguishability inherent to fuzzy sets. Approximate reasoning
schemes which are used in fuzzy control and other fields cannot avoid or over-
come this indistinguishability. Thus fuzzy equivalence relations characterize
a kind of granularity of the model. This information can be used to deter-
mine a limit for the degree of precision in which inputs should be measured,
since a higher accuracy than the indistinguishability inherent to the fuzzy
sets or fuzzy equivalence relations does not influence the resulting output of
a fuzzy system. The fuzzy equivalence relations also describe how accurate
or precise the outputs of a fuzzy system can principally be.

Taking these ideas into account, in future works, it would be interesting
to develop the notion of an indistinguishability measure for fuzzy equivalence
relations analogous to entropy or information measures of probability theory.
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