Learning the Rule Base of a Fuzzy
Controller by a Genetic Algorithm

Jorn Hopf and Frank Klawonn

Abstract

For the design of a fuzzy controller it is necessary to choose,
besides other parameters, suitable membership functions for the
linguistic terms and to determine a rule base.

This paper deals with the problem of finding a good rule base
— the basis of a fuzzy controller. Consulting experts still is the
usual but time—consuming and therefore rather expensive method.
Besides, after having designed the controller, one cannot be sure
that the rule base will lead to near optimal control. This paper
shows how to reduce significantly the period of development (and
the costs) of fuzzy controllers with the help of genetic algorithms
and, above all, how to engender a rule base which is very close to
an optimum solution.

The example of the inverted pendulum is used to demonstrate
how a genetic algorithm can be designed for an automatic con-
struction of a rule base.

So this paper does not deal with the tuning of an existing fuzzy
controller but with the genetic (re-)production of rules, even with-
out the need for experts. Thus, a program is engendered, consist-
ing of simple “IF' ... THEN ...” instructions.

1 Introduction

In opposition to classical control techniques, which are mainly based on
a mathematical model of the process to be controlled, the idea of fuzzy
control is to model the behaviour of a (hypothetical) operator who is
able to control the process. When the basic principles of the process
and the reaction caused by the control actions are well understood, it is
possible to design a reasonable control strategy using “IF ... THEN ...”
rules. But in most cases it is necessary to consult an operator who is
able to control the process and who has an intuitive understanding of the
behaviour of the process. However, the knowledge acquisition process is
often very difficult, since the operator is not always aware of all the rules
he uses and might not be able to formulate an appropriate description
of his control strategy. Therefore, a rule obtained from an operator
might not work as well as expected. In some cases it is even impossible

2 Fuzzy Control

formulate a rule base, e.g. when a new process is to be controlled and
no competent operator is available.

In this paper we propose the application of genetic algorithms to the
problem of the design of a rule base for a fuzzy controller without the
use of a priori information or the help of an operator.

The quality of the controller working with the rule base determined by
the genetic algorithm depends on the choice of the evaluation function
used in the genetic algorithm. In this way, we can prescribe the desired
quality of the fuzzy controller to be generated.

The “IF ... THEN ...” rules appearing in the rule base of a fuzzy con-
troller form an algorithm. Unlike a C—program, such an algorithm can
be engendered by a genetic algorithm. The possibility of using an evo-
lutionary process has its roots in the independence of these program
modules. In genetic terms: changing the genotype does not affect the
determination of the algorithm, what happens is only a phenotypical al-
teration — a changing of the algorithm’s behaviour. The used language
of a reduced instruction set code:

program :: clause [clause ...]

clause :: IF expression THEN expression

expression :: variable is fuzzy-set [and expression]
Limited to:

clause :: IF expressiony THEN expressions

expression; :: expressiony and expressions

expressions :: variable is fuzzy—set

2 The Control Problem

We consider the following control problem known as the inverted pendu-
lum. A pole has to be balanced on a cart to be moved in the horizontal
direction. A mass is fixed at the end of the pole. We neglect the frictional
resistance here. The goal is to balance the pole by applying some force
to the cart accelerating it. The force should be determined by the actual
angle and angular velocity of the pole. The movement of the pendulum
follows the differential equation

(m—i—M-sinzH)-l-é—i—M-l-sinG-cosG-éz—(M—i—m)-g-sinG
= —F -cosb

Fuzzy Control and Genetic Algorithms 3

where g is the gravitational constant, [the pole length, M the mass at the
head of the pole, m the mass at the foot of the pole and —90° < 8 < 90°
is required.

The two parameters to be optimized are the angle § and the angular
velocity 6.

We use a Sugeno fuzzy controller (see f.e. [Kruse et al., 1994]) to solve
this control problem. The fuzzy sets for the fuzzy controller are denoted
as usual with Negative-Big (NB), Negative-Medium (NM), Zero (ZE),
Positive-Medium (PM) and Positive-Big (PB). The membership func-
tions of all fuzzy sets are chosen as triangular functions and are uniformly
distributed over the universe of discourse. For the output of each rule we
chose a fixed value which we also associated with a linguistic expression
of the above mentioned type.

3 How a Genetic Algorithm Works

Genetic algorithms represent a strategy to search efficiently for near op-
timal solutions in difficult search spaces. Each solution is represented by
one individual of a whole population. New solutions can be engendered
by combining selected old solutions.

To solve a problem, a genetic algorithm requires five components: [Davis,

1987]

1. A representation of the solution to a problem in the form of a chro-
mosome (chromosomal representation).

2. An initial population of individuals (solutions).

3. An evaluation function which indicates the fitness of each individ-
ual. This fitness shows how well the individual is able to cope with
the given environmental factors.

4. Genetic operators which determine which genes of which parent
will be passed on to their offsprings in the process of reproduction.

5. Parameters, as there are: the size of the population and probabil-
ities employed by the genetic operators.

A population corresponds in our application of genetic algorithms to
fuzzy control to a family of rule bases. The initial population is chosen
randomly.

The two most important genetic operators are mutation which means in
our application of genetic algorithms to fuzzy control modifying a rule

4 Fuzzy Control

[NBoNB [NBoNM | NBoZE | ...

... | PBoZE | PBoPM | PBoPB |

Figure 1: Chromosomal representation of the solution

base by random, and crossing over, a recombination of two ‘parent’ rule
bases. For a detailed discussion of these operators see f.e. [Beightler
et al., 1979], [Davis, 1987], [Dewdney, 1986], [Goldberg, 1989], [Holland,
1992] and [Michalewicz, 1992].

3.1 Genetic Encoding of the Possible Solutions

To solve a problem with the help of a genetic algorithm it is first of all
necessary to encode a general solution of the problem in a chromosomal
representation. This representation has been chosen in correspondence
with our 2-dimensional rule panel. Transferred to a 1-dimensional rep-
resentation a rule base looks as shown in figure 1. Each box stands for
one gene and is indexed with the premise of its corresponding rule in
figure 1. The possible alleles (values) for each gene are the linguistic
expressions for the output value in the rule base of the fuzzy controller.
Note that we refrain from a binary representation here.

It is now the task of the genetic algorithm to fill out the rule base in figure
2 in a way that it contains the appropriate rules. The fuzzy controller
on the basis of these rules must be able to hold the pole in the upright
position both as quickly as possible and with the least possible deviation.

3.2 Generating the Initial Population

Many conventional optimization/search procedures use only one single
starting point. Its position in the search space determines the next step
which again leads us to another single point. This method, however,
incorporates the following problem. When a local optimum has been
found the global optimum might remain inaccessible, as the algorithm
would have to give up the local optimum found before.

A genetic algorithm starts with a randomly generated initial population
of possible solutions, i.e. a genetic algorithm relies on a set of starting
points. In our case each chromosome represents a complete rule base for
the fuzzy controller and determines the individual’s position within the

Fuzzy Control and Genetic Algorithms 5

search space. Some may sit in a low valley (poor solutions to the prob-
lem), others may be found on high mountains (good solutions). Thus, to
search efficiently, the starting population should be spread evenly over
the entire space.

First — and according to expectation — none of the individuals with its
chromosomes will be able to solve the problem (holding the inverted
pendulum upright) sufficiently. Now, before selecting and reproducing
these individuals, the fitness of each individual must be determined by
an appropriate evaluation function.

3.3 Evaluation

The evaluation function indicates the fitness of each individual (rule
base) of the population and must be designed in such a way that the
fittest individuals take part in the process of reproduction.

Along with an appropriate coding the evaluation function decides on the
success of the genetic algorithm, see [Beightler et al., 1979], [Davis, 1987],
[Dewdney, 1986], [Goldberg, 1989], [Holland, 1992] and [Michalewicz,
1992].

Each genetic algorithm requires a specific choice of the evaluation func-
tion taking the following aspects into account.

e For an evaluation function it is essential to assign high values to
chromosomes that represent good solutions.

e On the other, an inhomogeneous gene pool with enough variety
to find (near) optimal chromosomes (solutions) should be kept.
Therefore, if the evaluation function favours good (but by far not
optimal) chromosomes too strong against average chromosomes,
the genetic algorithm will get stuck at some unsatisfactory solution.

Evaluation in this case is a tightrope walk between supporting those
individuals with high fitness and keeping a rich variety in the gene pool.

3.3.1 Ewvaluation Function for the Inverted Pendulum

In order to compute the value of the evaluation function for a chromo-
some for the problem of the inverted pendulum we run several times a
simulation of the inverted pendulum controlled by the fuzzy controller
on the basis of the rule base associated with the chromosome. For each
simulation different values for the initial angle and the velocity are cho-
sen. During this simulation score points for the evaluation can be gained
by the chromosome taking the following criteria into account.

6 Fuzzy Control

(1) angle \ (—) angular velocity
force || NB NM | ZE | PM PB

NB | PM NB | ZE | NM PM
NM | NB NM NM | ZE NM
ZE NB NM | ZE | PM PB
PM |NM ZE | PM | PM PB
PB PB PM | PB | PB PM

Figure 2: An engendered rule base

e A score can only be gained if the pendulum has been hold upright
during the whole simulation.

e At the end of the simulation score points are granted for a small
deviation from the upright position. The interpretation of small
deviation is narrowed from generation to generation, since in the
beginning usually no randomly generated chromosome will be able
to hold the pendulum in the upright position.

e The time needed to reach a stable upright position of the pendulum
is evaluated only indirectly by the chosen time of simulation.

The controller must be able to handle different initial situations. This is
guaranteed by using a number of randomly chosen initial values for the
simulation and evaluation. In an illustration, where good solutions are
located on mountains and bad in valleys, this means an ever changing
landscape. But although it is unlikely that the individuals are con-
fronted with the same fitness landscape twice, an ‘optimal’ solution is
engendered.

3.4 Genetic Operators

Genetic operators simulate changes of chromosomes in nature. Usually
two operators are considered, namely cross over and mutation.

3.4.1 Cross Over

The cross over operator mixes the genes of two chromosomes in the
phase of reproduction. In genetic algorithms cross over is realized in the
following way. First of all pairs of chromosomes are selected from the
population, usually randomly proportional to their fitness determined

Fuzzy Control and Genetic Algorithms 7

by the evaluation function. The idea of the cross over operator is to
combine the features, especially the positive ones, of the chromosomes
by mixing the genes of each pair of chromosomes. In this way new
chromosomes are generated that replace their parents. Mixing of genes
is achieved choosing one gene randomly — the cross over point — and
exchanging the genes of the pair of chromosomes behind this cross over
point. In order to illustrate the cross over operator we consider the
(binary) chromosomes

(1010110010101]011100100010 |

and

[1011001010011[010100101010]

The cross over point is chosen behind the 13th gene. Thus the cross over
operator yields the following two chromosomes.

(1010110010101[010100101010 |

and

|1011001010011|011100100010|

Since chromosomes to participate in cross over are chosen randomly, but
with a probability proportional to their fitness, better chromosomes have
higher chances to produce offspring by cross over.

As a side remark, we should mention that the cross over operator de-
scribed above is the most simple one but also the one yielding the worst
results [Michalewicz, 1992]. Therefore, we preferred in opposition to
this one point cross over the two point cross operator where two genes
are selected randomly and the gene sequences between these genes are
exchanged.

3.4.2 Mutation

Besides cross over the other genetic operator is mutation. Whereas cross
over mixes genes of different chromosomes and can in this way combine
good solutions, mutation changes genes in one chromosome randomly.
The reason for the use of the mutation operator is the following.

Mutation avoids the convergence to a population with a homogeneous
gene pool and thus guarantees for a certain variety of genes. It should
be emphasized that without mutation chances for a thorough search
through the space of possible solutions are quite small. If a certain allele
(value) for one of the genes is not present in the population, this allele

8 Fuzzy Control

cannot be generated by cross over. Therefore mutation is a necessary
operator, even if it supports only a random search, not directly aimed
to improve individual chromosomes.

Miihlenbein demonstrated [Miihlenbein and Schlierkamp-Voosen, 1993]
that in most cases it is sufficient to work with a constant mutation rate
(probability for changing one gene) of RM = % , where n is the number
of genes per chromosome.

3.4.3 The Building Block Hypothesis

The schema theorem (see f.e. [Michalewicz, 1992]) indicates that a ge-
netic algorithm concentrates the search for an optimal solution on cer-
tain subspaces of the space of all possible solutions. These subspaces are
characterized by schemata, chromosomes with undetermined genes. The
subspace associated with a schema corresponds to the set of all genes
that have the same alleles for those genes that are determined in the
schema.

The building block hypothesis, derived from the schema theorem, states
that a genetic algorithm mainly searches in those subspaces that are
characterized by schemata with a short defining length, low order and
high fitness. The defining length of a schema is the distance between
the two outmost determined genes in a chromosome. The order of a
schema is the number of determined genes. The fitness of a schema is
the average fitness of all chromosomes in its corresponding search space.
For our problem — finding a suitable rule base for a fuzzy controller — it
is easy to see that the building block hypothesis is applicable. If a rule
base should be able to handle a certain situation, only a small subset
of neighbouring rules is needed. Since the coding of the chromosomes
maintains at least partly this neighbourhood relation, (partially) good
rule bases correspond to schemata with a short defining length, low order
and high fitness. Therefore, it is possible to generate an overall good rule
base from two partially good rule bases by using the cross over operator.

4 Simulation Results

The best rule base (chromosome) obtained after 33 generations with a
population size of 200 is illustrated in figure 2. Starting the simulation
with an upright standing pendulum but with a high initial angular ve-
locity the fuzzy controller using this rule base is able to balance the pole
finally with a deviation of constantly less than one degree. The protocol

Fuzzy Control and Genetic Algorithms 9

100 | |

force —
angular velocity - - -
angle [degree] — _|

80
60
40
20

0

-20

40 ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16

Figure 3: Change of angle, angular velocity and force due to a start
impulse of 6.6 out of the neutral position.

of the simulation run is presented in figure 3, where the values for the
angle, angular velocity, and the force are shown over the time. Note that
this result is obtained by learning the rule base alone. The initial fuzzy
sets remained unchanged.

The appendix shows a comparison between a fuzzy controller based on
Lukasiewicz logic [Klawonn, 1992] designed by hand and the fuzzy con-
troller obtained from the genetic algorithm.

Note that the genetic algorithm does only rely on the fitness of a rule
base. Therefore, it is possible that the genetic algorithm finds a well
working rule base that does not coincide with the rule base one would
write down from an intuitive point of view. This is one of the reasons
why the rule base in figure 2 is not symmetric. Some rules also nearly
never apply and the entry in the table for these rule is not so important
for the overall evaluation or fitness of the chromosome. This might also
lead to deviations from the intuitively appealing rule base.

10 Fuzzy Control

References

C. S. Beightler, D. T. Phillips and D. J. Wilde (1979). Foundations of
Optimization. Prentice-Hall, Englewood Cliffs, NJ, 2. edition.

L. Davis, ed. (1987). Genetic Algorithms and Simulated Annealing. Mor-
gan Kaufmann, Los Altos, Ca.

A. K. Dewdney (1986). Computer—-Kurzweil. Spektrum der Wis-
senschaft, pages 4-11.

D. E. Goldberg (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison—Wesley.

J. H. Holland (1992). Genetische Algorithmen. Spektrum der Wis-
senschaft, pages 44-51.

F. Klawonn (1992). On a Lukasiewicz Logic Based Controller. In Proc.
MEPP’92 International Seminar on Fuzzy Control through Neural
Interpretations of Fuzzy Sets, number 14 Ser. B. in Reports on Com-
puter Science € Mathematics, pages 53-56, Turku, Finland. Abo
Academi.

R. Kruse, J. Gebhardt and F. Klawonn (1994). Foundations of Fuzzy
Systems. Wiley, Chichester.

Z. Michalewicz (1992). Genetic Algorithms + Data Structures = Evolu-
tion Programs. Springer, Berlin.

H. Miihlenbein and D. Schlierkamp-Voosen (1993). Optimal Interaction
of Mutation and Crossover in the Breeder Genetic Algorithm. Tech-
nical Report, GMD, Bonn, Germany.

R. Sommer (1992). Entwurf und Implementierung eines auf Lukasiewicz-
Logik basierenden Fuzzy Controllers. Studienarbeit, Institut fiir Be-
triebssysteme und Rechnerverbund, Technische Universitdt Braun-
schweig.

Fuzzy Control and Genetic Algorithms

Appendix

11

The following diagrams compare the action of a fuzzy controller on the
basis of Lukasiewicz logic (left) [Sommer, 1992] with that of the con-
troller engendered by a genetic algorithm (right).

Initial values: angle = 40.0°, angular velocity = —2.0
30 T T T T T T 30 I I I I I
%8 F M : gg angle [degree] —— :
0 15 .
-10 . 10 .
-20 . 5 .
-30 . 0
-40 LY -5 Lo
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
t[s] t[s]
1 AT T T T T 0.5 — 71T 1 T 7
0.5 - ngular velocity 7 0 angular velocity —— _|
A N A AN -0.5
0 \J \F A \\/"\ _1 —
-0.5 - -1.5 .
-1 4 -2 n
9. i
-1.5 . _g i
9 Lo 3.5 Lo
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
t[s] t[s]
15
% T T T T T 13 z\ | T]
9 pp r\xnrq forﬁﬁﬂur\ﬂuﬂﬂ_ 9 force —
u 0
50 i -b - .
-] -10 i
z i -15 .
- i -20 .
-] 25 - _
- [R N B B R :%g o
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

t[s]

