Modifications of Genetic Algorithms for Designing and Optimizing Fuzzy

Controllers

J. Kinzel

F. Klawonn

R. Kruse

Department of Computer Science
Technical University of Braunschweig
D-38106 Braunschweig, Germany
Tel. +49.531.391.3293, Fax +49.531.391.5936, Email klawonn@ibr.cs.tu-bs.de

Abstract— This paper investigates the possibili-
ties for applications of genetic algorithms to tuning
and optimizing fuzzy controllers, or even to gener-
ate fuzzy controllers automatically. There are var-
ious ad-hoc approaches to use genetic algorithms
for the design of fuzzy controllers, which already
indicated good results. However, there is a need
for systematic techniques that take the properties
of fuzzy controllers and genetic algorithm into ac-
count in order to obtain fast convergence and to
be able to tackle more complex control problems.

I. INTRODUCTION

Fuzzy control (for an overview see for example [11, 12])
is a control strategy that is not based on a mathematical
description of the process to be controlled, but intends
to model the behaviour of a human operator who would
(theoretically) be able to control the process. The expert’s
knowledge is specified in terms of linguistic control rules
in which expressions like negative big, positive small, etc.
appear. These linguistic expressions are associated with
fuzzy sets. In [7, 8] it was shown that fuzzy control can
be interpreted as an interpolation process in which the
rule base corresponds to the specification of a partial con-
trol function. Each linguistic expression can be associated
with a crisp value and the respective fuzzy set represents
this value taking some imprecision into account.
Although the idea of fuzzy control is very appealing, the
design of an appropriate rule base and the specification of
the fuzzy sets are very tedious and difficult tasks that are
necessary in order to obtain a near optimal control or even
a stable control at all. Therefore, the need of at least a
partial automatization of these tasks is considered as im-
portant and a large number of approaches involving neural
networks was proposed (see for instance [1, 9, 14, 16]. Re-
cently genetic algorithms are also considered as a possible
solution to the problem of the design and optimization of

fuzzy controllers (for an overview see section 4).

The paper is organized as follows. In section 2 we dis-
cuss the requirements for a genetic algorithm that are im-
posed by the fuzzy control concept. Section 3 describes
our realization of the ideas developed in section 2. Other
approaches are considered in section 4.

II. PRAGMATICS FOR (GENETIC ALGORITHMS FROM
THE VIEWPOINT oF Fuzzy CONTROL

The main parameters of a fuzzy controller whose design
and tuning are feasible for genetic algorithms are the rule
base and the fuzzy partitions. We will not consider the
choice of operators like t—norms here.

Fine tuning of a fuzzy controller can only be done by
careful adjustments of the fuzzy sets in the fuzzy parti-
tions, but not by a change of the rule base. Therefore, it
is reasonable to start with straight forward simple fuzzy
partitions and to learn first the rule base and after that
carry out changes in the fuzzy sets for fine tuning. A
simultaneous learning of the rule base and the fuzzy par-
titions is possible in principle, but since a bad rule base
results in drastic changes for the fuzzy sets, it is better to
divide these tasks.

Binary versus Non—Binary Codings

The rule base as well as the fuzzy partitions are generally
not given in a binary representation. Although binary
codings are better suited for hyperplane sampling [18],
for non—binary codings more adequate mutation opera-
tors can be defined and the destroying effects of crossover
are reduced. To see this consider for example a rule base
for a fuzzy controller in the form of a table with 7 x 7 en-
tries, where for each entry seven possible values (conclu-
sions) are possible. A possible non-binary coding would
use ¢ = 49 genes, having seven possible alleles for each
of them. A binary coding could use b X g genes where
each group of b genes encodes one entry in the rule base.
In our case we would have b = 3. Building blocks in the
binary representation will in general have all four genes of

one group as don’t care symbols or all four as determined
alleles. Assume that we have a schema in the non—binary
representation of defining length £. The corresponding bi-
nary representation then has a defining length of - £. The
probability that the application of crossover will destroy
this schema can be (over)estimated in the usual way, lead-
ing to £/(g — 1) in the non-binary case, whereas we have
(b-£+b—1)/(b-g— 1) for the binary representation. It
is easy to check that the latter expression is greater than
the first one.

The Building Block Hypothesis

Fuzzy controllers are a very good example where the build-
ing block hypothesis is satisfied in a natural way. Since
fuzzy control can be seen as an interpolation technique,
mostly neighbouring fuzzy sets in the fuzzy partitions have
a strong combined effect on the resulting control func-
tion. Fuzzy sets that are ‘far away’ from each other can
be treated more or less independently. The linear sequence
of fuzzy sets in a fuzzy partition admits an easy coding
in the form of a string. Nevertheless, the coding has to
be chosen carefully in order to maintain the semantics of
the fuzzy sets (positive big should not be on the negative
side) and to enable the application of suitable mutation
and crossover operators.

The situation for the rule base is a little bit different.
We have the same phenomenon that only rules that are
neighbours in the rule table do interfere. But the rule table
is planar structure whose neighbourhood properties are
destroyed by forcing it into a linear string (chromosome).
Taking a closer look at the crossover operator, especially
for two—point crossover, it is obvious that crossover ex-
changes a linear subpiece of two linear or ring structures.
Thus two—point crossover maintains the neighbourhood
structure of the ring, except for those two points where
the linear subpiece is cut out [2]. This idea can be gen-
eralized to planar or other higher dimensional structures,
i.e. we understand a chromosome as an n—dimensional ar-
ray and crossover exchanges subarrays. For such crossover
operators a similar schema theorem can be derived where
the defining length of a schema has to be replaced by a
notion like the defining ‘radius’ (of the subarray of deter-
minate genes).

III. MODIFICATIONS FOR THE GENETIC ALGORITHM

Developing a fuzzy controller is divided in two steps. First
an expert has to define a rule base using linguistic vari-
ables. After that he defines fuzzy partitions to translate
his linguistic rule base into a control function. In our
approach genetic algorithms are used to ease the experts
work of generating an appropriate rule base and the cor-
responding fuzzy sets.

HMnb Mns

Hzero HMps

Hpb

Figure 1: A homogeneous fuzzy partition.

Both tasks are aggregated in one module in the environ-
ment of a fuzzy developing system that can make use of a
predefined controller, provided by the expert, and gener-
ates an optimized solution according to the given problem.

This task is solved in three steps:

e find a good initialization for the rule base and the
fuzzy sets if no controller is provided by the expert

e generate a rule base which is able to handle the given
problem

e tune the fuzzy sets to optimize the performance

Finding a Good Initialization

Genetic algorithms in other approaches usually initialize
the rule base randomly, incorporating no knowledge about
the control problem. In most cases this rule base differs
strongly from the best rule base obtained by optimiza-
tion. Using implicit knowledge it may be possible to find
a better initial rule base, using standard rules like

1. if the antecedents are zero, the consequents should
be zero, too,

2. if the antecedents of two rules are similar, the con-
sequences of these rules should also be similar.

A rule base can be generated by induction of these rules.
Start with step (i) to generate the conclusion for the rule,
where all antecedents are zero. Then proceed with step
(ii) for all other conclusions.

The initial fuzzy partition of each domain should be ho-
mogeneous. A homogeneous fuzzy partition is illustrated
in figure 1.

Generation of a Good Rule Base

To generate a useful rule base, we use a genetic algorithm
which adapts the initial rule base according to the given

problem. In a first step the population is generated by
applying the mutation operator on all genes of the initial
rule base. After calculating the fitness of the population,
the genetic operations selection, crossover and mutation
are used to generate the next population. This is done
until a good rule base is found.

Coding of the Rule Base

An appropriate coding of the optimization problem is of
significant importance for the performance of a genetic al-
gorithm. The coding should be chosen in accordance to
Holland’s schema theorem [4, 3]. We will use the follow-
ing coding which differs from ordinary codings, because it
does not use a string of genes but an n; X ... X ng matrix
where n; is the number of fuzzy sets in domain i. Each
element of this matrix contains one fuzzy set of the out-
put domain. This coding is analogous to a representation
of the rule base in the form of a table. An example of a
coding of a rule base for the cart pole problem is shown
below.

nb nm ze pm pb
nb [nm | nb | ze | nm | pm
nm | nb | nm | nm | ze | nm
ze | nb | nm | ze | pm | pb
pm | nm | ze | pm | pm | pb
pb | pb | pm | pb | pb | pm

Example of a coded rule base
For example the gene (nm,ze) represents the following
rule:
IF ¢ is nm AND ¢ is ze THEN F is nm

Crossover on Rule Bases

According to the two—point crossover operator on gene
strings we use a point-radius operator, which exchanges
areas of genes between two chromosomes. Both crossover
point and radius are chosen randomly.

The following example shows how this crossover opera-
tor works. Crossover is exchanges the areas with capital
letters as entries. This crossover operator was motivated
in the previous section.

nm | nb | ze [nm|pm nm | nb | ze [nm |pm
nb |[NM |nm | ze lnm nb | ZE [lnm| ze [nm
NB|[NM|ZE |pm|pb PM|NB | ZE |pm | pb
nm | ZE |pm [pm | pb nm [PM|pm [pm | pb
pb |pm | pb | pb |pm pb |pm | pb | pb [pm
—
pb |nm | pb |pm|mm pb |nm | pb |pm |mm
ze | ZE |nm|nb | pb ze |NM|nm | nb | pb
PM|NB | ZE |pm | pb NB|NM|ZE [pm| pb
pb [PM|pm |pm | nb pb | ZE [pm|pm| nb
pm |pm | pb [nb |nm pm|pm |pb [nb |nm

Mutation of Rule Bases

Mutation is used to change a gene randomly without any
respect to the fitness of the chromosome. In our approach
one fuzzy set is replaced by a randomly chosen but similar
fuzzy set. This means that the fuzzy set ”ze” could be
mutated either to "nm” or "pm”.

Tuning the Fuzzy Sets

Having found a rule base which is able to solve the problem
to a certain degree, we can now tune the according fuzzy
sets to obtain better performance of the controller. Here
the problem is to find a good coding of the fuzzy sets.
Most approaches use a bit string coding of characteristic
parameters of the fuzzy sets. For example the centerpoint
and width of a triangular fuzzy set are coded as binary
representations in bit string form. The problems of this
coding were discussed above.

We think that this representation is too abstract taking
into account the idea that crossover should exchange good
features between two chromosomes. In our case good fea-
tures are appropriate coverings of a fuzzy partition. Ev-
idently crossover means to exchange parts of the fuzzy
partition of two chromosomes. According to this idea we
propose the following representation.

Coding of Fuzzy Sets

Each
gene represents the membership values of the fuzzy sets
of domain d at a certain x-value. This is how a fuzzy
partition is described by discrete membership values.

Each domain is represented by a string of genes.

Suppose a domain d is limited by its left boundary I
and its right boundary r, and it is partitioned in ng fuzzy
sets. Its representation is given by:

gen
,Ulld(l) y’ld(r)
i (1) bina(7)

coding of domain d

Crossover on Fuzzy Sets

We use a two—point crossover operator which exchanges
the ranges of two given chromosomes. So just ranges of
the represented partitions are exchanged. The following
examples show how crossover works, and which problem
results of this representation.

ns . ze . ns

In most cases we have the undesired side—effect to obtain
non convex fuzzy sets. Then we have to use a repair-
algorithm to make these sets convex.

Secondly fuzzy sets may vanish. In this case the result-
ing controller is no longer able to solve the given problem,
and the corresponding chromosome either will not be se-
lected in the next generation or the fuzzy set is generated
again by mutation in the next step.

Mutation of Fuzzy Sets

Mutation of fuzzy sets is carried out by randomly choosing
a membership value p;(z) in a chromosome and changing
it to a value in [0, 1]. Non convex fuzzy sets will be made
convex as said above.

Fitness Function

The fitness function used in a genetic algorithm depends
on the problem the controller has to solve. Therefore it
is impossible to specify a fitness function in general. But
we can extract classes of problems which can be described
by a common function. For example the class of problems
where a parameter z(t) shall adopt a special value ¢, we
can use the time-weighted error

maztime

> Ha(t)—cf

t=start

as it is stated in several articles [10, 6].

The problem is to select appropriate initial conditions
to test a controller’s performance. Some authors suggest
to select a condition out of the entire parameter space ran-
domly [13, 10]. This includes very extreme conditions for
a controller that is not able to manage even easy problems.
So we suggest to use easy problems at the beginning and
aggravate them when there is a certain amount of chro-
mosomes which manages the easier problems.

Results

We used the cart pole problem to test our approach. The
population size was set to 200. The resulting rule base
after 33 generations was

nb nm =ze pm pb
nb | nm | nb | nb | nm | pm
nm | nb | nm | nm | ze | nm
ze | nb | nm | ze | pm | pb
pm | nm | pm | pm | pm | pb
pb | pb | pm | pb | pb | pb

The resulting performance with initial conditions ¢ =
40.0° and ¢ = —2.0 is shown in the following diagram:

10 12 14 16

The tuned fuzzy sets were not much different from the
initial ones. This is, because the optimized rule base seems
to be very good, and because the cart pole problem is a
relative artificial and ”easy” problem.

IV. OTHER APPROACHES

In this section we shortly review other approaches and
discuss the differences to ours.

The Approach of C. Karr

C. Karr [6, 5] uses genetic algorithms to alter just the
shape of the fuzzy sets used in a given rule base. Each
parameter of a fuzzy set (left—, middle—, and right point)
is coded as a seven—bit binary number. The parameters
of all sets are concatenated to a bit-string used for the
genetic algorithm. The fitness is achieved by calculating
the square error of 4 initial conditions chosen randomly
from the input space.

This approach shows that even a genetic algorithm with
a "simple” coding may result in good solutions. This is
because genetic algorithms are robust algorithms in opti-
mizing.

The Approach of Takagi & Lee

H. Takagi and M. Lee [13] use a genetic algorithm to op-
timize the rule base (including number of rules and fuzzy
sets per domain) and the shape of the fuzzy sets of a

Takagi-Sugeno controller (TSC) [17]. A rule of a TSC

has the form:

IF z; is A AND z; is B THEN y = w2 + way + w3

w; are called rule—consequent parameters.

A triangular fuzzy set is described by three parame-
ters. The distance from the leftmost point to the center
(leftbase). The distance from the rightmost point to the
center (rightbase) and the distance from the center to the
previous fuzzy set (center).

The fuzzy sets are coded in the form of membership
function chromosomes (MFC), e.g.:

leftbase center rightbase
[10010011 | 10011000 | 11101001 |

Note that leftbase, rightbase, and center are all positive!
The rule-consequent parameters chromosome (RPC) is
coded analog for the parameters w;.
The rule base is coded in a bit string as follows.

domain1l domain 2

rule consequents

Crossover and mutation operators are bit manipulating.
After decoding the chromosomes, which do not satisfy spe-
cial constraints are deleted and so the number of rules is
decreased.

The fitness function favours chromosomes which erect
the pendel in a short time and those which keep the pen-
del balanced for a longer time. Furthermore it punishes
chromosomes with a lot of rules.

The problem aroused by operating on bit—string chro-
mosomes may lead to undesired solutions as discussed
above. Further problems may appear, when optimizing
all parameters simultaneously, because they influence each
other. We think that it is better to keep some parameters
fixed and optimize the others in a second step.

An interesting feature of this approach is the ability to
decrease the number of rules. We think that many rules
do not significantly decrease a controllers speed, but it
may be worth to show the expert which rules are really
necessary.

The coding of positive distances avoids the problem that
fuzzy sets may ”overtake” each other. (That means, a
fuzzy set representing the concept "nm” may be found
right of the set “ze”). This will keep the semantics of the
fuzzy sets. To avoid this problem we propose to tune just
the antecedent fuzzy sets. If an overtaking took place,
it indicates that the fuzzy sets have changed their roles
in the rule base or — in other words — the rule base was
incorrect. Assuming that we obtained a correct rule base
in a first optimization step, overtaking is unlikely.

The Approach of Kropp € Baitinger

K. Kropp and U. Baitinger [10] propose the use of a genetic
algorithm to optimize rule bases with another method.
They are coding the rule base in form of a bit—string, too.

The rule base table is transformed to a string of conse-
quent fuzzy sets, where a fuzzy set is coded by its number
as 3-Bit integer. For there are possibly less than eight
fuzzy sets, the other bit combinations are mapped to the
ones used. So the problem of generating meaningless genes
using crossover and mutation is avoided. A disadvantage
we see at this point is that not all fuzzy sets appear with
the same probability.

The time—weighted error is used as fitness function
where 180 input conditions for ¢ = 0 are tested. By this
means the problem of learning just a subset of conditions
is avoided. As said above, the same input conditions lead
to the same result. Testing all possible conditions may
lead to undesired high computation time.

The Approach of Surman, Kanstein & Goser

Surman, Kanstein and Goser [15] propose to add a term
to the fitness function that represents the entropy of a rule
base. Entropy describes the average number of activated
rules. This effect may appear, when the covering of a
fuzzy partition is not homogeneous.

V. CONCLUSIONS

We have seen, that there are a lot of possibilities to use ge-
netic algorithms for the optimization of fuzzy controllers.
They differ from the amount of information which is used
to design the genetic algorithm. In our opinion the aim in
optimizing a controller is not just a good performance of
the obtained controller but also the information an expert
can receive from this solution.

REFERENCES

[1] H.R. Berenji, P. Khedkar, Learning and Tuning
Fuzzy Logic Controllers through Reinforcements.

IEEE Trans. Neural Networks 3 (1992), 274-740.

[2] K. DeJong, An Analysis of the Behavior of a Class of
Genetic Adaptive Systems. PhD Dissertation. Dept.
of Computer and Communication Sciences, Univer-

sity of Michigan (1975).

[3] D.E. Goldberg, Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison—Wesley,

Reading (1989).

[4] J.H. Holland, Adaptation in Natural and Artificial
Systems. University of Michigan Press (1975).

[5] C. Karr, Genetic Algorithms for Fuzzy Controllers.
AT Expert 2/1991, 27-33.

[6] C. Karr, Fuzzy Control of pH using Genetic Al-
gorithms. IEEE Transactions on Fuzzy Systems 1
(1993), 46-53.

[7]

8]

[9]

[10]

[14]

[16]

[17]

F. Klawonn, R. Kruse, Equality Relations as a Basis
for Fuzzy Control. Fuzzy Sets and Systems 54 (1993),
147-156.

F. Klawonn, R. Kruse, Fuzzy Control as Interpola-
tion on the Basis of Equality Relations. Proc. 2nd
IEEE International Conference on Fuzzy Systems

1993, IEEE, San Francisco (1993), 1125-1130.

B. Kosko, Neural Networks and Fuzzy Systems. Pren-
tice Hall, Englewood Cliffs (1992).

K. Kropp, Optimization of Fuzzy Logic Controller In-
ference Rules using a Genetic Algorithm. Proc. EU-
FIT’93, Aachen (1993), 1090-1096.

C.C. Lee, Fuzzy Logic in Control Systems: Fuzzy
Logic Controller, Part I. IEEE Trans. Systems, Man,
Cybernetics 20 (1990), 404-418.

C.C. Lee, Fuzzy Logic in Control Systems: Fuzzy
Logic Controller, Part II, IEEE Trans. Systems, Man,
Cybernetics 20 (1990), 419-435.

M. Lee, H. Takagi, Integrating Design Stages of Fuzzy
Systems Using Genetic Algorithms. Proc. 2nd IEEE
International Conference on Fuzzy Systems 1993,

IEEE, San Francisco (1993), 612-617.

D. Nauck, F. Klawonn, R. Kruse, Combining Neural
Networks and Fuzzy Controllers. In: E.-P. Klement,
W. Slany (eds.), Fuzzy Logic in Artificial Intelligence,
Springer, Berlin (1993).

H. Surmann, A. Kanstein, K. Goser, Self-Organizing
and Genetic Algorithms for an Automatic Design
of Fuzzy Control and Decision Systems. Proc. EU-
FIT’93, Aachen (1993), 1097-1104.

H. Takagi, I. Hayashi, NN-Driven Fuzzy Reasoning.
Intern. Journ. Approximate Reasoning 5 (1991), 191-
212.

T. Takagi, M. Sugeno, Fuzzy Identification of Sys-
tems and its Application to Modeling and Control.
IEEE Trans. Systems, Man, Cybernetics 15 (1985),
116-132.

D. Whitley, A Genetic Algorithm Tutorial. Techni-
cal Report CS-93-103, Dept. of Computer Science,
Colorado State University (1993).

