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Abstract

We introduce an objective function-based fuzzy clustering technique that
incorporates linear combinations of attributes in the distance function. The
main application field of our method is image processing where a comparison
pixel by pixel is usually not adequate, but the environmnet of a pixel or groups
of pixels characterize important properties of an image or parts of it. In
addition, our approach can be seen as generalization of other fuzzy clustering
techniques like the axes-parellel version of the Gustafson-Kessel algorithm.

1 Introduction

The usual objective function in fuzzy clustering is of the form

J(X,Uyv) = Y > (wir)™d* (vi, z) (1)
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where ¢ is the number of fuzzy clusters, u;, € [0,1] is the membership degree of
datum z, to cluster ¢ and d(v;, xy) is the distance between cluster prototype v; and
datum zp. In order to avoid the trivial solution u;; = 0, additional assumptions
have to be made leading to probabilistic [1], possibilistic [7] or noise [2] clustering,
for an overview see e.g. [5].

The prototypes can be simple vectors like the data as in the fuzzy c-means
algorithm (FCM) or more complex structures like in the Gustafson-Kessel algorithm
[4], in linear or shell clustering. In these cases the distance function d is not simply
the Euclidean distance but some other measure depending on the type or form of
the clusters.

In this paper we introduce a new distance measure that generalizes FCM as well
as the Gustafson-Kessel algorithm restricted to diagonal fuzzy covariance matrices.



2 Context Sensitive Fuzzy Clustering

The distance between a datum z and a cluster (vector) v is defined by

L) = ar (wa - Zv@) | 2
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z®) and v(®) indicate the sth coordinates of the vectors z and v, respectively. 7 is
a set of sets of indices (coordinates), i.e. Z C 2{1?} when we have to deal with p-
dimensional data vectors. The parameters a; can be considered as fixed or adapted
during clustering individually for each cluster subject to the constraint

Halzl. (3)

The idea of this context sensitive clustering is that certain subsets of the variables
of data vectors yield similar values when we sum them up instead of comparing them
one by one. A typical application of this approach is image recognition, where two
similar images or regions might not correspond to each other pixel by pixel, but for
instance the sum of the grey values in smaller windows might almost coincide.

Based on this approach we can derive an alternating optimization scheme for
fuzzy clustering using this distance measure.

With condition (3) we obtain the Lagrange function

INX,U,v) = izn:(uik)m-Zoq (Zm(s) —Zv(s)> —A- <H ap — 1> . (4)
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If the parameter ay should be adapted during the iteration procedure, differentiat-
ing (4) gives us a calculation instruction (5) for the parameter oy as a necessary
condition for the objective function to adopt a minimal value.
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In a similar way we obtain a necessary condition for the cluster centers (6).
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Equation (6) is a system of linear equations, but variable and highly dependend
on the choice of the sets in Z. So we decided to use the following heuristics (7) to

estimate the parameters UZ(S) in (6).
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Figure 1: Box Images

In (7) we have to make sure that none of the parameters UEQ) is allowed to be

placed outside the domain of the corresponding data set’s attribute. If values outside

the domain would be allowed, the error of the former placed cluster centers would be
(9)

neglected in placing the next coordinate v;"’ in great distance of all observed data

coordinates. In calculating vZ@ the former calculated parameters vzm (r < q) are

used in equation (7). Otherwise each prototype coordinate would adapt the whole
error between the sum of corresponding data coordinates and the coordinates of the
former prototype. A similar heuristic approach to determine the prototypes is also
used for the fuzzy c-ellipses algorithm [3] and fuzzy c-rings algorithm [8] clustering
techniques. The parameter a; determines the influence of one particular subset of
attributes. If e.g. the class determining areas of an image are known in advance,
it is not necessary to adapt the a; belonging to those areas (assuming that each
I contains the variables of one significant area) during the clustering procedure.
In the case that no supplementary information about the data set is given, it is



possible to define more subsets I than are expected to be necessary for the task
of pattern recognition and adapt the aj in order to adapt the influence of certain
subsets.

Our approach can be seen as a generalization of the axes-parallel version of the
Gustafson-Kessel algorithm [6] that based on the distance function d*(z, (v, D)) =
(xr —v)"D(z — v) where D is a diagonal matrix with determinant 1. Therefore, if

dy,...,d, are the diagonal elements of D, the distance function can be written as
p
& (z,(v,D)) = > dy(zs —v,)° (8)
s=1

with the constraint

IId =1 (9)
s=1
When we choose 7 = {{1},...,{p}}, then our initial equations (2) and (3) corre-
spond to equations (8) and (9), respectively.

3 Examples

Figure 1 shows an example with three different kinds of grey-scale images. On the
left side — (a) — the data set is shown. The grey scales are equivalent to real numbers
as denoted at the bottom of the picture. During the clustering procedure we adapted
the values for the a; and set the number of clusters to three. The set of sets Z is
constructed of all sets containing one element — one particular point of the picture’s
area — and four sets with six points each (the top-left, top-right, bottom-left and
bottom-right regions of the images). The resulting prototypes for the three clusters
are shown in figure 1 (b). The highest membership degrees of the data points to
the clusters are presented together with the corresponding clusters in (c). In figure
2 results for the data set from figure 1 (a) are shown. Here the set of sets Z contains
only the subsets with six elements each — as described above. Figure 2 (a) shows the
resulting prototypes and (b) presents the highest membership degrees of the data
points to the clusters together with the corresponding clusters. The corresponding
clusters of the data points are determined correctly, also the prototypes for cluster
one and three. Since all grey values are present in each particular subset I of Z for
the third group of data points (figure 1 (a)), the corresponding prototype for cluster
two in figure 2 (a) is not able to reproduce the data images correctly — nevertheless
the data points are correctly assigned.

4 Conclusions

Our clustering technique seems to be well suited to determine groups of similar
images. Problems may arrise if no diverging areas for the groups or classes of
images (describing a special class) can be found.
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Figure 2: Result with four subsets
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