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Summary

We introduce an objective function-based
fuzzy clustering technique that assigns one
influence parameter to each single data vari-
able for each cluster. Our method is not
only suited to detect structures or groups in
unevenly over the structure’s single domains
distributed data, but gives also information
about the influence of individual variables on
the detected groups. In addition, our ap-
proach can be seen as a generalization of
the well-known fuzzy c-means clustering al-
gorithm.
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1 Introduction

The common objective function to be minimized in
fuzzy clustering is of the form

n

J(X,Uv) = > (up)™d(vi,zr) (1)

i=1 k=1

where ¢ is the number of fuzzy clusters, uy € [0,1]
is the membership degree of datum xj to cluster i
and d(v;, ) is the distance between cluster proto-
type v; and datum zj. In order to avoid the triv-
ial solution u;; = 0, additional assumptions have to
be made leading to probabilistic [1], possibilistic [8]
or noise [2] clustering. Parameter m € R>q is called
fuzzifier. For m — 1, we have for the membership de-
grees u;;, — 0/1, so the classification tends to be crisp.
If m — oo, then ug — 1, where ¢ is the number of
clusters.
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The prototypes can be simple vectors like the data as
in the fuzzy c-means algorithm (FCM) or more com-
plex structures like in the Gustafson-Kessel algorithm
[4], in linear or shell clustering [7]. In these cases the
distance function d is not simply the Euclidean dis-
tance but some other measure depending on the type
or form of the clusters. A thorough overview on ob-
jective function-based fuzzy clustering techniques can
be found in [5].

In this paper we introduce a new distance measure
that generalizes the FCM in adding a parameter that
determines the influence of certain data attributes for
some cluster.

2 Attribute Weighting Fuzzy
Clustering

Especially in data where few variables determine par-
ticular clusters other variables may disguise the struc-
ture and should therefore not be considered to find
these clusters. This can be done by weighting single
attributes for each cluster as we have done with our
new distance measure.

The distance between a datum zj;, and a cluster (vec-
tor) v; is defined by

p
d2(via$k) = Zazs ’ (‘TSCS) -

2" and v{*) indicate the sth coordinates of the vec-

tors x; and v;, respectively. The number of variables
or attributes is denoted by p. af, is a parameter de-
termining the influence of attribute (coordinate) s for
cluster . The parameters a;s; can be considered as
fixed or adapted individually for each cluster during

clustering due to the constraint

p
Vie{l,---,c}: > ai=a, (3)
s=1
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Figure 1: Ellipsoidal clusters

where a € R is a constant parameter, e.g. a = 1 or
a = c¢. If we would neglect this constraint, we would
obtain the trivial solution a;s = 0 for all ¢ and s.

We will see that the exponent ¢ € R>; in equation
(2) has a similar influence on the parameters a;; as
the fuzzifier m on the membership degrees u;;. For
t — 1 the a;s tend to be 1 or 0 — either one attribute
has unrestricted influence or no influence at all. On
the other hand, if ¢ — oo, all attributes get the same
influence on the cluster structure, i.e. a;s — % for all
i and s.

Based on this approach we can derive an alternating
optimization scheme for fuzzy clustering using distance
measure (2).

To adapt the influence parameters a;; we have to de-
termine a necessary condition for the values a;s so
that the objective function achieves an optimum value.

With condition (3) we obtain the Lagrange function
J)\ (Xa Ua U) =

c n p

S >t Sl (o) — o) "

i=1 k=1 s=1

c p
- Z )\z < Qg — 1) .
=1 s=1

Differentiating (4) leads to equation (5) for the pa-
rameter a;s as a necessary condition for the objective
function to have a minimum. This equation can be
used for updating «;s during the alternating cluster-
ing procedure.

iy = 1 )

p <E<>>

= S g (a0 o)

In a similar way we obtain a necessary condition for
the cluster centres (6).
(s)

’U(S) — EZ:I ’u’zrz " Ty (6)

! ZZ:l ’U”:rl;

Equation (6) is the same as in FCM.

3 Examples

In Figure 1 a data set consisting of four ellipsoidal
groups is shown. Part (a) presents the original data
set and part (b) represents the clustering result ob-
tained by our attribute weighting clustering technique
where a datum is assigned to the cluster to which it has
the highest membership degree (maximum defuzzifica-
tion). In this case we have set the fuzzifier m and the
exponent t to 2.0. For parameter a we have chosen the
value 1. However, the clustering result depends more
on a suitable initialization of cluster centres than the
choice of parameters m, t and a. Table 1 lists the min-
imum and maximum attribute values for all clusters.

Table 1: Minimum/maximum data values for each
cluster

attributes
T Y
min max min max

cluster 1 2.28 271 | —1.93 | 1.85

cluster 2 | —0.96 | 0.90 | 2.07 | 3.88
cluster 3 | —1.42 | 1.40 0.54 1.40
cluster 4 | —1.97 | 1.93 | —0.21 | 0.21

In table 2 cluster 1 represents the ellipsoidal group
with greatest x-values in the right part of figure 1.



From top to bottom in the left part of figure 1 are
the clusters cluster 2, cluster 3 and cluster 4. The
scale values «;; were adapted during the clustering
procedure. It is obvious, that for each cluster the
more the data coordinates are scattered around the
corresponding prototype’s coordinate, the less is the
influence of the corresponding attribute for that clus-
ter. In our example in figure 1 the two attribute in-
fluence parameters a;s for cluster 2 have nearly the
same value. The data coordinates are approximately
uniformly distributed for the two domains of this clus-
ter. For clusters 3 and 4, the data values for attribute
x are scattered widely whereas the values for attribute
y have a small range — so the influence parameters «;,
are small in comparison to a;, for clusters 3 and 4.
In case of cluster 1 the data values for attribute y are
scattered widely, resulting in a high value for influence
parameter ;.

Table 2: Attribute weights for ellipsoidal data set

attributes
cluster i | oz | agy
cluster 1 | 0.99 | 0.01
cluster 2 | 0.49 | 0.51
cluster 3 | 0.08 | 0.92
cluster 4 | 0.01 | 0.99

Figure 2 presents the clustering result for the exam-
ple data set generated by the FCM clustering tech-
nique with fuzzifier m = 2 as in our approach. Using
the Euclidean distance measure, the FCM is not well
suited to detect ellipsoidal structures in data. One
indication for the suitability of a clustering result is
following value. Of the ¢ membership degrees associ-
ated with each datum, we only consider the highest
membership degree (i.e. the membership degree to the
cluster to which we would assign the datum by maxi-
mum defuzzification) and compute the mean value of
these membership degrees. Here, the mean value for
FCM is 0.81 in comparison to 0.96 for our attribute
weighting clustering technique. Nevertheless are the
methods from Gustafson and Kessel [4] or Gath and
Geva [3] well suited to detect the structures of our
example data.

4 Conclusions

The presented clustering technique gives us informa-
tion about the influence of particular variables or at-
tributes of the data set on special clusters. This knowl-
edge can be used e.g. in classification tasks to de-
termine or detect class defining attributes. Without
ignoring one data attribute for the whole classifica-
tion it is possible to reduce the influence of that at-
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Figure 2: Results for ellipsoidal clusters with Fuzzy-c-
means

tribute on only some clusters. In that way, attribute
weights could help to partition the whole data set into
smaller data parts depending on the same attributes.
Analysing the smaller parts with a reduced number of
attributes would reduce the computation effort. Real
data sets soon get immense large as e.g. in the men-
tioned EU project where we analyse sound measured
on tyres with different pressures (2520 data sets with
200 sound attributes and 12 different pressures as clas-
sification attribute). Here attribute weighting could
not only be helpful in reducing computation time but
also to reduce the future expense of measuring.

Our fuzzy clustering approach is also well suited for
deriving rules from the clusters. Since the weighting
of the attributes for each cluster provides information
about the importance of the variables, we can neglect
variables with very small weighting factors in the rules.
In the example in the previous section this would mean
that we would derive a fuzzy rule from cluster 2 invok-
ing only the variable y.

It should be noted that our approach is also related
to the simplified version of the Gustafson-Kessel al-
gorithm described in [6] that introduces a diagonal
matrix for each cluster. The diagonal elements are
weights for the attributes in the same way as we use
them here, except for our exponent ¢. However, the
constraint is that the determinant is constant, i.e. the
sum in equation (3) is replaced by a product. The
advantage of our new approach is that we can control
how strong the influence of single variables can be by
the parameter t.

Note that our approach differs from the idea to carry
out a cluster analysis first and then apply something
like a principal component analysis to each cluster.



This would mean that the clustering must take all at-
tributes into account, whereas in our approach the se-
lection of relevant variables is already carried out dur-
ing the clustering.
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