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Abstract. High throughput technologies like transcriptomics using
DNA arrays or metabolomics employing a combination of gas chromatog-
raphy with mass spectrometry provide valuable information about cellu-
lar processes. However, the measurements are often highly corrupted with
noise of the experimental data which makes it sometimes difficult to draw
reliable conclusions. Therefore, suitable statistical methods are needed
for the evaluation of the experimental data to distinguish changes caused
by biological phenomena from random variations due to noise. This paper
introduces a likelihood ratio test to multiple metabolome measurements.
The method was tested to differentiate differential metabolite composi-
tions obtained from the pathogenic bacterium Pseudomonas aeruginosa
grown under various environmental conditions.
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1 Introduction

Various high throughput technologies enable biologists to access important
classes of cellular bio-molecules in order to gain insight into the corresponding
biological processes [1]. DNA microarray chips for measuring gene expressions
are one popular example of such high throughput technologies. Mass spectrome-
try is another often employed method that provides information on the presence
of molecules of interest such as proteins or metabolites [2]. The measured values
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provided by these high throughput technologies are usually displayed as peak
areas or relative intensities. These values are usually compared between different
conditions encountered by the analyzed organisms or tissue like variable envi-
ronmental settings (e.g. aerobic versus anaerobic growth conditions). From the
experimental point of view it is important to identify variations in the measured
intensities under different conditions. Obtained data are usually subjected to ini-
tial normalization steps. Nevertheless, the measurements are usually corrupted
by significant noise. Therefore, simply looking at the raw data and comparing
intensities might lead to wrong conclusions, if the effect of the noise is ignored.
Consequently, statistical methods are needed that enable the researcher to dis-
tinguish between significant differences in measured intensities and variations
that are caused solely by noise. In order to estimate the influence of noise, it is
necessary to have multiple measurements of the same intensities under identical
experimental conditions. Unfortunately, a reliable statistical estimation requires
a much larger sample size than biological experiments can deliver for reasonable
costs. Repetitions of the same noisy measurement usually range between two and
ten. However, by taking into account that the strength of the observed noise in
the measured intensities does vary randomly, but follows a certain pattern, more
reliable statistical conclusions can be drawn. Consequently, the noise estimation
is not carried out separately for each analysis and measured bio-molecule, rather
for all at the same time. This requires a global noise model.

Although the approach presented in this paper might be applicable to other
high throughput technologies, this communication will focus on metabolome
data measured by gas chromatography/mass spectrometry (GC/MS, [3]). The
analysis of complete metabolomes, usually called metabolomics, has gained much
attention during the past few years as an integral part of modern systems biology
[4] [5]- Systems biology attempts to deduce computational models of complex cel-
lular processes from high throughput data such as metabolomes, transcriptomes,
proteomes and other related data [1].

2 Biological Context

Pseudomonas aeruginosa is a versatile soil bacterium and an important oppor-
tunistic pathogen causing persistent infection of immunocompromised patients.
Particularly the lung of cystic fibrosis patients is commonly infected by P. aerug-
inosa growing as biofilm-like microcolonies. Due to this microcolony formation
along with other molecular strategies P. aeruginosa is resistant to antibiotics,
impeding patient treatment. In order to understand antibiotics resistance and
the adaption to involved environmental settings, two different clinical isolates
PA14 and PAO1 were grown under aerobic conditions as biofilms. Strain PA14
causes disease in a broader host range than strain PAO1 due to additional gene
products [6]. Additionally planktonic cultures of strain PAO1 were collected in
the early stationary phase, late stationary phase, and exponential growth phase
as summarized in Table 1 (a).
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Table 1. (a) Description of all conditions, in which P. aeruginosa was grown and tested in this
paper. (b) Number of metabolites in P. aeruginosa, which were different (p-value < 107 1%) between
the given conditions.

Condition|Strain Growth conditions 1 2a 2b 2c 2d
1 PA14 aerobic, biofilm 1 17 11 26 17
2a PAO1 aerobic, biofilm 2a 17 727
2b PAO1 anaerobic, planktonic, early stationary phase 2b 24 20
2c PAO1 anaerobic, planktonic, late stationary phase 2c 35
2d PAO1 anaerobic, planktonic, exponential growth phase

(a) (b)

5 replicates of 150 mg wet weight of the various P. aeruginosa strains grown
under indicated conditions were collected (Table 1). Cells were harvested, meta-
bolites extracted, derivatized, and analyzed by GC/MS as outlined before [3].
Identification and peak areas were deconvoluted with the software AMDIS [3].
Ribitol served as internal reference standard. Identified key metabolites with sig-
nificantly altered intensity pattern for the various P. aeruginosa strains grown
under indicated conditions will be subjected to further investigation of the
metabolic network and flux analysis.

3 The Noise Model

The biological experiments considered here provided data in the following form.
A number of ¢ conditions were considered where ¢ varies between two and five in
the experiments. Even if there were more than two conditions analyzed, the pair-
wise comparison of conditions was the essential point for the statistical analysis.
Clearly, it was sufficient to consider the situation where measurements from two
conditions were available. For each condition, the intensity of each metabolite
was measured k times. Typical values for k£ range between three and ten. Out
of 176 detected metabolites from P. aeruginosa 107 were chemically identified.
This number represents only a fraction of all metabolites present in P. aerugi-
nosa due to the current limitation of the detection technology. In comparison,
for the baker yeast Saccharomyces cerivisiae about 560 low molecular weight
metabolites have been detected [7].

As mentioned above, it was not possible to deduce reliable statistical state-
ments about the noise or the variance for intensity measurements for a single
metabolite under a single condition tested, since a sample size of ten or less is
too small. However, under the assumption that the variance followed a certain
pattern depending on the true intensity, statistical inference has been carried
out in a more reliable way. Before this assumption is described in more detail,
necessary preprocessing steps have to be explained.

The first preprocessing step deleted all zero intensities. These intensities do
not correspond to measurements, rather to missing values. Therefore, the number
of available measurements for the various metabolites from one of the analyzed
conditions may vary. If there were too many missing values for a certain metabo-
lite from one analyzed condition —i.e. less than two measurements were left after
removing the zeros — this metabolite was excluded from statistical analysis.
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Instead of considering the measured intensities directly, a logarithmic trans-
formation was carried out in advance. This preprocessing step is also commonly
used in the context of gene expression data evaluation derived from microarray
experiments [8,9]. The measured intensities in the experiments considered here
ranged from values close to zero up to more than 600,000. A statistical analysis
of such data tends to overemphasize the extremely large values and to neglect the
smaller values. The logarithmic transformation reduces this effect. Another rea-
son for applying the logarithmic transformation was that the original measured
intensities (of one metabolite under one analyzed condition) do not follow a nor-
mal distribution, since they always yield positive values. Although the number
of data for single metabolites under a single condition was too small to carry out
statistical tests for the assumption of normal distribution, our interpretation of
the data looked reasonable. After these preprocessing steps, the structure of the

data set for one condition was as follows: (x?), ... ,acgkl), ... ,m%l), ... ,:z:,(f")).
There were n metabolites and each tuple
1 ki
NI &

represented k; noisy measurements of the same unknown logarithmic intensity p;.
As outlined before, the basic assumption was that the subsample (1) originated
from independent samples with normally distributed data, with unknown mean
u; and unknown variance o;. Figure 1 compares the mean logarithmic intensities
on the z-axis with the empirical variances on the y-axis. Because of the small
sample sizes, the variances still differ strongly. Nevertheless, there was a tendency
that small (logarithmic) intensities were less reliable or more noisy than larger
ones. This effect is in accordance with previous experiences and with data from
other mass spectrometry experiments [10].

In the context of microarray expression data, Bayesian approaches are very
popular to estimate posterior probabilities of differential expressions in order to
determine whether observed differences in expressions are significant or not [11-
13]. The approach outlined in this paper is based on the classical frequentistic
approach in statistics applying a likelihood ratio test. For this test a suitable
model for the noise was required taking the above mentioned decreasing noise
in the logarithmic measurements into account. This was modelled by assuming
that a sample of the form (1), representing k; measurements of the same true
logarithmic intensity pu;, followed a normal distribution with unknown mean pu;
and unknown standard deviation o; = o(p;) = o(us;v). The deviation o; is a
function of the true logarithmic intensity p; and a parameter vector v. In [10],
it was proposed to choose o (j;;v) = o(pi;a,m7,\) = a + re~*i, This means the
parameter vector v = (a,r, A) has three components. Component a represents
the absolute noise independent of the true underlying logarithmic intensity pu;,
r reflects a relative portion of the noise depending on p; and A determines how
fast the relative portion of noise decreases. Of course, other functions are also
possible to model the property of decreasing noise with increasing logarithmic
intensities. Note that neither the true logarithmic intensities u; nor the values
for the parameters a, r and A were known in the considered experiments.
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Fig. 1. Means and variances of the logarithmic intensities.

4 A Statistical Test for Differential Occurrence

Considering the statistical model for the noise described in the previous section,
the task was the following. There were two samples of the form (1) coming
from the identified metabolite, however, measured under different conditions.
The question was whether the true underlying (logarithmic) intensities p; and
J2 were identical or not. If there was enough statistical evidence that the two
intensities were not identical, then this was a clear indication for a biological
cause of the observed difference.

In this section a statistical test is described that provides a p-value for the
null hypothesis y; = ps meaning that the expression levels for the considered
metabolite were identical under the two conditions versus the alternative hypoth-
esis that true intensities differed. A low p-value meant that the null hypothesis
(no differential expression) had to be rejected with high certainty. The test was
derived from the application of the likelihood ratio method based on Wilks’ the-
orem [14], stating that under certain general regularity conditions, the statistic

—2InT where
fy (y | 5\(/10))
= @)
fy (y | ,\(An)

has an approximate x2-distribution. fy (Y | :\(AO)) and fy (Y | 5\(41)) are the

likelihoods for the sample Y given the parameter vectors AAo) and 5\(41), respec-
tively. These parameter vectors are the maximum likelihood estimators under
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the constraints Ay and Ay, respectively. In the case considered here, the param-
eter vector was (a,, A\, i1, j12), where pq and us were the maximum likelihood
estimates for the true logarithmic intensities of the metabolite from the two
considered conditions. For A the constraint pu; = ps applies, i.e. the two true
intensities are assumed to be identical. In this case the y2-distribution of the
test statistic has one degree of freedom. The maximum likelihood estimation of
the parameters involves numerical methods that are described in [10]. Here, the
statistic T' in (2) can be written in the form

(a + 1"e’>‘“1)k1 . (a + 1"e’>‘“2)k2

(a + 1“6""‘)]“"_162

k1 (1) 9 ko
@ =t \\ (o
| (geXI’(ﬂawe*uf)) (H p<2<
ks (1) 2 k2 2 2 ’
(7 — ) . < (i — p2)
(il_[lexp <2(a+re—>\u1)2>> (il_[le P <2(a+re—>\u2)2>>

(xg), e ,xgl)) and (x?), ‘e ,xﬁ)) are the measured (logarithmic) intensities of
the considered metabolite under conditions 1 and 2, respectively. Note that the
estimation of the parameters a, r and A is based on all metabolites and not only
on the metabolite under consideration, leading to a much larger sample size.

The statistical test is not only applied to one metabolite, but to a number of n
metabolites in a way that several statistical tests are carried out simultaneously.
A p-value considered as significant for a single metabolite could be too large in
the case of multiple testing. If a is considered as a sufficiently high confidence
level for a single test — i.e. p-values smaller than « lead to the rejection of the
null hypothesis — a correction has to be carried out for multiple testing. Various
methods are available for such corrections [15], for instance the conservative
Bonferroni correction using - as the corrected confidence level, when n tests are
carried out simultaneously. Another possible choice for the corrected confidence
levelis 1 —(1— a)l/ " which is applicable for two-sided hypotheses, multivariate
normal statistics, and positive orthant dependent statistics, but is usually not
correct in the general case [16]. In order to be on the safe side, the conservative
Bonferroni correction is recommended here, especially since the likelihood ratio
test is only an asymptotic, not an exact test.

T =

5 Results and Discussion

Biofilm-like microcolonies of P. aeruginosa are resistant to antibiotics due to
low oxygen concentration in the microcolony resulting in nearly non-growing
cells amongst other factors [17]. Likewise metabolites of an aerobic biofilm PAO1
showed the highest similarity to those from anaerobic planktonic late station-
ary phase cells (see Table 1 (b)). Metabolomes measured for biofilms of PA14
appeared to be similar to early stationary phase cells, which indicated a more
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intense growth behaviour of PA14 biofilms compared to PAO1 biofilm cultures.
However, the metabolome of strain PA14 in general might be different to that of
strain PAQO1, hence overinterpretation of these results should be avoided. With
the aid of the statistical tests outlined here, we were able to find analogies be-
tween the different analyzed conditions.

Table 2. Differences in metabolite composition between late stationary phase cells versus exponential
growth phase cells of P. aeruginosa strain PAO1 (condition 2c¢ vs 2d) identified by the outlined
likelihood ratio test. Metabolites with p-value < 10710 are shown. Ratio and inverse ratio show the
n-fold differential occurrence of each metabolite.

Condition 2¢ vs 2d Ratio | 1/r| p-value|[[Condition 2c vs 2d |Ratio | 1/r| p-value
Trehalose 54.38|0.02| 1.8 E-14([1-6-Anhydro-beta 0.12| 8.66| 5.2 E-15
Quebrachitol 12.21{0.08| 3.1 E-15||-D-glucose

Mannose 8.10|0.12| 7.8 E-16||Glucose-6-phosphate 0.11| 8.81| 3.1 E-15
Isomaltose 5.77(0.17| 2.0 E-14||Hexadecanoic acid 0.11| 8.92| 2.6 E-15
Palmitic acid amide 0.21|4.78| 4.4 E-14||Mannose-6-phosphate 0.11| 9.39| 3.8 E-15
1-Monostearoylglycerol 0.18(5.46| 6.4 E-14||Xylose 0.09| 11.46| 1.2 E-15
Phenylalanine 0.18]5.49| 7.1 E-15||Lyxose 0.09| 11.57|<1.0 E-16
Oleic acid amide 0.16]6.34| 1.3 E-15||Uridine-5’-monophos. 0.07| 13.53| 5.4 E-15
Xylulose-5-phosphate 0.15(6.56| 7.1 E-14||Fructose-6-phosphate 0.07| 14.66| 4.1 E-15
Phospho-ethanolamine 0.15(6.64| 8.9 E-16||Xylulose 0.07| 15.30| 2.1 E-11
Homoserine 0.15(6.66| 5.2 E-14||Isoleucine 0.05( 19.71|<1.0 E-16
Glutamic acid 0.14|7.20| 3.1 E-15||Diethyleneglycol 0.05| 20.49| 1.3 E-15
Serine 0.14|7.22| 4.4 E-16||Proline 0.05| 21.12|<1.0 E-16
Threonine 0.13|7.65|<1.0 E-16||2-Monooleoylglycerol 0.04| 23.76|<1.0 E-16
5-Deoxy-5-Methylthioad. 0.13(7.69| 5.6 E-16||1-Monopalmitoylglyc. 0.04| 26.17|<1.0 E-16
Valine 0.12(8.15|<1.0 E-16||1-Monooleoylglycerol 0.02| 47.41| 7.5 E-15
Ribulose-5-phosphate 0.12|8.28| 1.1 E-15||Shikimic acid 0.01(121.35| 1.8 E-14
Adenine 0.12|8.49| 3.3 E-16||Leucine 0.01|134.68| 3.8 E-15

The most pronounced difference (35 metabolites) was observed between rest-
ing cells (2¢) and exponentially growing cells (2d). Details are shown in Table
2. Naturally, the activity of metabolic processes is much higher in growing cells
compared to those in resting cells as reflected by in the differential metabo-
lite profile. The di- and monosaccharides trehalose, isomaltose, and mannose
were found less abundant in growing cells, since these carbon sources are usu-
ally rapidly metabolized as energy sources. Furthermore, certain sugars such
as sucrose and trehalose are supposed to play a role in the adaption of P.
aeruginosa to environmental stresses [18]. Metabolites, which are essential for
amino acid biosynthesis and subsequent protein biosynthesis (leucine, proline,
shikimic acid, isoleucine, valine, serine, glutamic acid, phenylalanine), for DNA
and RNA formation (adenine, uridine-5-monophosphate) and for energy pro-
duction (glucose-6-phosphate, fructose-6-phosphate, mannose-6-phosphate) were
found elevated in growing cells. Furthermore, lipids (palmitic acid amide, phos-
phoethanolamine, 2-monooleoyl-, 1-monopalmitoyl-, and 1-monooleoylglycerol)
were more pronounced in growing cells, since they are essential for membrane
biosynthesis.

The statistical tests for metabolome data from P. aeruginosa made clear dif-
ferences accessible between various distinct growth conditions. Obtained results
are in good accordance to common biological interpretation. Further application
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of this novel statistical approach is also possible for MS/MS-peptide identifica-
tion and microarray data.
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