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Abstract

This paper discusses new approaches in objective function based
fuzzy clustering. Some well-known approaches are extended by a sup-
plementary component. The resulting new clustering techniques are
able to adapt single clusters to the expansion of the corresponding
group of data in an iterative optimization procedure. Another new ap-
proach based on volume centers as cluster representatives with varying
radii for individual groups is also described. The corresponding ob-
jective functions are presented and alternating optimization schemes
are derived. Experimental results demonstrate the significance of the

presented techniques.
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1 Introduction

Standard fuzzy clustering methods like the fuzzy c-means algorithm are based
on the idea of optimizing an objective function. This objective function de-
pends on the distances of the data to the cluster centers weighted by the
membership degrees. By taking the first derivative of the objective function
with respect to the cluster parameters, one obtains necessary conditions for
the objective function to receive an optimum. These conditions are then ap-
plied in an iteration procedure and define a clustering algorithm. Numerous
approaches have been developed to detect different forms of cluster shapes
in data sets. The more flexible the clustering algorithms are in general, the
more they depend on a suitable cluster initialization. Also with the flexi-
bility of cluster structures the complexity of the proposed algorithms highly
increases. In this article we present an extension that can be applied to well-
known simple and fast clustering techniques enabling these to adapt to the
cluster sizes without highly increasing the computational effort.

In section 2 we review the necessary background on objective function
based fuzzy clustering techniques. Well-known and often applied clustering
techniques as probabilistic, possibilistic, and noise clustering are discussed as
well as several possible distance measures. The restrictions imposed by the
algorithms lead us to the idea of our new approaches. In section 3 we show
that only slight modifications of the basic ideas are necessary to enable better
adaptations by clustering. Nevertheless our new techniques are not based on
special cluster shapes that could be restrictive for the underlying models. The
results of the proposed methods compared to the basic algorithms presented
in section 2 are illustrated in section 4. There some artificial data sets are
used to demonstrate the possibilities of the presented algorithms. The last
example consists of real world data and demonstrates the applicability of the

new approaches. Section 5 finally summarizes our experiences.



2 Objective Function Based Fuzzy Clustering

In this section we present a short introduction to objective function based
fuzzy clustering and describe some well known and often applied techniques.
For a detailed overview on fuzzy clustering see for example [8]. Most objective
function based fuzzy clustering algorithms aim at minimizing an objective

function that evaluates the partition of data into a given number of clusters.

2.1 Basic Objective Functions

Before discussing several special clustering techniques, general forms of ob-
jective functions for fuzzy clustering are introduced that still depend on the
choice of a suitable distance measure. Two very common basic clustering
techniques are probabilistic and possibilistic clustering. Both depend on a
distance or dissimilarity measure weighted by the membership degrees. Prob-
abilistic clustering [1] uses a constraint ensuring that all data points totally
belong to the partition, whereas possibilistic clustering [15] considers outliers
with small membership degrees to all groups of data. A third approach re-
lated to possibilistic clustering is called noise clustering [3]. The idea of this
approach is to assign outliers to a special group of data called noise cluster
and reduce the influence of this group on the whole partition. Selim and
Ismail [18] introduced other approaches to avoid the drawback of probabilis-
tic clustering. They suggest to let a datum belong to a maximum number
of clusters, to set the membership degrees to zero if a predefined maximal
distance is exceeded, or to define a minimum threshold for the membership

degrees.

2.1.1 Probabilistic Clustering

In case of probabilistic fuzzy clustering the objective function has the form

Jrret (XaUaU) = Zzuz 2(,Ui’mk) (1)

k=1 i=1
X = {x1,...,z,} € RP is the data set, n the number of data points, ¢

denotes the number of fuzzy clusters, u;, € [0, 1] is the membership degree
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of datum xj, to cluster i, v; is the prototype or the vector of parameters for
cluster i, and d(v;, zx) is a distance between prototype v; and datum xj. The
parameter m > 1 is called fuzziness index. For m — 1 the clusters tend to
be crisp, i.e. either uy — 1 or uy — 0, for m — oo we have u;, — 1/c.
Usually m = 2 is chosen.

To avoid the trivial solution that all membership degrees wu;; are 0, con-

straints have to be taken into account. In this case the constraints are

Zu““ > 0 forallie {1,...,c} (2)
k=1

and
Zuik =1 forall k € {1,... ,n}. (3)
i=1

Constraint (2) guarantees that only non-empty clusters are admitted in the
partition. Constraint (3) ensures that the sum of all membership degrees
for one datum equals 1.0. This can be interpreted as ”each datum is fully
divided among the clusters and belongs totally to the partition of the data
set”.

Differentiating (1) and taking the constraints into account by a Lagrange

function leads to the necessary condition

1
Uip = T (4)

c d?(vi ) \ ™1
Zj:l (d2 (vj 7$k) )

for (1) to have a (local) minimum. Therefore, equation (4) is used in an

iteration procedure for updating the membership degrees w;. If a suitable
distance function and parameter form is chosen, equations for the prototypes
can be derived analogously, assuming the membership degrees are fixed. The
alternating optimization scheme starts with a random initialization and ap-
plies the equations for the u;; and the prototypes until the difference between
the membership matrices (uf?) and (ulf™) in two succeeding iterations is

smaller than a given bound e.



2.1.2 Possibilistic Clustering

In probabilistic clustering the strong constraint (3) possibly leads to undesir-
able membership degrees of some data. Assume a data point in great distance
to all clusters exists in the data set. This noise point would be assigned the
same high membership degree to all ¢ clusters and therefore would have a
greater influence on the partition than desired. To avoid such a drawback the
approach of possibilistic clustering was introduced with remaining constraint
(2) but modified constraint (3):

Zuik > 0 forall k € {1,... ,n}. (5)

With these constraints the membership degree wu;; could be interpreted as a
degree of representativeness of datum x for cluster i. To avoid the trivial
solution all u;, — 0 by minimizing equation (1) considering constraint (5)

the objective function has to be modified as well (6).

JPO (X, U, v) ZZU (vi, ) + Zm Z uye)  (6)

k=1 i=1 =

The additional parameter 7; determines the permissible extension of cluster

i. Differentiating (6) considering the constraints (5) and (2) leads to

1
Uip = 7 (7)

14 ( (v,,mk)) mt

i

To illustrate the influence of 7;, assume 7; = d?(v;, zx). The resulting mem-
bership degrees are u;;, = (1 + 1ﬁ> - = % Defining a membership degree
of % as lower bound for assigning a data point x; to cluster 7 gives parameter
7; the mentioned meaning. The permissible extension of cluster ¢ is in some
way defined by 7;. If the cluster shapes are known in advance, 7; could be
estimated for all 7 = 1,... , ¢ easily. Otherwise additional assumptions have
to be made. One possible approach is to assume clusters containing about

the same number of data points and estimate

_ ZZ:l u:’l: ) dQ(Uia :Ek)

i = n m
Zk:l Ui

(8)



Krishnapuram and Keller [15] have also proposed other methods to estimate

the parameters ;.

2.1.3 Noise Clustering

Possibilistic clustering is one approach to deal with noisy data. Another
related technique is called noise clustering, see e.g. [3] or [4] and the references
therein. The principle idea is to add one noise cluster to the set of clusters.
Since the objective function considers only the distance function and the
membership degrees, the noise cluster could be represented by the weighted
membership degrees of the data to this cluster. The second term in equation

(9) expresses the noise cluster.

n c m
Jmose (X, U, v) ZZU (vi,zg) + 252 <1 — Zuzk> 9)
k=1 i=1 k=1 i=1
Parameter ¢ has to be chosen in advance and is supposed to be the (large)
constant distance of each datum to the noise cluster. In this case the con-
straints (2) and (5) have to be considered as in possibilistic clustering in

order to derive equations for the membership degrees

1

1 1
c d2(vi,zp) \ ™1 d?(vi,mg) \ ™1
e (i)™ 4 (P
as necessary conditions for (9) to have a minimum. An interesting result is
that

D ug < 1 for all k € {1,... ,n}. (11)

This illustrates that each datum belongs at least with a small membership
degree to the noise cluster. In 1984 Ohashi [16] already made an attempt
to consider noise in data. Davé and Krishnapuram [4] showed that the min-
imization of Ohashi’s objective function is equivalent to the presented ap-

proach introduced by Davé [3].



2.2 Distance measures

In the previous section several general clustering concepts have been de-
scribed. All techniques rely on the definition of suitable distance mea-
sures. Choosing a certain dissimilarity measure defines the structure which
is searched for in the sample data. Different distance measures that are able

to describe varying forms or shapes of clusters are possible.

2.2.1 The Fuzzy c-Means Algorithm

One simple fuzzy clustering technique is the fuzzy c-means algorithm (FCM),

see e.g. [1], where the distance d(v;, zx) is simply the Euclidean distance

L 2
Orem = d2(vi:xk) = || vk — vi ||2 = Z (555:) - Ufy)) (12)

v=1
and the prototypes are vectors v; € RP, where p is the dimensionality of the
data. z\”) (vgy)) denote the v’th coordinate of the data vector (cluster cen-
ter representative). Due to the Euclidean distance measure, this technique
searches for spherical clusters of approximately the same size. By differenti-

ating (1), (6) or (9) we obtain the necessary condition

v = Ly (13)
D ket Uik
as prototype calculation instruction for the objective functions to have a
(local) minimum using D ey Since the first summand is identical in the
three mentioned objective functions (see section 2.1) and the second term in
equations (6) and (9) does not depend on a certain distance measure, the
derived prototype equation holds in all three cases. These prototypes could
be used alternately with (4) in the iteration procedure. The update equation
for the membership degrees depends on the chosen basic objective function

as described in the previous section.

2.2.2 The Algorithm by Gustafson and Kessel

Gustafson and Kessel [7] designed a fuzzy clustering method that is able
to adapt to hyper-ellipsoidal forms. The prototypes consist of the cluster
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centers v; as in FCM and (positive definite) covariance matrices C;. The
Gustafson and Kessel algorithm (GK) replaces the Euclidean distance by

the transformed Euclidean distance

Dor = d*(vi,2) = (pi det C)YP - (g — v;) TCT (g — vy). (14)

)

The factor (p; det C;)'/? in ® gk guarantees the volume for all cluster to be
constant. Factor p; could be used to determine the size of cluster 7 and is not
changed during the alternating optimization. If the sizes cannot be estimated
in advance, the parameters p; might be set to one. The covariance matrices

C; are computed using equation (15).
n
Cz' = Zu% : (fl?k - UJ(:E;C — ’UZ')T. (15)
k=1

The prototype calculation instruction of equation (13) does not depend on

the norm used in the distance measure, so again we obtain

v = ZZ:; Ui * Tk
D ke Uik

as a necessary condition for the objective functions (1), (6), or (9) to have a
(local) minimum. With these equations the alternating iteration procedure
for the Gustafson-Kessel algorithm is defined. In the update equation for the
membership degrees D, see equation (14), has to be inserted as distance
measure. This general form searches for hyper-ellipsoidal forms in the domain
of interest.

Considering e.g. the task of rule learning, where fuzzy clusters are pro-
jected to single dimensions, non-axes parallel ellipsoids would lead in general
to a serious loss of information caused by the construction of the fuzzy sets
for the single domains. One approach to avoid this drawback is to restrict
the covariance matrices C; to diagonal matrices resulting in axes-parallel
hyper-ellipsoids [11, 14]. The distance measure in this case can be rewritten

as

p 1/p D
14 14 14 1
Duck = d*(vi,mp) = <piHCz(' )> : (Z(xgg) — ") W) - (16)
v=1 ¢

v=1 7



Here, p is the dimensionality of the data vectors and x,(:),vzgy) denote the
v’th component of the k’th data point, 2’th cluster center, respectively. For
the alternating optimization the calculation instruction for the covariance

matrices can be simplified in the following way
V= u e @) =), (17)
k=1

where czm denotes the 7y'th diagonal element of the covariance matrix. D 45
could be used as distance measure in the membership update equations from

section 2.1.

2.2.3 The Algorithm by Gath and Geva

Another clustering technique (GG) was designed by Gath and Geva [5]. This
extension of the Gustafson-Kessel Algorithm is in some way able to adapt the
cluster size and like the GK adapts to hyper-ellipsoidal forms. Actually this
approach is not based on an objective function optimizer. Instead the GG is
a heuristic method derived from the fuzzification of a maximum likelihood
estimator. Here, the distance measure is of the following form:

Do = d*(vi,xp) = % - det(dy) - expla ) AT @) (g

i

The parameter m; denotes the a-priori probability for a datum to belong to
the -th normal distribution. 7; is estimated as described by equation (19),

i.e. "number of data belonging to cluster i in relation to total number of data”.

T C n
Zj:l pIy U

The covariance matrix of the i-th normal distribution is denoted by A;, where

(20) is the calculation instruction for estimating matrix A;.

A = Sopey i (e — ) (@ —v;) T
T n m
Zk:l U,

The prototype coordinates are the estimated expected values of the assumed

(20)

normal distribution for cluster 7. Again the calculation of the prototypes can



be done using equation (13) as in the FCM or GK, respectively:

v = ZZ:% Uy - mk.
D k=1 Uik
Now the equations for the alternating iteration procedure of the Gath-Geva
algorithm are complete. To obtain equations for the prototypes as a necessary
condition for the optimization function having a local minimum, the objective
functions described in section 2.1 would have to be differentiated. Using D¢
as distance measure would lead to equations for which no analytical solution
exists. Therefore, the estimation analogous to probability theory provides a
good heuristic method.

Since GG is able to adapt to hyper-ellipsoidal forms as well as to differ-
ent cluster sizes, the same problems as with the Gustafson-Kessel algorithm
arise in the task of rule learning. As with GK it is possible to restrict this
approach to detect axes-parallel hyper-ellipsoids [11, 14]. Nevertheless, the
axes-parallel version of the algorithm introduced by Gath and Geva is able
to adapt to different cluster sizes. In this case the distance measure can be

rewritten as

()

Again, p denotes the dimensionality of the data, =,/ and o)

;  designate the
v’th component of the k’th data point, i’th cluster center, respectively. In
the alternating optimization the covariance matrices could be simplified in

the following way:

) oy g+ () — o2
ai - n m ’ (22)
Zk:1 Uz,

where azm denotes the 7’th diagonal element of the covariance matrix. Pa-
rameter 7; is estimated again as denoted in (19).
In [21] other clustering methods based on the maximum likelihood prin-

ciple are described.
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2.3 Alternating Optimization Approaches

In order to increase the influence of the user in extracting functional models
from data, Runkler and Bezdek, see e.g. [17] and the references therein, have
developed alternative approaches based on the presented basic ideas. They
call the general clustering form with interchanging update equations for pro-
totypes and membership degrees as presented above alternating optimization.
In one approach the expert has to specify the input space components in form
of prototype parameters. In case of the fuzzy c-means algorithm (see section
2.2.1) the expert would have to state prototype coordinates for each input
domain. For other clustering algorithms also a suitable distance measure
would have to be chosen. The components for the output space are alter-
nately updated during the optimization phase of that algorithm. Runkler
and Bezdek call this form of alternating optimization reqular alternating op-
timization, rAQ. Since some parameters are defined by the user and do not
have to be updated during the alternating optimization the computational
effort is reduced.

By alternating cluster estimation, ACE, Runkler and Bezdek denote a
clustering method where the expert has to select suitable membership func-
tion shapes and thereby defines the update equations for the cluster param-
eters.

The combination of both approaches where the expert has to specify suit-
able prototype parameters for the input domain as well as to choose suitable
membership function shapes is called reqular alternating cluster estimation,
rACE. The algorithm generates a partition of the data and then evaluates
the projections of the cluster centers into the output space.

Although the resulting functional models are easy to understand and re-
flect the experts interpretation of the modeled system, they are not necessar-
ily based on objective functions. Problems may arise if the expert associates
a system behavior with the data and assigns suitable parameters for the clus-
tering algorithm but the so defined model has a different basis. The greater
the influence of the expert the greater are the restrictions of the associated

functional model. Knowledge about unknown dependencies in the data is dif-
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ficult to extract with these models, but under assumptions about the system
behavior these are computationally fast methods resulting in interpretable

and easily understandable functional models.

The algorithms from section 2 can be applied to learn fuzzy rules from data
for classification problems [6, 13] or function approximation [12, 14, 20].
Fuzzy rules are usually obtained from fuzzy clusters by projecting the clus-
ters to the coordinate spaces leading to a certain loss of information. The
more flexible the cluster algorithms are in finding different shape forms, the
greater is the resulting loss of information in rule generation. One method
to avoid a major part of this information loss is described in [10]. There
we start with a partition of the single domains in fuzzy sets and try to find
a suitable partition for the data under consideration. Here we propose an-
other approach. We modify (1) in a way that enables simple fuzzy clustering
algorithms like FCM to adapt to the cluster size — meaning to make the al-
gorithm more flexible with respect to the cluster shape — without increasing

the existing loss of information in case of rule learning.

3 Adaptation of Cluster Volumes

In this section we present some approaches to adapt to clusters with differ-
ent volumes. The first approach was previously presented in [9] to reduce
the loss of information in rule learning. Therefore, only small modifications
of some in section 2 displayed algorithms have to be made. The principle
of objective function based fuzzy clustering with cluster representatives in
form of real-valued prototypes remains unchanged. The second presented
method does no longer use multidimensional center-points as representatives
but center-volumes. As we will see, this approach has a non-negligible draw-
back. A combination of the presented methods seems to eliminate this lack

and is presented in section 3.3. Another approach using volume prototypes
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to enable the fuzzy c-means to detect clusters with different densities was
presented by M. Setnes and U. Kaymak [19].

3.1 Center-Based Clustering Algorithm

For each cluster we introduce an additional parameter 7; to the objective
function in order to enable the clustering algorithm to adapt the cluster
volumes. 7; can be considered as the (relative) radius of the corresponding
cluster. The resulting probabilistic objective function is shown in (23), with

constant real-valued parameter [ > 0.

Ry (X.00) = 3 ) 23

i=1 k=1

To avoid the trivial solution that all 7, — oo, the constraint

Z =T (24)

has to be taken into account, where 7 is a predefined constant parameter,
eg.T=corT1=1.

Since the objective function (23) does not require special properties of
the distance measure ®, most of the described distance measures need only
small modifications to use the advantages of the proposed objective function.
Let us define

1
Dsacpys = A2 (xg,v:) = ﬁ'dQ (k, v3) (25)
i
as a new group of distance measures. Then the objective function (23) can

be rewritten as

Jging* X,U,v) ZZU 2 (wg, vi) - (26)

=1 k=1

Considering constraints (2) and (3) from section 2.1 we obtain the same

equations for the membership degrees as in (2.1), except that we have to
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replace the old distance d? (v;, x1) by d2 (v;, xy), i.e. in the probabilistic case

1
U = 1

c d2 (z,v;) m‘
>, (Ble)

Analogously the distance measure for the membership equations in case

of possibilistic and noise clustering could be replaced. The modified distance
measure for the FCM is shown in (27).

1
Dsacrem = dr (T, v;) = I (2 —v)" (2 — v) (27)
i
Analogously to the objective function from section 2.1 minimizing (23) leads

to the necessary condition (13)

n m
Zk:l U~ Tk

ZL (05

for the evaluation of the prototype coordinates.

v; =

Assuming that the parameters [ > 0 and 7 > 0 are fixed, we have to take
constraint (24) into account, to determine the values 7; with predefined and
during the iteration procedure unchanged [ > 0 and 7 > 0. So we obtain the

Lagrange function

C n

Jg?gB/\ X,U,v) Z ul} d? (zg, v;) + A (Zﬂ —7') . (28)

=1 k=1 =1

Note that the last term of (28) does neither depend on wu;;, nor on v; so that
the formulae for the optimal choices of the u;, and the v; remain valid.
Since the distance measure is independent of 7;, differentiating (28) gives

us

DIt a (X, Uyv
sacen (N Uv) Z“zk @ (g v) +A =0 (29)

872- l+1
Ti k=1

and therefore

T, —

(l > lu)\

& (@, m) - . (30)
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With (24) A evaluates to

1\ 1
(S5 (1 e v+ o ()7

Tl—l—l

P

(31)

After inserting (31) in (30), equation (32) represents the resulting calcu-

lation instruction for the ;.

(ZZ:I U% - d’ (x/ﬁ ,UZ))m (32)

T = — T
25:1 (22:1 uyy, - d? (k, Uj)) i

The parameter [ > 0 plays a similar role as the fuzzifier m. When we
choose a small value for /, a strong emphasis is put on adapting to the cluster
size. Too small values for [ can have a negative effect on algorithms as the
GK, since the priority is put on the cluster size instead of the cluster shape.
For | — oo, no adaptation of cluster sizes is carried out any more, and we
obtain the original algorithms.

Equation (32) can be used alternately with equations (4) and (13) and a
suitable distance measure for fuzzy clustering algorithms. We call this group
of clustering techniques Size-Adaptable Center-Based clustering algorithms
(SACB). Applying our results on the described FCM or GK enables these
algorithms to detect clusters of different sizes. In case of the FCM rule gen-
eration only results in a small loss of information. Adapting the sizes of the
detected spherical structures has no influence on the precision of the result-
ing fuzzy rules. Also the axes-parallel version of the GK, i.e. AGK, does not
lead to a significant loss of information in rule-learning. Not only considering
the task of rule learning this approach can be in combination with the GK
as well as the AGK an objective function based alternative to the GG or
AGG, respectively. It is possible to combine our approach with the objective
function approaches of possibilistic (section 2.1.2) or noise clustering (section
2.1.3). The difference of these methods compared to the probabilistic objec-
tive function of section 2.1.1 does not depend on a special distance measure.
In case of possibilistic clustering, equations (7) for the membership degrees
uik, (32) for the size parameters 7;, and the necessary conditions derived from

the chosen distance measure (Dpcnr, Dax or Dack), €.g. the equations for
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cluster centers or covariance matrices could be used in an alternating opti-
mization procedure. Applying noise clustering to the size-adapting clustering
approach, equation (10) has to be used to calculate the accessory membership
degrees. The other parameters are equivalent to probabilistic and possibilis-
tic clustering.

We call the corresponding alternating optimization incorporating cluster
size adaptation the sized algorithm (FCM-sized, GK-sized etc.).

3.2 Volume-Based Clustering Algorithm

In the former described fuzzy clustering techniques the clusters are character-
ized by a vector, consisting of real-valued attributes, and a distance measure.
Only the data points that coincide with a prototype may be assigned to the
corresponding cluster with a membership degree of 1.0. Let us imagine dense
spherical clusters. Instead of having just one ideal prototype for each cluster
to which we calculate the distances of the data points, we now assume that
we have a complete circle or (hyper-)ball as the cluster center. This means
that data within this area have distance zero to the cluster. This idea was
proposed in [19]. However, there it was not based on an objective function,
but on pure heuristic considerations. Here we want derive an alternating
optimization scheme for this approach as well.

Taking these considerations into account, we obtain a probabilistic ob-
jective function (33) reflecting this idea of volume prototypes using (34) as

the distance function.

C n

JUR (X, U,v) = Z Zuz - max{0, (zy —v;)" (x—v) =7}  (33)
1=1 k=1
Doavp = d (vi, xx) = max{0, (rg — vi)T (g —v;) — 73} (34)

If the clusters’ radii 7; are known in advance, these values should be
used directly. Otherwise the 7; have to be adapted during the alternating

optimization taking constraint (24) into account, to avoid the trivial solution
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7; » oo foralli € {1, .-+, ¢} in minimizing the objective function (33). Here
7 is a predefined constant parameter. Assigning 0 to 7 (all 7; are 0) leads
to the previously described fuzzy c-means (FCM) clustering technique, see
section 2.2.1. To derive equations for prototype coordinates (37) and radii
values (40) respectively, the partial derivatives (36), (38) and (39) of (35)

have to be computed.

C n

T e AU 0) =0 "l d? (v, ) + A (ZTE - T), (35)
=1

i=1 k=1

with d? (v;, zj) the distance measure from equation (34).

70b
% = 2. Z i+ (v — wk) = (36)
8@1- Z

k:(zp—v) T (zp—vi) >

m
(36) Zk:(mkwi)T(mrui)m Uik~ Tk

m

Zk:(:pk —v) T (2 —vi)>7 Uik

DA 3 U+ 2 N1 =0 (38)
! k:(mkfvi)T(mkfvi)>Ti
OTE NV BA _ x !
—=r = = 7. — 17=0 (39)
oA —
(38):,>(39) Zk:(mkfvi)T(mkfvi)>Ti Uik T (40)

T —
2
\/Zi:l (Zk:(mk—vi)T(:vk—vi)>n ’LL%)

In the alternating optimization scheme the distance measure has to be
replaced by (34). Depending on the used clustering technique (probabilistic,
possibilistic or noise) the corresponding update equations of the membership

degrees w;, (4, 7, or 10) have to be used.
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Note that the objective function is not differentiable everywhere. The nec-
essary conditions (36) and (40) lead to a local minimum, if no data points
leave a volume center or wander into a volume center. This is why in equa-
tions (37) and (40) only data points with Euclidean distance greater 7; to
the prototypes v; have influence on the next alternating parameters 7,°* and
v for cluster 7. Imagine two well separated spherical clusters are given. In
the first alternating optimization steps the structures are identified correctly.
The 7; are assigned the correct radius values of the circles containing the data
points. In the next step each prototype and each radius is only calculated on
the basis of the data points assigned to the opposite cluster. So the cluster
parameters are alternately interchanged. Even if the 7; are smaller than the

correct radius values, convergence is neither guaranteed nor plausible.

3.3 Combination of Volume-Based and Center-Based

Clustering Algorithm

To avoid restrictions as in case of the volume-based clustering technique
(SAVB) from section 3.2 we have modified objective function (33) so as to
combine distance measure (34) with the Euclidean distance used for the
fuzzy c-means algorithm. The resulting objective function is shown in (41).
Parameter 0 < ¢ < 1 determines the influence of each summand in the

distance function (42).

J,IS'”:‘()/CB (X7 Ua U) =

Z Zu:’]g . <q . max{(], ({,Ek — UZ-)T (SEk — UZ-) — TZ'} (41)

i=1 k=1

T q)- (o — )T (s~ ))

Dsaves = d° (vi, z1) = ¢+ max{0, (z), — Uz‘)T (xp —v;) — T3}
+(1=q) (zp—v)" (z — )

To adapt the cluster radii during the alternating optimization, again con-

(42)

straint (24) has to be considered, leading to equation (43).
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rob
JgAVCB,)\(Xﬂ U,v) =

ZZ“% : (q- max{0, (zy — ’Uz‘)T (xp —v;) — 74}

+(1—-q)- (%—%)T(%—Uz')) +A- (ZTE - T)

The alternating optimization scheme needs calculation instructions for the

(43)

cluster centers v;, the radii 7; and the membership degrees u;;. Equations (44)
and (45) are the corresponding partial derivatives of our objective function.

The partial derivative for A remains as denoted in section 3.2 (39)

prob c
8JSAVCB,)\ 9 !
—an LT T
i=1

Ot cns .
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The resulting calculation instructions are shown in (46) and (47), respec-
tively. The greater the influence of the Euclidean distance (¢ — 0), the

smaller are the calculated center radii 7;.
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(a) Two spherical clusters (b) Two ellipsoidal clusters

Figure 1: Artificial test data sets

Depending on the chosen basic clustering technique (probabilistic, pos-
sibilistic, or noise) the adequate calculation instruction for the membership
degrees u;; has to be chosen. Therein the distance measure has to be re-
placed by Dsavep (42). Even if the influence of the Euclidean distance is
rather small (¢ &~ 0.99), the alternating optimization converges reliable in
our experiments.

We refer to the corresponding alternating optimization scheme as the

FCM-volume algorithm.

4 Examples

To demonstrate the properties of our new approaches we have designed two
artificial test data sets as can be seen in figure 1. Part (a) of figure 1 shows
two spherical clusters with uniformly distributed data points for both clusters
but different radii. Here the number of data points for each cluster is the
same. In part (b) of figure 1 two ellipsoidal clusters with equally distributed
data points but different extents are displayed. The larger cluster has about
twice as much data points as the smaller one.

In figure 2 the results for the data set from figure 1(a) with the algorithms
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using the Euclidean distance measure are compared. The fuzzifier m was in
all cases set to 2.0. The constraint parameter 7 was set to 1.0 in both cases,
FCM-sized and FCM-volume. For the size adaptable version of the fuzzy
c-means algorithm the exponent [ was set to 0.5. For the influence of the
radii part in case of the FCM-volume approach, ¢ = 0.99 was chosen. The
original fuzzy c-means algorithm has difficulties in assigning the data to the
correct clusters (see figure 2 (a)). A datum is assigned to the cluster with
the highest membership degree. The approach using the Euclidean distance
combined with volume centers is in a position to adapt the volume centers
and therefore yields slightly better results than the original FCM (see part
(c) of figure 2). Only the size adaptable approach (part (b)) has the ability
to assign most data points correctly.

In figure 3 the results for the ellipsoidal test data set from figure 1(b) are
shown. As clustering algorithms the axes-parallel versions of the Gustafson-
Kessel algorithm and our new size-adaptable version of that algorithm have
been chosen. The fuzzifier m was assigned the value 2.0 in both cases. For
the size-adaptable approach constraint parameter 7 has been set to 1 and
the exponent [ was assigned 0.4. Our new approach is able to adapt to the
ellipses’ content (figure 3 part (b)) whereas the result in part (a) of figure
3 shows that the Gustafson-Kessel algorithm searches for groups of about
the same size. Our approach can be further improved if a smaller value for
parameter [, e.g. [ = 0.3, is chosen.

As another example, we used the Wisconsin Breast Cancer Database
[22, 2] to test our new approaches with the probabilistic objective function.
This classified data set originally contains 699 data points with 9 attributes
and a classification attribute. 16 data points with missing values have been
deleted from the data set for our tests. From the remaining 683 data points
444 were classified as benign and 239 as malignant. In Figure 4 the results
for the original fuzzy c-means algorithm (FCM) are compared to our size
adaptable version of this algorithm (FCM-sized) and the combination of the
FCM with the volume-center-based approach (FCM-volume). In figure 4 the
percentage of wrong classified data for two to ten clusters is displayed. The

fuzzifier m was in all cases set to 2.0. The values for the other parameters
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Figure 2: Classification results for a circular test data set
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(a) GK-parallel (b) GK-parallel-sized

Figure 3: Classification results for an ellipsoidal test data set

are 7 = 1.0 for FCM-sized as well as for FCM-volume, [ = 0.8 for FCM-sized
and ¢ = 0.9 for FCM-volume. In this case the priority of the FCM-volume
lies upon the volume-based component. The best results are obtained with
our new algorithms. The FCM-sized algorithm yields the best classification
where 2.6% of the data entries are misclassified with four clusters. A similar
good result (2.8% misclassified data points) is reached in case of the FCM-
volume at 5 clusters. The best result for the FCM (3.1% wrong classified
data) is obtained with 4 clusters. Our approaches seem both to improve the
results for the Wisconsin breast cancer database.

As can be seen in Figure 5 where the results for the axes-parallel version of
the method designed by Gustafson and Kessel (GK parallel, see section 2.2.2)
are compared to our size adaptable version of this algorithm (GK parallel
sized, see section 3.1). As mentioned, the percentage of wrong classified data
for two to twelve clusters is shown. The fuzzifier m was again set to 2.0. The
values for the other parameters are 7 = 1 and [ = 0.5 for the GK-parallel-
sized. That both algorithms show similar worse results indicates that the
model of ellipsoidal clusters is not suited for this data set and that the GK

and it’s variantsalthough they are extensions of the FCM variants are not
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Figure 4: Classification results for Wisconsin Breast Cancer - Part A

able to find the spherical clustersof the good results found by the FCM and
it’s variants. Not shown are the results obtained by the non-restricted version
of the GK and our new size adaptable approach for this algorithm. They are
worse than those of the restricted versions GK parallel and GK parallel sized.
Nevertheless, if the principal chosen model is well suited for the considered
data set, size adaptation has the ability to improve the classification results.

In table 1 clustering results in case of the size-adaptable fuzzy c-means for
different values of parameter /[ are shown. The values denote the percentage of
misclassified data. To calculate this value first for all clusters ¢ the class which
is represented by one particular cluster is determined. Then the data points
corresponding to that cluster but originally belonging to a different class than
the cluster’s are counted. The sum of misclassified data over all clusters in
ratio to the total number of data gives the percentage of misclassified data,
also called error rate. It can be seen, that the result depends on the choice
of the exponent [. For figure 4 the value for [ = 0.8 obtaining best results
has been chosen.

For table 2 we have chosen those c-partitions for each [-value from table

1, where the least error values occurred, and calculated the maximal mem-
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Table 1: Influence of parameter [ in FCM-sized - Part A

c|1=02|1=05|{1=08|1=10|1=3.0|1=5.0
2 25.5 2.8 3.2 3.1 4.0 4.2
3 30.9 2.8 2.8 2.9 3.2 3.2
4 36.6 2.9 2.6 2.6 2.9 3.1
5 474 4.4 3.8 3.8 3.7 3.5
6 34.8 2.9 3.4 3.2 3.5 3.5
7 13.6 2.9 3.2 3.4 3.2 3.2
8 17.4 2.8 3.1 3.2 3.8 3.8
9 22.3 4.2 3.7 3.5 3.5 3.5
10 34.6 3.4 3.2 3.2 3.2 3.4
11 12.2 2.9 3.8 3.8 3.8 3.8
12 13.3 3.1 3.5 3.5 3.5 3.5
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Table 2: Influence of parameter [ in FCM-sized - Part B

1 =0.2 ] 0.5964
1 =0.5]0.9078
1=0.8|0.7045
1=1.0]0.7105
1=3.0]0.7112
1=5.0]0.7119

bership degree for each datum separately. In table 2 the average of these
maximal membership degrees is shown for each partition. It is obvious that
this value in probabilistic clustering depends on the total number of clusters
for the partition, e.g. is the value for [ = 0.2 and ¢ = 11 clusters less than
the result for [ = 0.5 and ¢ = 2 clusters. The last four entries illustrate the
influence of parameter [ on the membership degrees, see section 3.1. Here,
for the [-values 0.8,1.0,3.0 and 5.0 the number of clusters was in all cases

¢ = 4. The calculated values are slightly increasing for increasing [-values.

5 Conclusions

Our approach seems to be well suited to adapt to different sizes of clusters.
One remaining problem that also exists concerning the original versions of
the algorithms presented in sections 2 and 4 is that all these approaches pre-
suppose uniformly distributed data over all clusters, i.e. the number of data
points per cluster are assumed to be equal for all clusters. To cluster data
with varying sizes and numerical differences regarding the data points per
structure correctly, adaptation to the density has to be taken into account.
Especially in applying fuzzy clustering techniques to the task of rule learn-
ing it is not necessary to implement highly form-adaptable algorithms since
more flexible cluster algorithms referring to the cluster shape generally re-
sult in a higher loss of information by rule generation. Several approaches

to apply fuzzy clustering algorithms to the task of rule learning have been
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developed in recent years, see for instance [11, 13, 14, 20, 23]. However, a

loss of information by the process of rule generation is unavoidable.

As long as we stay with such simple clustering algorithms as FCM or

the parallel version of GK, loss of information in case of rule learning can

be mostly avoided. This is also valid for the size adaptable versions of these

algorithms since the form describing distance measure is not changed. In case

of rule learning the proposed modified versions of the described algorithms are

a good alternative to more complex algorithms like the method introduced
by Gath and Geva, see section 2.2.3.
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