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Fuzzy Cluster Analysis from the Viewpoint of
Robust Statistics

Frank Klawonn and Frank Héppner

1.1 Introduction

Fuzzy cluster analysis has been initiated in the beginning of the seventies
by Bezdek! and Dunn?. The ideas were partly motivated by the problems
caused by the binary or crisp assignment of data to unique clusters as for
instance in the case of the popular c-means clustering algorithm. Handling
ambiguous and noisy data in order to overcome these problems was one im-
portant issue.

Although such concepts of robustness were part of the motivation for intro-
ducing fuzzy clustering, serious attempts to a rigorous analysis of robustness
issues in fuzzy clustering have not been made until the mid-nineties.

In this paper, we provide a brief review on robustness issues in fuzzy cluster
analysis. We address problems and questions that have not been solved or
treated completely so far. But we also would like to draw the attention to
those results that are available and that can help in applying the methods of
fuzzy clustering in a suitable manner.

We start with an overview on prototype-based clustering, emphasising
special forms of fuzzy cluster analysis like noise clustering in section 1.2. In
order to keep the paper self-contained, a short detour on issues in robust
statistics is needed in section 1.3. Section 1.4 brings together fuzzy cluster
analysis and ideas from robust statistics, showing that fuzzy cluster analysis
fits quite well into the scheme of robust statistics. In the final conclusions
in section 1.5 we address consequences for fuzzy clustering drawn from the
robustness considerations and derive possible approaches to improve fuzzy
clustering.

1.2 Cluster analysis

Cluster analysis aims at dividing a data set into groups or clusters that
consist of similar data. There is a large number of clustering techniques avail-
able with different underlying assumptions about the data and the clusters
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to be discovered. A simple and common popular approach is the so-called
c-means clustering as for instance described by Duda and Hart®. For the c-
means algorithm it is assumed that the number of clusters is known or at least
fixed, i.e. the algorithm will partition a given data set X = {x,...,z,} CRP
into ¢ clusters. Since the assumption of a known or a priori fixed number of
clusters is not realistic for many data analysis problems, there are techniques
based on cluster validity considerations that allow to determine the number of
clusters for the c-means algorithm as well. However, the underlying algorithm
remains more or less the same, only the number of clusters is varied and the
resulting clusters or the overall partition is evaluated. Therefore, in this paper
we do not consider how to determine the number of clusters and assume a
fixed given number of clusters.

1.2.1 Objective function-based clustering

From the purely algorithmic point of view, the c-means clustering approach
can be described as follows. Each of the ¢ clusters is represented by a cluster
prototype v; € RP, also simply called prototype. These prototypes are chosen
randomly or in a suitable fashion in the beginning. Afterwards each data
vector is assigned to the nearest prototype (with respect to the Euclidean
distance). Then each prototype is replaced by the centre of gravity of those
data assigned to it. The alternating assignment of data to the nearest proto-
type and the update of the prototypes as cluster centres is repeated until the
algorithm converges, i.e. no more changes happen.

This algorithm can also be seen as a strategy for minimizing the following

objective function
Cc n
f= 30 widi (11)

i=1 j=1

under the constraints
Zuij =1 foralj=1,...,n (1.2)
i=1

where u;; € {0,1} indicates whether data vector z; is assigned to cluster ¢
(u;j = 1) or not (u;; = 0). d;j =|| x; —v; ||? is the squared Euclidean distance
between data vector x; and cluster prototype v;.

Since this is a non-trivial constraint nonlinear optimisation problem with
continuous parameters v; and discrete parameters u;;, there is no obvious an-
alytical solution. Therefore an alternating optimisation scheme, alternatingly
optimising one set of parameters while the other set of parameters is consid-
ered as fixed, seems to be a reasonable approach for minimizing (1.1). The
above mentioned c-means clustering algorithm follows exactly this strategy.
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It should be noted that choosing the (squared) Euclidean distance as a
measure for the distance between data vector u;; and cluster ¢ is just one
choice out of many. Later on, we will also consider other distance measures
and forms of prototypes as they can be found in the overviews by Bezdek et
al.* or Hoppner et al.®

The constraint u;; € {0,1} requires that each data point must be assigned
uniquely to one single cluster. In this way, even noisy data points are enforced
to be assigned artificially to a unique cluster and thus inflict an error on the
cluster prototype of the corresponding cluster. Furthermore, cluster bound-
aries are very often not sharp and the assignment of a data point close to the
boundary between clusters to a unique cluster gives the wrong impression of
well-separated clusters.

For this reason, the constraint u;; € {0,1} is relaxed to u;; € [0,1]. How-
ever, even with this relaxed constraint the minimum of the objective function
(1.1) under the general constraint (1.2) is still found at u;; € {0,1}. There-
fore, an additional parameter m, the so-called fuzzifier, was introduced by
Bezdek® and Dunn’, and the objective function (1.1) is replaced by

f= )00 udy. (13)

i=1 j=1

Note that the fuzzifier m does not have any effects, when hard clustering, i.e.
u;; € {0,1}, is applied. The fuzzifier m > 1 is not subject of the optimisation
process and has to be chosen in advance. A typical choice is m = 2.

The fuzzy clustering approach with the objective function (1.3) under the
constraints (1.2) and the assumption u;; € [0,1] is called probabilistic clus-
tering, since due to the constraints (1.2) the membership degree u;; can be
interpreted as the probability that x; belongs to cluster ¢. Nevertheless, due
to the fuzzifier, a strict probabilistic interpretation as for instance in the case
of expectation maximisation (EM) clustering introduced by Dempster et al.®
is not possible.

The relaxed constraint u;; € [0, 1] for fuzzy cluster analysis still leads to a
nonlinear optimisation problem, however, in contrast to hard clustering, with
all parameters being continuous. The common technique for minimizing this
objective function is similar as in hard clustering, alternatingly optimise either
the membership degrees or the cluster parameters while considering the other
parameter set as fixed.

Taking the constraints (1.2) into account by Lagrange functions, the min-
imum of the objective function (1.3) with respect to the membership degrees
is obtained at
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wij = ————————, (1.4)

c di; \ m—1
i (72)
when the cluster parameters, i.e. the distance values d;;, are considered to be
fixed. (If d;; = O for one or more clusters, we deviate from (1.4) and assign
z; with membership degree 1 to the or one of the clusters with d;; = 0 and
choose u;; = 0 for the other clusters i.) For a derivation of equation (1.4), we
refer to Bezdek”.

If the clusters are represented by simple cluster prototypes v; € RP and
the distances d;; are the squared Euclidean distances of the data to the corre-
sponding cluster prototypes as in the hard c-means algorithm, the minimum of
the objective function (1.3) with respect to the cluster prototypes is obtained

at n

by = it M (1.5)

’ Z?:l U:;L ’ -

when the membership degrees u;; are considered to be fixed. For a derivation
of equation (1.5), we refer again to Bezdek!?. The cluster prototypes are still
the cluster centres. However, using [0, 1]-valued membership degrees means
that we have to compute weighted cluster centres. The fuzzy clustering scheme
using alternatingly equations (1.4) and (1.5) is called fuzzy c-means algorithm
(FCM).

1.2.2 Noise clustering and other variants

One of the problems of the above described approach to fuzzy cluster analysis
is caused by the constraints specified in equation (1.2) enforcing that each
data point must be assigned to the overall degree one to the clusters. As
an example consider only two clusters. A data point roughly in the middle
between the two clusters will have a membership degree of approximately 0.5
to both cluster, which seems to be a suitable choice, indicating that the data
point fits both clusters equally well. However, an outlier, i.e. a data point far
away from both clusters, will also have a membership degree of approximately
0.5 to both cluster. Here the membership degree 0.5 means that the outlier
fits equally badly to both clusters.

Noise clustering, proposed by Davé!!, tries to solve this problem by in-
troducing an additional noise cluster. All data points have a fixed (large)
distance § to the noise cluster. In this way, data points that are near the
border between two clusters still have a high membership degree to both clus-
ters as in probabilistic clustering. But data points that are far away from all
clusters will be assigned to the noise cluster and have no longer a considerable
membership degree to other clusters.
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Besides noise clustering, there are also other approaches to avoid prob-
lems caused by the strict probabilistic constraints (1.2). Krishnapuram and
Keller'? introduced possibilistic clustering where the probabilistic constraint
is completely dropped and an additional term in the objective function is in-
troduced to avoid the trivial solution u;; = 0 for all ¢,j. However, the aim
of possibilistic clustering is actually not to find the global minimum of the
corresponding objective function, since this is obtained when all clusters are
identical as shown by Timm and Kruse'3.

Another approach that emphasizes a probabilistic interpretation in fuzzy
clustering is described by Flores-Sintas et al.'* where membership degrees
as well as membership probabilities are used for the clustering. In this way,
some of the problems of the standard FCM scheme can be avoided as well.
However, this approach assumes the use of the Euclidean or a Mahalanobis
distance and is not suitable for arbitrary cluster shapes as in shell clustering.

Keller'® introduced additional adaptive weights to reduce the influence of
outliers to the clustering results.

A solution to another problem caused by the objective function (1.3) in
connection with the constraints (1.2) is discussed by Klawonn and Héppner!©.
Due to equation (1.4), zero membership degrees will never occur, except in the
extremely rare case when a data point has zero distance to a cluster prototype.
As a consequence, all data points will always influence all cluster prototypes,
no matter how well they are covered by any cluster prototype or how far
away they are from another cluster prototype. By choosing a small fuzzifier
m > 1, this effect can be reduced, but not completely eliminated. One of the
reasons for introducing the fuzzifier was that the original objective function
(1.1) without a fuzzifier would lead to crisp membership degrees, even when
the constraint u;; € {0,1} is relaxed to u;; € [0,1]. Replacing u;; in the
objective function (1.1) by uf} to obtain the modified objective function (1.3)
means nothing else than to apply a suitable transformation to the u;;. Instead
of the transformation u — u™ based on the fuzzifier m, other transformations
g :10,1] — [0, 1] are also possible, for instance

g(u) = au® + (1 — a)u (1.6)

or
u) = e —1). 1.7
glu) = —— (™ = 1) (1.7)
In both cases, a is a control parameter similar to the fuzzifier m. These two
alternative transformations do not only satisfy suitable general constraints
like monotonicity, but lead also to tractable computation schemes for the
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membership degrees u;;, although they are slightly more complicated than
the simple equation (1.4). Both transformations lead to zero membership
degree of a data point to a cluster far away from it, at least when the data
point is well covered by another cluster.

1.2.3 Other cluster prototypes

So far, we have only considered modifications concerning the membership
degrees u;;, but have not touched the cluster prototypes and the related dis-
tances d;; in the objective function (1.3). Gustafson and Kessel'” extended
the cluster prototypes by covariance matrices, so that clusters could not only
have the shape of (hyper-)spheres, but of ellipsoids.

Bock!® and later on Bezdek!® introduced clusters in the form of affine
subspaces. The corresponding clustering algorithm is called fuzzy c-varieties
algorithm (FCV). A cluster prototypes describes an r-dimensional hyperplane

r
Vi+ < €i1y...,65p >= {y € RP | (Eit € ]Rr) (y =v; + Ztsei,s> } , (1.8)
s=1

defined by a point v; and r (orthogonal) vectors e;1,...,e;, spanning the
hyperplane. The distance of a data point x; to the cluster prototype is the
difference between the squared lengths of the vector (z; —v;) and its projection
to the hyperplane associated with the cluster prototype. This is the same as
the squared distance of x; to the hyperplane. The distance is zero if and only
if the point z; belongs to the hyperplane.

There are many other cluster shapes that can be described by suitable
cluster prototypes and an adequate distance function. In principle, almost any
cluster shape would be possible, however, for the price that the computations
for the parameters of the prototypes become extremely complicated. Since
the clustering algorithms are usually based on an iteration scheme in which
the membership degrees and the cluster prototypes are updated alternatingly,
it is highly recommended that there exists an explicit solution for the optimal
cluster prototypes, assuming the membership degrees to be fixed. Cluster
prototypes have even been extended to boundaries of geometric shapes like
circles or ellipses. These techniques are called shell clustering. For overviews
we refer to Krishnapuram et al.?? and Klawonn et al.?!.

A detailed discussion of different cluster shapes is not the topic of this
paper. Nevertheless, it is important to notice that more complex cluster
prototypes lead to two significant problems. The objective function (1.3)
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tends to have more local minima, leading to bad clustering results, i.e. the
alternating optimisation strategy gets stuck in a local minimum, although the
data set might contain clear cluster structures. In addition to the problem of
local minima, the clustering result is also more sensitive to noise and outliers.
In order to discuss these topics, we briefly introduce some fundamental notions
from robust statistics in the following section.

1.3 Notions from robust statistics

Classical statistics mainly focuses on procedures that are optimal — for in-
stance in terms of efficient estimators — given the model assumptions are
correct. For example, assuming that a sample comes from a normal distri-
bution, the most efficient estimator for the expected value is the mean value.
The same applies to the least squares method for linear regression. As long
as the model assumption??

yi = Po + iz + ...+ BrTik +Ei:1‘;ﬂ+€i (1.9)

where the ¢; are independent normal distributions with zero mean and the
same variance for all i and the g; are the unknown regression coefficients.

However, it is well known that even single outliers can have extreme influ-
ence on the mean value or on the estimation of the coefficients of the regression
function. Robust statistics deals with such problems.

1.3.1 Robustness

Classical statistics assumes that the data represent independent samples from
the same distribution Fi,0q4e1, the “model”. Robust statistics assumes that the
data are partly corrupted, i.e. the ideal model distribution F,qde is mixed
with an unknown noise distribution.

F = (1 - 5) * Finodel + € * Frandom- (1.10)

The aim of robust statistics is the development of methods that perform well
even under the imperfect conditions (1.10). For an overview on robust statis-
tics and related methods, we refer to Huber?® and Hoaglin et al?*.

1.3.2 Resistance

Of course, even robust statistics cannot cope with the situation when the
influence of the noise distribution Frandom in equation (1.10) becomes too

22 Note that each data point (x;1,...,z:) has been extended by the constant com-
ponent z;0 = 1 in the last part of the equation in order to simplify the notation.
23 [18]
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strong. Nevertheless, methods from robust statistics try to cope with as much
distortion from the noise distribution as possible. One way to analyse robust
methods is to consider Fiandom is “random noise”. However, it is not always
clear for every model what random noise means. Another way to investigate
robust methods is to consider the influence of single data points and of extreme
outliers.

The influence curve shows, how a single data point added to the data
will change the estimation of the model parameters. Influence curves are
very helpful to analyse the influence of data points to single parameters of a
model. The breakdown point is the proportion of extreme outliers that can
be included in the data set without (drastically) changing the estimation of
the model parameters. For instance, the mean has a breakdown point of zero,
since a single extreme outlier x — oo will also let the mean tend to infinity.
In contrast, the median has a breakdown point of (almost) 50%, because the
median depends only on the point or two points in the middle of the ordered
data.

In this paper we will mainly focus on resistance consideration concerning
fuzzy cluster analysis.

1.3.3 M-estimators and robust regression

Before we view fuzzy cluster analysis from the viewpoint of robust statistics,
we need another notion from robust statistics, the so-called M-estimators. An
M-estimator for a model parameter or vector of model parameters 6 is based
on minimizing a suitable error function indicating how well the choice of 8 fits
the data. It is sufficient to consider the case of linear regression here.

Given a data set of measured values® (x1,¥1),...,(%n,yn), the aim is to
determine a linear model

Yi = by +b1xiy1 + ...+ bpxir + €5 :CUZTb-{—ei (1.11)

defined by the coefficient vector b and to minimize the errors e;.
The objective function to be minimized is

Zp(ei) = Zp(yi — ] b) (1.12)

where p is a suitable error measure.
A suitable error measure should at least satisfy the following properties:

25 Note that the z; can be vectors.
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Parameter estimation (here the estimation of the parameter vector b) based
on an objective function of the form (1.12) and an error measure satisfying
(1.13)—(1.16) is called an M-estimator. The classical least squares approach
is based on the quadratic error, i.e. p(e) = €2. Table 1.1 provides the error
measure p for the classical least squares method as well as for two approaches

from robust statistics.

[Method p(e) |
2

Least squares|e

2
e if |e]
Huber

le| — 5k% if Je|

k,
k.
k2 _ g :
Bisquare { < ( k ) > ’ if |8| < kv

, if |e| > k.

T ol
wl»—

<
>
(%)

N
PI% ol

Table 1.1. Error measures p for different approaches.

In order to understand the more general setting of an error measure p
satisfying (1.13)—(1.16), it is useful to consider the derivative of the error
measure ¢ = p'.

Taking the derivatives of the objective function (1.12) with respect to the
parameters b;, we obtain a system of (k + 1) linear equations

Z'ﬁbz z_wa

Defining w(e) = ¢(e)/e and w; = w(e;), (1.17) can be rewritten in the
form

| |
e

(1.17)

- /‘/}z(yz_l':b) T T T
— & I; = w; - (yi —x; b)-z; =0. 1.18
2= D wi (yi =) (1.18)

Solving this system of linear equations corresponds to solving a standard
least squares problem with (non-fixed) weights in the form

> wiel. (1.19)
i=1

However, the weights w; depend on the residuals e;, the residuals depend
on the coefficients b; and the coefficients depend on the weights. Therefore,
it is in general not possible to provide an explicit solution to the system of
equations. Instead, the following iteration scheme is applied.

1. Choose an initial solution b(®), for instance the standard least squares
solution setting all weights w; = 1.
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2. In each iteration step ¢, calculate the residuals e~ and the correspond-
ing weights w(*~!) = w (e(!=1)) determined by the previous step.

3. Compute the solution of the weighted least squares problem Z?:l w;e?,
i.e.

—1
bt = (XTW(H)X) XTWwDy, (1.20)

This iterative algorithm shows an obvious resemblance with the alternating
optimisation scheme of fuzzy clustering. The weights for robust regression
play a similar role as the membership degrees in fuzzy clustering and the
regression coefficient correspond to the parameters of the cluster prototypes.

|Meth0d |w(e) |
Least squares|1
1 ifle| <F,
Huber {k/|e|, if Je| > k.
an2\2 .
Bisquare (1 - () ) if le] <k,
0, if |e| > k.

Table 1.2. The computation of the weights for the corresponding approaches.

Table 1.2 lists the formulae for the weights in the regression scheme based
on the error measures listed in table 1.1.

Figure 1.1 shows the graph of the error measure and the weighting function
for the standard least squares approach. The error measure p increases in a
quadratic manner with increasing distance. The weights are always constant.
This means that extreme outliers will have full influence on the regression
coefficients and can corrupt the result completely.

In the more robust approach by Huber the change of the error measure
p switches from a quadratic increase for small errors to a linear increase for
larger errors. As a result, only data points with small errors will have the full
influence on the regression coefficients. For extreme outliers the weights tend
to zero. This is illustrated by the corresponding graphs in figure 1.2.

The bisquare approach is even more drastic than Huber’s approach. For
larger errors the error measure p does not increase at all, but remains constant.
As a consequence, the weights for outliers drop to zero when they are too far
away from the regression curve. This means that extreme outliers have no
influence on the regression curve at all. The corresponding graphs for the
error measure and the weights are shown in figure 1.3.

1.4 Robustness issues in fuzzy clustering

In the previous section, a relation between M-estimators and cluster analysis
has already been established where the membership degrees in fuzzy cluster
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rho
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Fig. 1.1. The error measure p and the weight w for the standard least squares
approach.

rho

0.4 |- —

0.2 I~ -

Fig. 1.2. The error measure p and the weight w for Huber’s approach.

analysis take the part of the weights in robust regression. In this section, we
take a closer look at this connection and other robustness issues in fuzzy clus-
tering. The next subsection first provides an exact correspondence between a
special case of the fuzzy clustering algorithm FCV and robust regression.

1.4.1 A simple fuzzy regression model

Let us consider the special case of FCV with a single cluster in combination
with noise clustering. This means that the single cluster represents a lin-
ear regression function. It can be shown easily that the cluster results from
weighted least squares regression with the membership degrees to the power
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rho

Fig. 1.3. The error measure p and the weight w for the bisquare approach.

of m as weights. The membership degree of a data point z to the single cluster
is given by
1
u=—— (1.21)

PN

L+ ()™
where d is proportional to the distance of z to the cluster, m is the fuzzifier
and ¢ is the noise distance. The membership degree to the noise cluster is
1 — u. Figure 1.4 shows this curve. The weight is given by w = u™.

Fig. 1.4. The membership degree for FCV.

It neither corresponds to the Huber nor to the bisquare weight curve in
figures 1.2 and 1.3, respectively. In contrast to the Huber weight curve, the
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weight one is only assumed for a residual or error of zero. But like the Huber
weight curve, it only approaches zero for larger residuals, but does never reach
zero. In this aspect it differs strongly from the bisquare weight curve. Before
we continue our investigations on weight curves for clustering in more general
terms, we consider general convergence aspects of the alternating optimisation
scheme.

1.4.2 Convergence issues and the avoidance of local minima

It was shown by Bezdek?® and later on in the corrected paper by Bezdek
et al.?” that the fuzzy c-means algorithm does always converge to a local
minimum or, in the worst case, to a saddle point of the objective function
(1.3). The convergence conditions were further elaborated and generalised to
other algorithms by Hoppner and Klawonn?®. Nevertheless, the problem of
local minima remains. This is not a specific problem of fuzzy clustering, but
already a problem for classical hard c-means clustering. Figure 1.5 illustrates
this problem by a very simple example, how c-means clustering can get stuck
in a local minimum. The indicated partition of the data into clusters does not
correspond to our intuition. The cluster prototypes are marked by crosses.
The problem here is that the prototype on the right-hand side covers two
clusters and the other two prototypes have to compete for data in one cluster.
However, since all data points in the two clusters in the right-hand side of
the figure are closer to the single prototype on the right-hand side, the other
two prototypes will never “take any notice” of these data points and cannot
be attracted by them.

Fig. 1.5. An undesired local minimum for c-means clustering.
26 [2]
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In this case, fuzzy clustering might even be able to overcome this problem.
Since the membership degrees in fuzzy clustering are (almost) never zero,
the two prototypes on the left-hand side will at least be slightly attracted
by the data points on the right-hand side, so that fuzzy clustering is able
to escape certain local minimum. Klawonn?® has demonstrated that at least
in certain settings the introduction of the fuzzifier can smooth out undesired
local minimum in the objective function (1.1).

Nevertheless, the introduction of the fuzzifier can also lead to new prob-
lems. For instance, in the case when clusters of highly different densities exist.
Then the large number of data points from a very dense cluster will still at-
tract the cluster prototypes of other clusters, even if the dense cluster is well
covered by a cluster prototype. We will come back to this problem later on.

1.4.3 Fuzzy clustering and M-estimators

Although it was very often empirically claimed that fuzzy clustering is more
robust, it took more than twenty years for the first in depth investigations of
robustness properties of fuzzy clustering initiated among others by Nasraoui
and Krishnapuram®® and carried out in more detail by Davé and R. Krish-
napuram?3!'. These authors and Choi and Krishnapuram?3? have established
relations between fuzzy clustering — especially noise and possibilistic cluster-
ing — and M-estimators and also W-estimators, another class of estimators
from robust statistics. In subsection 1.4.1 we have demonstrated on which
concepts the relation between robust estimators and fuzzy clustering is based.
For further analysis, the objective function (1.3) was generalised by the above
mentioned authors to the form

f=>2> ullp(d). (1.22)

i=1 j=1

It would lead to far to discuss all details here and we refer to the original
works. Instead, in the next subsection we want to point out some problems
that still remain and are caused by the fuzzifier.

1.4.4 Resistance properties of fuzzy cluster analysis

It is quite obvious that standard fuzzy clustering is not at all resistant to
extreme outliers. For FCM, for extreme outliers = with || = ||— oo, the
distance to all cluster prototypes of such outliers will also tend to infinity. In
this case, we can see from update equation (1.4) for the membership degrees

29 120, 21]
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that the membership degrees for the outliers will all converge to 1/¢. So
the outliers with their (almost) infinite distance will also draw the cluster
prototypes away from the data.

The situation changes when noise clustering is applied. Let us again con-
sider a data point ; with || ; || oo and its influence on cluster prototype i.
Apart from the normalising nominator in equation (1.5), its contribution to
the location of the prototype is u;jz;. Let us just consider the length || w;;x; ||
of this vector. For a finite prototype v; and for x; with large norm || z; ||, we
have, assuming ¢ ordinary clusters and one noise cluster with noise distance d

| zj —vi ll=[l 25 [|I= /di (1.23)

when d;; denotes the squared Euclidean distance. This implies
lim || W54 || = lim ’u,i]’\/di]’ (124)
llzj[|—o00 llzj[|—o00
\/dij
=, hHm —7 . (1.25)
zj||—00 ¢ dij \ ™1 di;\ ™1
i (1) (%)
Vd

= dILH;oT (1.26)
ct(§)m
= dler;o P 5m1—11d23m212 (1.27)
Vi
= lim §7=Td=> (1.28)
d— 00
0 ifl<m<3,
=< Vo if m=3, (1.29)
oo if m > 3.

This implies that for a fuzzifier smaller than 3, the noise cluster will prevent
the other clusters from being corrupted by extreme outliers. However, for a
fuzzifier larger than 3, even the noise cluster cannot protect the other clusters
from being inflicted by extreme outliers.

No matter, wether a noise cluster is introduced or not, due to equation
(1.4), outliers and all other data will still have an influence on all clusters.
In terms of robust statistics, this is very much in the spirit of Hubert’s error
measure. The influence of outliers is gradually reduced, but never completely
reduced to zero. The more drastic bisquare approach, removing the influence
of outliers completely, can only be achieved when the simple fuzzifier trans-
formation g(u) = u™ is replaced by generalised transformations as mentioned
in equations (1.6) and (1.7). In this case, extreme outliers will be covered
by the noise cluster completely and have zero membership degree to all other
clusters.
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1.5 Conclusions

Robustness issues have been neglected in fuzzy cluster analysis for quite a
long time and still have not been investigated and exploited in full detail.
Especially the problem of non-zero membership degrees for all — outliers as
well as data points from other clusters — caused by equation (1.4) has not
been a serious issue until recently. Two approaches might be needed:

(a) On the one hand it is reasonable not to neglect outliers completely as
for instance in Hubert’s approach in robust regression and in the case
of the standard fuzzifier in fuzzy clustering. When outliers are ignored
completely or membership degrees are set to absolutely zero, this can
easily lead to the problems illustrated in figure 1.5 and the danger of
getting stuck in local minima of the objective function.

(b) On the other hand, for larger data sets and especially for clusters with
different, densities, the avoidance of zero membership degrees leads to un-
desired results. In this case, the global minimum of the objective function
might not coincide with the intuitive partition into clusters.

In this sense, it seems reasonable — apart from making sure to find a
good initialisation for clustering — to start the clustering procedure in terms
of approach (a) in order give each cluster a chance to “see” all data in the
beginning. But for better resistance and robustness purposes in the later
stage of the clustering procedure it might be advisable to switch to approach
(b) to remove the influence of outliers completely as well as to stop data from
dense clusters to influence other cluster prototypes. Little work has been
carried out in this direction so far.
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