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Abstract

In this paper we revisit the convergence and optimization properties
of fuzzy clustering algorithms in general and the fuzzy c-means (FCM)
algorithm in particular. Our investigation includes probabilistic and (a
slightly modified implementation of) possibilistic memberships, which will
be discussed under a unified view. We give a convergence proof for the
axis-parallel variant of the algorithm by Gustafson and Kessel, that can
be generalized to other algorithms more easily than in the usual approach.
Using reformulated fuzzy clustering algorithms we apply Banach’s classi-
cal contraction principle and establish a relationship between saddle points
and attractive fixed points. For the special case of FCM we derive a suffi-
cient condition for fixed points to be attractive, allowing identification of
them as (local) minima of the objective function (excluding the possibility
of a saddle point).

Keywords: fuzzy clustering, fuzzy c-means, possibilistic c-means, conver-
gence, fixed point iteration, attractive fixed point, saddle-point

1 Introduction

The fuzzy c-means algorithm of Dunn [8] and Bezdek [2] is very popular
and has been applied successfully in many areas. It partitions a data set
X ={zy,.,z,} C X, X = IRP™ into ¢ clusters that are characterized by
representatives or prototypes p = (p1,...,p.) € X°. The process of subdivid-
ing a data set X into distinct subsets with homogeneous elements is called
clustering. With fuzzy clustering each datum z; belongs to all clusters p; simul-
taneously, but to different degrees u;; with U = [u; ;] € [0,1]°*™. The fuzzy
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c-means algorithm performs clustering by minimizing the objective function of
weighted distances

Trom(X;p,U) = Y ) ||z — pill? (1)
j=11i=1

taking the constraints

VieN<, @ Y ;>0 (2)
j=1

VJ S ]Ngn : Zui’j =1 (3)
i=1

into account. The parameter m influences the fuzziness of the partition, and it
is referred to as “fuzzifier”. Constraint (2) makes sure that none of the clusters
is empty and thus we really have a partition into no less than ¢ clusters. Con-
straint (3) assures that every datum has the same overall weight in the data set.
Fuzzy clustering under constraint (3) is often called “probabilistic clustering”.
Other fuzzy clustering techniques, using a relaxed constraint (3), are possibilistic
clustering [7, 13] and noise clustering [7, 6], where modified objective functions
Jrewm are used. Minimization of Jrey is done by alternating optimization (AO);
that is, Jpom is optimized with respect to u; ; (assuming prototypes p; to be
constant) and with respect to prototype p; (assuming memberships u; ; to be
constant) alternatingly. Both minimization steps are repeated until the change
in memberships and/or prototypes drops below a certain threshold. Bezdek
has shown [2] that in each (half-) step of AO Jrcy is strictly minimized. By a
theorem of Zangwill [14] convergence — or at least convergence of a subsequence
— can be concluded. Since p and U are optimized independently, the algorithm
may yield results representing jointly a saddle point.

There are only a few artificial examples where FCM has been proven to con-
verge to a saddle point [5], but it is also difficult to decide in practice if such
a case has occurred or not. Therefore, we consider convergence of probabilistic
and possibilistic fuzzy clustering algorithms in general and contractive proper-
ties of FCM, as the most popular algorithm, in particular. Problems that are
encountered when investigating these topics, as already mentioned by Bezdek,
are the “two-part compositional nature of one iteration” and “the further diffi-
culty of establishing local zones of convergence”. The first problem can be solved
easily by reformulating FCM [10]. Instead of addressing the second problem di-
rectly, we derive a sufficient condition for attractive fixed points. We show that
it depends on the ratio of the number of data assigned almost unambiguously to
those assigned ambiguously to the clusters, whether a fixed point is attractive or
not. We establish a relationship between saddle points of Jrcy and attractive
fixed points: If we find a particular solution of FCM to be attractive we have
found a minimum (not a saddle-point) of Jrcym.

The paper is organized as follows. We complete the short review of fuzzy
clustering algorithms in section 2 before we provide a motivation for reformu-



lated algorithms independently of the objective-function approach in section 3.
Properties of fixed points of reformulated fuzzy clustering iterations are dis-
cussed in general in section 4. Then, we examine the monotonicity of .J for
probabilistic and possibilistic membership functions in section 5, where we also
provide convergence proofs for another clustering algorithm besides FCM. Fi-
nally, in section 6 we discuss properties of FCM attractive fixed points, before
we come to the conclusions in section 7. The appendices contain the proofs of
the preceding sections.

2 Fuzzy Clustering Algorithms

Besides the cluster shape used by FCM, many other shapes have been pro-
posed by different authors, see e.g. [11]. These algorithms usually need fur-
ther prototype parameters and use modified distance measures. We denote
the space of prototypes by P and introduce dy(z,p) to measure the dis-
tance between object z and prototype ps. With FCM we have P = X and
ds(z,p) = ||z — ps]|>. Or with the AGK algorithm (an axis-parallel vari-
ant [12, 11] of the algorithm by Gustafson and Kessel [9]) the prototypes
consist of a centre ¢; and a diagonal matrix A, with det(As;) = 1, that is
ps = (s, Ay) € P := X x {A € RPMXDIMY 4 diagonal matrix, det(4) = 1},
and it uses a distance measure dy(z,p) = (z — ¢;) " Ag(x — c5).

Objective-function based fuzzy clustering algorithms minimize the (con-
strained) objective function

n

JPYOb(X; p.U) = Z ’U‘Tjds (xja P) (4)

j=1i=1

by means of alternating optimization. For each half-step we obtain prototype
and membership update equations from the necessary condition of a minimum
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(assuming U to be constant) and (5)

(assuming p to be constant), (6)

respectively, where Jlgfo)b additionally considers (3) by means of Lagrange multi-

pliers. For the probabilistic membership model we obtain the update equation

c z;—pi||? T ! .
(Ekl (%) ) . incase I; = @
i = ﬁ : incase I; # Q,i € I; (7)
0 : incase I; # Q,i € I;

where I; = {i € IN<.|z; = p;}, and for the point-like FCM prototype model
the update equation
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When switching to different membership functions than (7) the prototype
update equations remain the same. We obtain alternative membership functions
by relaxing (3), but then have to change the objective function Jpep in order to
avoid the trivial solution U = 0. We have to incorporate a term that increases
Jprob With decreasing membership values, such as [13]

Tposs(X; P, U) = Y > bl —pil> + D> mi (1 —wi))™, 9)
i=1 1

i=1 j=1 3 Jj=

(8)

where 1; € IR are constant parameters, leading to

1
1+ (ds(z,p)/ms)"/ (m=1)

U5 = (10)
When using memberships (10) instead of (7), FCM becomes possibilistic c-
means (PCM). Although by PCM we always refer to (10), the possibilistic ap-

proach (relaxation of (3)) can be used to derive other membership functions as
well [7].

3 Fuzzy Partitioning

Before we step into the details of the update equations, let us first analyse fuzzy
clustering algorithms from an intuitive perspective. It is sometimes claimed that
FCM memberships lack a meaningful model, e.g. when compared to probability
functions in Gaussian mixture decomposition, since they have been obtained
from an “arbitrary” objective function Jpop Or Jpess and are not meaningful by
themselves. In this section we develop the membership functions independently
from Jprop OF Jposs thereby refuting this claim.

Let us investigate how to define a reasonable similarity measure based on
the given dissimilarity (or distance) values. The c-means algorithms can be
summarized as iterative procedures that repeatedly replace the prototypes by
the mean of similar data objects. With hard c-means (HCM) similarity is a
binary measure that becomes 1 if a data object is closer to a prototype than
to any other prototype, and 0 otherwise. What are other reasonable similarity
measures? Suppose we have a tuple p € P of ¢ reference objects (or prototypes)
and dissimilarity measures

D, : X x P° = Rsg (11)

such that D (z,p) increases as the dissimilarity of an object x to the s*® refer-
ence object increases, 1 < s < ¢. We assume that the Dy functions do not only
depend on ps; and z, but may also depend on the locations of other prototypes,
which is why we introduce one D, for each prototype and take all prototypes



p € P° as their argument. We are interested in a similarity measure between z
and the ¢ prototypes based on the dissimilarities Ds(z,p). Let us denote such
a similarity measure by

us : X x P¢ = Rxg (12)

The similarity us(z,p) should increase as the dissimilarity D4(z,p) decreases;
that is, for all (z,p) € X x P

’U/s(fl?,p) > u,(:l?,p) - Ds(m,p) < D,(:E,p) (13)

From (13) a similarity measure us; can be defined by means of us(z,p) =
f(Ds(z,p)) with an arbitrary strictly decreasing function f : lRso — IRso,
e.g. f(t) = exp(—t). Although such an f may turn out to be useful in specific
applications, it does not respect the duality between dissimilarity and similarity
in the following sense: If we compare object = to p; and ps via their dissimilarity
(e.g. Di(z,p) = 2 and Ds(z,p) = 4) we see that the dissimilarity of z and po
is two times as high as the dissimilarity of x and p;. However, if we compare
the similarity values we find that = and p; are about seven times as similar as
x and po are. Intuitively we would expect p; and p» to be dissimilar to = to the
same degree as py and p; are similar to z. Making no further assumptions on
the interpretation of the dissimilarity values there is no good reason for such a
deviation between similarity and dissimilarity, and therefore their duality should
be preserved: We say that us is dual to Dy if the following condition holds

V(Z‘,p) EX xP: VS,Z € {17 ..,C} : Ds(xap) : ’U,s(l',p) = Dz(mvp) : ul(l‘,p)
(14)
If the distance D (x, p) is half of the distance Ds(z, p) it follows from (14) that
the similarity u;(z, p) is twice the similarity us(z, p). To satisfy this condition

we could use f(t) = 1 or the similarity measure®
us(,p) = s (15)
NPT D)

So far, we have compared the similarity of a data object to prototypes in
a vector of reference objects p. Now let us consider the case of having multi-
ple prototype vectors p and p’. Let us assume objects x with Dy (z,p) = 2,
Dy(z,p) =4 and 2’ with Dy (z',p’) = 4, Do(2',p’) = 8 — how similar are both
cases? Obviously, the data objects and prototypes have just been scaled by a
factor of 2, their similarity values should ideally be the same. When we com-
pare ui (2, p) = 3 with u; (', p’) = %, this comparison lacks a common baseline
since the overall membership of x to the reference objects p is % + % = % but
the overall membership of 2’ to reference objects p’ is only %. For a mean-
ingful comparison, the membership values should be normalized: We say u; is
normalized if the following condition holds

3C € Rso : V(z,p) € X x P°: Zus(x,p) =C (16)
s=1

IHere us is not a fuzzy similarity measure since us stays not necessarily within [0, 1].



Requiring u, to be dual to D, and normalized, it is easy to see that only a
unique similarity measure remains (up to a constant C):

C
us : X x P = [0,1], (z,p) = ¢ Do(zp) (4
dict Di(z.p)

Now, if D;(z,p) = aD;(z',p’) for all 1 <i < ¢ we also have u;(z,p) = u;(z', p’)
by using (17) and similarity is thus invariant to scaling.

Two reasonable candidates for similarity measures have evolved in this short
discussion, (15) and (17). Let us now identify the relationship to the membership
functions of fuzzy clustering algorithms. Let us define Dy = dy + ¢ (¢ € IR>¢)?
and focus on the case m = 2 at the beginning. Then (17) becomes identical
to probabilistic membership functions and replacing HCM’s binary similarity
measures by us leads to FCM. With (15) we also obtain a generalization of
HCM, but u, are not fuzzy memberships, since us € [0, 0] # [0, 1]. There are
multiple ways how to get us € [0, 1], we prefer to redefine ds by ds/ns + 1. It
is easy to show that this modification does not change the prototype update
equations, but leads to PCM memberships and thus to PCM itself. Since the
non-fuzzy case is interesting in its own right, we do not want to substitute ds by
ds/ns + 1 in general. Only if it is clear from the context that we address fuzzy
memberships or PCM, the substitution applies.

In the previous paragraph we have considered the case m = 2 only, because
a fuzzifier of 2 causes the distances to appear unchanged (no exponent) in the
membership functions (7) and (10). We do not see an intuitive motivation
for the introduction of a fuzzifier, it can only be motivated by considering the
objective function itself. Nevertheless, if we set

1

Dy(z,p) = ds(z,p)™T  +e (18)

we get probabilistic and possibilistic memberships for arbitrary fuzzifiers (m >
1) from (17) or (15). Note that our particular implementation of possibilistic
memberships differs from the one used for PCM if m # 2. Figures 1 shows
both membership functions for various fuzzifiers in the univariate case with a
prototype located at the origin:

1 1
upcy = ————  and  Uproposed = T3
1+ =1 (14 z)=-1

It is often said that an increase of m increases the fuzziness of the partition.
If we look at the PCM memberships (left subfigure) we see that an increase in
m results in more fuzzy memberships far away from the prototype, but close
to the prototype an increase in m makes the membership more and more look

2Why the ¢ in the definition of Ds? Formally, (11) requires Ds > 0 and without € the ds
may become zero. More important, the definition (7) distinguishes the case of zero distance
values explicitly. If we add a small constant, this does not significantly affect the memberships
but we do not need a differentiable continuation of (17) in case one or more distance functions
vanish. And by requiring Ds > 0 the similarity (15) is well-defined and remains continuous.
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Figure 1: Comparison of different implementations of possibilistic memberships.
Left: membership functions used by PCM, right: memberships functions devel-
oped in section 3.

like a sharp peak which is somewhat counterintuitive. If we look at the newly
proposed membership definition (right subfigure), a more uniform increase in
fuzziness can be observed.

In the following two sections we will examine reformulated fuzzy clustering
algorithms that use one of these two membership functions, the probabilistic
or the newly proposed implementation of possibilistic memberships. We will
benefit from our particular implementation of possibilistic memberships in the
next section, since it enables us to formulate theorems that hold for probabilistic
as well as possibilistic membership functions. For the following, D; is defined
by (18) and us by either (15) or (17). When using (15) and replacing ds by
ds/ns + 1 we arrive (for m = 2) at PCM memberships.

4 Fixed Point Iteration

In this section we are interested in the AO iterations of fuzzy clustering al-
gorithms. We reformulate the consecutive application of both half-steps by
substituting the membership degrees u; ; in the prototype update equation by
their definition. Let us fix a data set X = {z1,...,z,} C X, then the alter-
nating optimization (AO) iteration of any fuzzy clustering algorithm can be
reformulated by

P —a(p), e,



where ® is an algorithm specific mapping and p(®) are initial prototypes. In
case of the fuzzy c-means algorithm we have
Dol (@1 pe)a;

3

D1 o U7 (5:P1505p¢)
®rom 1 PC — PC, Dol : (19)

Pe g U (P15 P )T
Z:ﬂ U (2 5,p1,--,Pe)

This reformulation is equivalent to the original two-stage FCM algorithm
[10]. FCM terminates if consecutive p(**1) and p*) are almost identical, or in
other words we have reached a fixed point p't) = @(p(t)). The reformulation
(19) can be done with any fuzzy clustering algorithm and is not limited to FCM.
However, with other algorithms we obtain definitions for ® that are different
from (19). With the AGK algorithm, for instance, besides the cluster centres p;
the diagonal elements a; = (a;,1,...,a; DIM) € RP™ of 4; become part of the
prototypes and have to be respected by ®sqk.

With all fuzzy clustering algorithms their prototype update equations are

o
developed from g;s)b = 0 assuming U to be constant. Using this property as

the only condition on ® (see (21) in next theorem), we can show that —if such an
iteration sequence has converged — we have found an extremum or saddle point of
the objective function (4). This theorem is not specific to Euclidean distances
or probabilistic memberships, it is therefore somewhat of a generalization of
Bezdek’s results.

Theorem 1 Choose m € Rs1 and a data set X = {x1,....,xn} C X. Given
differentiable functions ds : X x P° = IRsq for s € IN<. we define D; by (18)
and us either by (15) or (17). Let

J(p) =D > uf(z;,p) - ds(xj, p) (20)

j=1s=1
and ® : P° — P° be defined by

od

VEE P |l =1:Vs € Ne,: Zu?(xj,p)a—g@j,fb(p)) =0 (21
j=1

If p is a fized point of ®, then p is an extremum or saddle point of J.

Note that condition (21) is the same as (5), only adapted to the reformula-
tion. We will further investigate into the term “extremum” in the next section.
Let us now briefly discuss the relationship between saddle points and attractive
fixed points. We call a fixed point “attractive” if there is a neighbourhood of
the fixed point on which ® is a contraction. We intend to apply Banach’s clas-
sical fixed point theorem that states that a contractive mapping has a unique
fixed point. In addition any sequence of elements that we obtain by iterated
application of the contractive mapping converges to the fixed point:



Theorem 2 (Banach) Let V' be a Banach space, W C V closed. Let ® : W —
W be a contraction, that is,

F0<a<)(Ve,yeW)  [|®(z) - @)l < allz -y (22)

Then ® has exactly one fived point and the iteration z(+Y) = &(x®) converges
to this fized point for any =(©) € W.

By applying Banach’s theorem to ® we can show

Theorem 3 Given a continuous function J: Y — IR andlet ®: Y — Y be a
continuous mapping such that J is monotone under ®, that is,

VpeY :J(®(p) <J(P) or VpeY:J(®(p)) >J(p) (23)
If p is a saddle point of J, p cannot be an attractive fized point of ®.

This theorem can be applied to FCM since (23) has been shown by Bezdek
for FCM [2, 5] and it is also true for the reformulated FCM. (We will investigate
into (23) for other cases in the next section.) This theorem gives theoretical con-
siderations about attractive properties of fixed points a more practical meaning;:
if we find a particular fixed point p to be attractive, p is a (local) extremum
of J. As a user of FCM it would be interesting to have a criterion telling us
whether the final partition of FCM represents an attractive fixed point (i.e. a
local minimum) or whether we got stuck in a saddle point so that another appli-
cation with a different initialization is definitely recommendable. The theorem
also complements the general theorem on alternating optimization provided by
Bezdek et al. [4]. Applying their more general main theorem for our purposes
of FCM, we have that when the Hessian of Jrcy is positive at (p(9), U(9), then
there is a neighbourhood of (p(®,U(®) for which the FCM iteration scheme
converges to (p(@,U(©).

Finally, to see that we do not have to distinguish between Jy,,,, and J in
this concern, we need the following two theorems:

Theorem 4 Let us assume that the parameters ucj; (j = 1,...,n) are elimi-
nated in the objective function (4) by replacing uc; =1 — 25;11 u;,;j according
to the constraint (3). Let U be the function induced by (7). Then for p € P°¢

VJ(p) =0 & Vdpo(p,U(p)) = 0.

Theorem 5 A p € P° is a strict local minimum of J if and only if (p,U(p))
is a strict local minimum of Jprop.

Theorems 4 and 5 establish the equivalence of minima of Jpop and J when
using (7). Therefore, the results obtained for J in Theorem 3 also apply to
Jprop. It is known for FCM that J has no maxima, since memberships and
prototypes are always chosen such that J is minimized (we will also discuss this
point in the next section). From the equivalences in Theorems 4 and 5 we can



thus conclude that saddle points of J,,,» are mapped to either (local) maxima
or saddle points of J. At this point, we cannot state similar theorems for the
possibilistic case, since we need some results from section 5.2. Afterwards, the
proofs can be easily adapted and the theorems hold for the possibilistic case,
too.

Before we develop a condition for attractive fixed points of FCM in section
6, let us first investigate further into condition (23).

5 Monotonicity of J under ®-Iterations

5.1 Probabilistic Memberships

In this subsection we assume that u, is defined by (17) and (18). We begin
with a relationship between probabilistic fuzzy clustering (AO) algorithms and
steepest descent of .J:

Theorem 6 Using the notation of Theorem 1, for the case of us defined by (17)
a steepest descent algorithm minimizing the objective function (20) is given by

p!t = p® — y(V,I) (™) (24)

where ~y is the step size and

n C

(Vo)) = > ul(2;,p)(Vpdi) (2, ) (25)

j=11i=1

Let us compare theorems 1 and 6 when applied to FCM (see also [1]). The-
orem 1 requires (21), which becomes

- Sy, e

=1 ,J77

-2 E ugi(z; -pit) =0 & pit = 72]7157],1
j=1 j=1Us.j

and thus defines ® as given in (19). Theorem 6 requires (24), which becomes

P =0+ 29 Y ull (- plY)
j=1

—1
Choosing v = (2 2?21 u;’fj) we obtain the same & iteration as before:

n E” u™. s
t+1 t t =1 "s,7*"7
P =pl 42y | 3wl —p§)=7m

j=1 J= 8,7

The steepest descent approach does not provide a value for v, however, the
fact that the @ iteration can be interpreted as a steepest descent algorithm

10



(with automatic step size-adjustment®) confirms that FCM converges to a (lo-
cal) minimum. For probabilistic memberships, we can speak of minima instead
of extrema of .J in Theorem 1. Other fuzzy clustering algorithms can also be in-
terpreted as a steepest descent procedure (with automatic step size-adjustment).
Appendix B contains a proof that AGK can be interpreted in this sense. This is
not necessarily the case for all fuzzy clustering algorithms and for some of them
it may be difficult to show due to the complexity of their definition of ds.

Nevertheless, we assume that all (probabilistic) fuzzy clustering algorithms
strictly decrease J in each iteration step. This property has been proven for
FCM by Bezdek [2], but is missing for many other algorithms. Here, we show
this property for the AGK algorithm. The idea of the proof can also be applied
to other algorithms.

Theorem 7 Let P = RP™ x RP™M~1 pe the space of AGK prototypes, let
X have a non-zero variance in each component. Let J be given by (20) with
b = dack (see appendiz B for update of matriz elements). If p € P is not a
fized point of ®agr we have

J(®ack(p)) < J(p)- (26)

The sketch of the proof is as follows: We argue on Jp,,, and show that

J0) = Jon®UD) S Typon (D), UD))

D e ®(p), U(B(D))) = J((p))

where U(p) denotes the membership matrix obtained by (17) from p. Let us
now fix U = U(p) to show (x). We argue that if we shift one of the prototype
parameters to infinity, Jpro, approaches infinity if we are beyond the convex
hull H of the data set. Thus we know that there must be a global minimum of
Jprob somewhere. Since there is a unique solution for (21) in case of AGK (and
many other fuzzy clustering algorithms as well) we know that there is only a
single extremum or saddle-point of Jprop (with U fixed), which therefore must
be the global minimum. Thus the prototype update step leads to a strict local
minimum of Jp,ep and establishes (x). Bezdek has shown that a membership
update step of Jprop also leads us to a strict local minimum, and his proof was
independent of the used distance measure, which guarantees (xx). The only
difficulty that may arise when transferring the proof to other algorithms is to
show that J strictly increases if we move a prototype parameter to infinity,
which might be difficult if there are constraints on the prototype parameters.
See appendix B for the details in case of AGK.

The strict descent of the ® iteration in J together with the boundedness of
J > 0 guarantees termination of AGK.

3Strictly speaking, a steepest descent algorithm has a constant v, but many extensions have
been proposed with varying v to overcome the problem of getting trapped in local minima.
FCM selects v automatically, so it is more than simple steepest descent.

11



5.2 Possibilistic Memberships

Here we consider the case of us defined by (15) and (18). To get fuzzy similarity
values we also have to replace ds by ds/ns + 1 in J. Recall that this yields an
implementation of possibilistic memberships that is different from PCM mem-
berships if m # 2. By U(p) we denote the resulting possibilistic membership
matrix for p.

Despite the fact that our implementation of possibilistic memberships has
been derived without establishing a (modified) objective function in advance, it
is nevertheless possible to provide such a modified J,4s. We only have to select
an appropriate function that decreases monotonically in u; ; to avoid the trivial
solution U = 0. The most simple choice for such a function is —u; ;.

C n C n
Jposs’ (X;an) = Zzuzm,]dz(mkap) _mzzui,j (27)
i=1 j=1 i=1 j=1
It is easily seen that minimization of J,4s with respect to u; ; assuming p to

be constant yields u; ; = W. If we replace u; ; in (27) we obtain
2 7

C n
1
Jposs’ (X3P, U(P)) = (1 —m) Z Z &y p) /) (1-m)J(p) (28)
=1 j=1
Up to a constant factor we have Jooe(p,U(p)) = J(p) again, and since this
factor is negative (m > 1) minimization of Jpess corresponds to maximization
of J. Thus, the extrema in Theorem 1 denote maxima of J. Consequently
possibilistic clustering algorithms (like PCM or P-AGK) can be interpreted as

a steepest-ascent algorithm (with automatic step size-adjustment):

Theorem 8 Given Dy by (18), us by (15), and J by (20), a steepest ascent
algorithm mazimizing J is given by

p ) = p 4+ (VI) (")
where v is the step size and (1 —m)V.J is given by (25).
To show that J(®(p)) > J(p), which is the necessary condition (23) in
Theorem 3, it is sufficient to provide the following

Theorem 9 For arbitrary d;, m > 1, (z,p) € X x P, and membership matriz
U we have
Tposs’ (X9, U) > Jposs (X;p,U(P)) (29)
where U(p) denotes the possibilistic membership matriz for prototypes p. The
equality holds iff U = U*.
In order to show that the monotonicity

(1 - m)J(p) = Jposs’ (pau(p))
Y e (2(0).2U(p))

)

S o (@(p),U®(D))) = (1 — m) T(B(p)

12



holds, Theorem 9 replaces Bezdek’s theorem for probabilistic memberships in
showing (x%). As far as (x) is concerned, the same arguments that have been
used before for the probabilistic case remain valid, since the memberships are
considered as constants in this step. Thus, we immediately have for FCM and
AGK that J(®(p)) > J(p) with ® = ®pcy and @ = P4k, respectively.

We would like to note in passing that unlike the probabilistic case, here it is
possible to define a Jpus for m =1 by

Jposs’ (X;p,U) = Z Z u;,jd; (zk,P) — Z Z IOg(UiJ‘)

i=1 j=1 i=1 j=1

leading again to us = 1/ds as in (15).

6 Attractive FCM Fixed Points

In this section we deal solely with the (probabilistic) fuzzy c-means algorithm,
that is ds(z,p) = ||z — ps||*> + &, ® = ®rom, us defined by (17) and (18), m €
IR~1. We seek for conditions for fixed points to be attractive, since such fixed
points exclude solutions that represent saddle points. The following theorem
states a sufficient condition for a fixed point p to be attractive. For brevity, if
the prototypes p are clear from the context, we will use u,_ ; instead of us(z;, p).

Theorem 10 Let p be a fized point of ®. If ||a||2 < 1 holds, where a € R® with

nooam — U ¢ Nz —ps |l
2m Ej:l Ug j (1 Us,j + Ei:l,i;ﬁs Ui =]

)( 0)

Vs € ]NSC : g

m—1 E?Zl ull
then p is an attractive fized point. (By || - ||2 we denote the Euclidean norm.)

Corollary 1 Let p be a fized point of ® and 1 < m < 3. If |lal]la < 1 holds,
where a € R® with

9 T'l, um._l _ um-j—l
Vs € N, : ay = m ijl Z,J — 8,7 (31)
- m—1 21 U

then p is an attractive fized point.

Condition (30) is more general than (31) and should be preferred when
deciding about the attractive property of a fixed point. However, we stated
(31) because it contains only occurrences of membership degrees (data and
prototypes are eliminated). This enables us to discuss the nature of attractive
fixed points below independent from data set X and prototypes p.

Whether a specific fixed point is attractive or not depends on the membership
values and thus on the data set. What kind of data sets satisfy (31)7 Instead
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of ||al]|l2 < 1 let us consider the condition |as| < % from which ||a|]z < 1 can be

concluded. Then |ay| < % is equivalent to

2 < 1 o
m m—1 m+1 m
o —ulr < =) u
m—1 8, 8. - 8,
Jj=1 Jj=1
n
or E g(us,j) >0 (32)
Jj=1
u™ 2m _
where gu) = [ —= — ——(u™7! —u™Hh
Jo m—1' s d
35 e ———— 08
3 T 14 A 0.7
- 12 06
) 1 N 05
0.8 0.4
Loy ot/ 03
1 ! 04 / 02
05 ¢ 02}/ \ 01
0 ol : 0
o 02 04 06 08 1 o 02 04 06 08 1 o 02 04 06 08 1
(a) m=15 (by m=2 (c)ym=3

Figure 2: Positive and negative terms in g(u) for different values of m.

Aslong as g(u) > 0 for each datum x; we have for sure a contraction. Figure

1 s

that Vu € (0,1) : u™™! > u™*1) of g(u) for different values of m (¢ = 3). We
can see from the figures, that we have a positive difference for memberships near
1 and a negative difference for “ambiguous” memberships. Loosely speaking,
if we have clusters with many data vectors near the prototypes and only some
ambiguous data in between, then the lemma tells us that ® is a contraction near
p- It may look hard to satisfy (31) in case m = 1.5 and easier in case m = 3,
however, we must be aware of the fact that with an increasing (resp. decreasing)
fuzzifier fuzzy (resp. crisp) memberships are more likely to occur. The following
observation gives a hint about the required ratio of the number of unambiguous
data vectors to the number of ambiguous data vectors.

2 shows the positive (75;) and the negative terms (22 (u'~* — u"*1) - note

Observation 1 Using the notation of Theorem 10, p is an attractive fized
point, if there are — /c - g(1) times more unambiguous data vectors (u = 1)

than ambiguous data vectors (u = 1), where

V(m —1)2 +16¢(m? — 1) — (m — 1)

4\/c(m +1) (33)

a =

14
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(a) Membership degree @ where loss be- (b) Maximum loss g(@) versus m.
comes maximal versus m.

Figure 3: Loss versus fuzzifier m.

Figure 3 depicts the results of the observation. From figure 3(a) we can see
that the membership degree 4 with maximum loss g(@) when using a fuzzifier
m = 2 is approximately 0.53. And from figure 3(b) we see that this maximum
loss is about 1.53 for m = 2. Having ¢ = 3 clusters we can conclude, if a final
FCM partition has at least \/¢-1.53 & 2.64 unambiguously assigned data objects
for each ambiguous data object, FCM has found an attractive fixed point. And
from Theorem 3 we thus know for sure that we have found a minimum — and
not a saddle point. (Be aware that this is a very coarse estimation and by means
of (30) you will find many more fixed points being attractive.)

As an example, let us revisit Sabin’s data set X = {—3, —1,1, 3} with initial
prototypes p = (—1,0,1). This data set has been used in [5] as an example for
FCM converging into a saddle point of Jp,0p, as shown in figure 4. The final
prototypes are computed to be p ~ (—2.9,0,2.9). Application of theorem 10
indicates that this fixed point may not be attractive. Following the discussion in
the previous section, we could expect this since the prototype in the middle has
no unambiguously assigned data vectors at all. If we change the initialization
slightly to p = (—1,¢,1), € # 0, FCM consequently terminates into a different
fixed point (which is no saddle point but a minimum).

Figure 5 shows an example of FCM converging into an attractive fixed point
with ||la|| < 1, the partition therefore represents a minimal solution of Jpp.
However, one can also find examples where FCM has found a minimal solution
but [la|]| > 1. (We used (30) for the examples.) It might be interesting to
observe some similarity of (31) with validity measures for cluster partitions [3].
Not surprisingly, in case of figure 5 the value of ||a|| becomes minimal for ¢ = 4,
and we have ||a|| > 1 for all other cases.

15
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Figure 4: Sabin’s example demonstrates FCM converging to a saddle point of
Jroym with p1 = —p3 = 2.9 and py = 0. (Jrom has been scaled appropriately to
make the saddle point clearly visible.)

7 Conclusion

In this paper, we have presented an intuitive explanation for using probabilistic
and possibilistic memberships that is not motivated by objective-function min-
imization only. Probabilistic memberships are obtained uniquely if we want to
preserve duality of dissimilarity measures D, and similarity measures u; and
require scale-invariance. We have also proposed non-fuzzy membership func-
tions which are in some sense dual to probabilistic membership functions, since
in both cases fixed points are extrema of the same* objective function J: ex-
trema are minima in the case of probabilistic and maxima in case of possibilistic
memberships. If we replace ds by ds/ns + 1 our non-fuzzy memberships become
fuzzy and identical to possibilistic memberships of PCM in case of m = 2.

Then, we have discussed convergence of fuzzy clustering algorithms in gen-
eral, and attractive fixed points of FCM in particular. It was known before,
that FCM can be interpreted as a steepest descent algorithm [1]. We have
shown that this is also the case with other fuzzy clustering algorithms (AGK),
and that possibilistic clustering can be interpreted as gradient ascent. We have
further shown that other results which have been formulated only for FCM in
the past (equivalence of reformulated FCM functional [10], minimization of J,,
in probabilistic case [2]) in fact are true for other fuzzy clustering algorithms
resp. similar in the possibilistic case. Besides that, the main contributions to
the known theory may be summarized as follows:

- We have provided new proofs for the monotonicity of J under AQO iter-

4Both objective functions are identical in the sense that they can be written as
Zj ZZ u:”J d; ;, but the membership functions u are different for possibilistic and proba-

bilistic clustering, of course.
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Figure 5: An example for an attractive fixed point. The contour lines indicate
the membership degrees.

ations for the axis-parallel Gustafson-Kessel algorithm. The idea of the
proof is quite simple and thus can also be transferred to other fuzzy clus-
tering algorithms.

- We have established a relationship between saddle-points and extrema, of
the objective function J that holds for both types of memberships and all
fuzzy clustering algorithms: An attractive fixed point cannot be a saddle-
point.

- We have developed sufficient conditions for attractive fixed points of FCM.
In the best case, this condition can be used to decide that FCM has
terminated in a (local) minimum of J and was not trapped in a saddle
point.

A Proofs

The following lemma is needed for the following proofs.

Lemma 1 Given Dg by (18) and us by (17), we obtain for any directional
derivative of ugs with respect to &

3’u,s ° U; 8D, Usg aDs
= u, — - — 34
5 (;z) 65) D, ¢ (34
Proof of Lemma 1: We rewrite ug as follows
1
Us = ——=r—
° DS Zi:l 51
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1

23:1 HE:L: D
P
Hzc'ﬂ D;
D, Zz 1 Ht 1 t;ﬁz
Hi:l,i;ﬁs D;
ch'zl H;:l,t;ﬁi Dy

Then we have u; = % with

From the directional derivatives

we obtain

0%

A . 9D;
a_y:Za HDt

i=1,i#s t=1,t#4,s
C C
oD
Py > 5 II D
i=1 t=1,t#£i 9 1
J=1,j#i,t

c oD; c c c
> 5, I o) (X I o
i=1,i#s Yy t=1,ti,s i=1 t=1,t#i
c c oD c
I o)X X 5 H D
i=1,i#s i=1 t=1,t#i j=1,j#
: 0
> 3o )
i=1,i#s j=1 tlt;ézs 1=1,l#j
c
s () (e
i=1 t=1,t#i j= 1,];£zt 1=1,l#s
sy (e
i=1,i#s j=1 Yy =1
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2

1 ‘& ap, 1 c

- B (2 P DiDsDt) (HD1>
i=1 t=1,t#1i =

Cc

8D 1 °
HDl (z lzisjlayDD Z Z ayDD)

ai (I17)
(0] (£5
)

ZaD 1
DsD i=1 yD2
c BD
1 s y - SD
-~ D.B? (HDl < DD2 )

OD; 9D,
- (7)) (X5
B\ D2D?

i=1

which can be rewritten as

oD; _ 9D, [y
(36)

8us s BE E [
<Z upttaDp Do papr—
S K3

with p,q € IN<. using (35). For equation (34) we start from (36) with p = s
and ¢ = 7 and obtain

ou c aD; ODg
s _ ) oy _ oy
oy “Z“<D Ds>

3) ~ 0D\ 10D,
= U ((;Dz 8y> D, dy

=1
which is identical to (34). [ |
Proof of Theorem 1: Consider P such that ®(p) = p holds (). Let £ € P°¢
with [[¢]| = 1. With 22¢ = d"‘ 1%(15 we have
1 8DZ m7_11 8D, _ 1 27”;1 8dl 1 1 8dl

Dioe U B Tmo1% B T moid ¢ (37)

We have to show that ‘g—‘g =0:

dJ "
O ) 3 2E 3 o
af j=1s=1 j=1s=1 f
= 35 mu- 18“%1 + u” (38)
j=1s=1 s=1 j=1 E
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First, we consider the simpler case where u; is defined by (15). Then d; ‘98 &=

dsggd 1/(m=1) _ *1 L dy 1/(m—1) 33‘1& = _1u388023 and we continue
= ——ZZ uf =z Dy ul
j=1s=1 a£ s=1 j=1 86
m= ] 1s=1 a£

(e Z 0
s=1

Let us now consider the case where uy is defined by (17). We continue from
(38):

(*)fl) zn:zc:mu;n 18usd —|—ZO

j=1s=1
&G ; OD; 1 9D,

(34) sz“sds«z%iaf) o ag)
j=1s=1 i=1

n c c . ds 8D n m s s
= mx2 E“S“’E o€ ZZ * D, 86
j=1s=1i=1 Jj=1 s=

Cc

I D S W

j=1s=11i=1

(14) m
1:4 m—1 ZZZUSsz ld 85 ZZ 8

R Ry ‘]131386
0 I zz

Thus, in both cases we have a zero in the first derivative and J must therefore
have an extremum or saddle-point at p. [ |

Proof of Theorem 3: Let p be a fixed point of ® that represents a saddle
point of J. Assume that p is an attractive fixed point. Since ® is continuous
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we can find an € > 0 and a closed ball B(p,e) := {z € P°|||lz — p| < ¢}
such that @ satisfies (22) with W = B(p,¢). So ®|p(p,) is a contraction and
the iterative application of ® to any x € B(p,&) converges towards p within
B(p,¢). Since p is a saddle point of J we find at least one point q € B(p,¢)
with J(q) < J(p). Because J is continuous we can find a § > 0 such that for all
r € B(p,9d) : J(r) > J(q) (resp. (J(r) < J(q)). Since ® never increases (resp.
decreases) J, we can never enter B(p,d) and therefore cannot converge to p
when starting from q. On the other hand, according to Banach’s theorem we
must converge to p. This is a contradiction and therefore the assumption was
false. Thus p is a non-attractive fixed point. [ |

Proof of Theorem 4: Let x be a variable occurring in P. Then we have
according to the chain rule

a_J B aJprOb + aJprob . aui,j
or  Ox > Ou;; Oz

3

(39)

Note that in the first term on the right-hand side of (39) the partial derivative
refers to the variable z that also occurs in Jprop.
For a p € P, let us now assume VJ(p) = 0, i.e. the left-hand side of (39) is

zero. Since the u; ; are chosen by U(p) in such a way that g’;—’ff = 0, the sum
on the right-hand side of (39) is zero as well. Therefore, the first term on the
right-hand side of (39) must be zero, too. Together this implies V.J,.0p = 0.
For the other implication let us now assume VJp0p(p,U(p)) = 0. Then the
first term on the right-hand side of (39) is zero and for the same reason as before

Jprob

5. = 0 are zero so that the sum also becomes zero. ]
]

the values

Proof of Theorem 5: In [2] it was shown that U(p) is a strict local minimum
for the function Jpep (for fixed p). Since J(p) = Jpron(P,U(P)) is continuous,
this implies that if p is a strict local minimum of J, then (p,U(p)) is a strict
local minimum of Jpp-

For the other direction let (p,(p)) be a local minimum of Jprop, i-€.

3= > 0)(v(5 0)) : (1165, 0) = (0 UPDI <& = Tpron (5. T) > Joron (0, U(P))

Since the update function ¥/ is continuous, we have

(36> 0)(vp) (b~ pll <& = @) - U@L < 3).

Let p be s.t. |[p — p|li < min {4, £} . This implies IB,U) — (p,UDP))|l1 < &
and we have

J(f’) = Jprob(f)vﬁ) > Jprob(p(o);u(p(o))) = J(p(o))
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Proof of Theorem 6: Let us revisit the proof of Theorem 1 for the case that
uy is defined by (17). Equations (%) and (21) are applied only once. Not making
use of them we obtain

g_‘g = zn:zczug aacés and thus VpJ = i:znzugnvpds

j=1s=1 s=1 j=1

For Proof of Theorem 7 see appendix B.

Proof of Theorem 8: Same line of proof as in Theorem 6, using the fact that
Jposs = (1 —m).J holds. [ ]

Proof of Theorem 9: To show that Jp.s decreases with every membership
update step we may consider all u; ; in Jpos independently, since there is no
condition like (3) as with probabilistic memberships. Choose an arbitrary u; ;
(denoted by u), then we collect all occurrences of u; j in Jpess in f:

flw) :=u"d—mu=u (™ 'd—m).

Thus, we have up to three zero crossings at v = 0 and v = *w with w :=
(%)1/(7”_1). For u € (w,o00] we have f(u) > 0 and for u € (0,w) we have
f(u) < 0. Within the relevant range [0, 00] we have f(0) = 0 = f(w) and

f(u) < 0for u € (0,w), thus we can conclude that there is at least one local

minimum within [0, w]. Since % = 0 yields a single positive solution at u =
(%)Umil) < w we know that the possibilistic memberships strictly minimize

f(u). Thus, with fixed distance values, J is minimized by setting U = U(p). &

Proof of Theorem 10: Consider a fixed point p of ® with ||‘g—$(p)|| <L If®
has a continuous derivative, then we conclude that there is even a small ball B
around p such that (22) holds for all elements of the ball. Furthermore, from
(22) we know that ®(B) C B because @ < 1. Then, according to Banach’s
contraction principle, ®|p is a contraction with a unique fixed point and the
iteration scheme converges to this fixed point for any starting value p(® € B.
Therefore ||g—$(p)|| < 1 is a sufficient condition for p being an attractive fixed
point.

Let p be a fixed point of ®, that is

Vi<s<ec: (40)

Since @ has continuous derivatives we can show (22) by means of [|[D®(p)|| <
1. Equivalently we may consider ||[D®¢(p)|| < 1 for any direction £ € P¢,
[I€]l = 1, where ®&¢ : IR — P, t = ®(p + t£). (By || - || we denote the Euclidean
norm.) Denoting the ¢ prototype components of ®¢(t) by ®¢(t); we have

DD = [[([[DPe ()], .., | DRe (B )]

22



and therefore examine |[D®¢(t);|| for s € IN<.. (Carefully distinguish D; as
the dissimilarity measure and D® as the total derivative of ®.) For better

readability we abbreviate us(z;, p + t&) by us. We have

~ 9 Z 1U Tj,1l
D®¢(t). = <8t Z -1 Uy’ >1<1<DIM

(Z; 1 Bgt x]) (2?21 u;n) - (Z?:l E)g—;) (2?21 u;nwj)

3 Bu™
(Z;l 1 gt x]) - (Z?:l ot )ps

(40)

With 2us(p+te) %’{Hé) = 83‘23 (p) we continue

oD; 8D,
mz;’lzl U;n (25:1 U; (DLl 8[2 - Dls £ )) (-Tj _ps)

(34)
— n
Zj:l ug'
ad; ads
o 1 L= U (i (5 -4 %)) @ - )
- 2?21 ug’
% E?:l u;nilas’j
j=1"s

with

° _m'_iTi _-Tj_sTs
asvj:<;uiu3< 2(gdip) & = dsp) f))(mj_ps) (42)

Obviously, in case i = s the summand evaluates to zero, we can therefore exclude
i = s from the summation. Let us now consider ||as_;||:

C
(:Ej _pi)Téi (xj _ps)Té.s
lacsll = 2| 3w - —
- fzi B\ Moy =wlP g -l )| TP
C T T
2 —p) T [l — . —
<2y (2 = p) "Gl Nl = psll |5 =) &
e ey —pll Nas—pill T Tz — ool

With z "y = cos(4(z,y))||z|| - |y|| for any =,y € X and ||£]| = 1 we continue

P i ([ cos(2(a; = pi DI IGN =2 + |eos( a5 = pen6) 6

i=1,i#s
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<2 Y ()

i=1,i%s I = pill

From (3) we obtain )_;_, ;.  u; = 1 — us and therefore

vay psll

lles,jl| = 2us —us + Z
- pill

i=1,i#s

We obtain (30) directly when substituting this result in (41). |

Proof of Corollary 1: To get (31), we continue from (43) in the proof of
theorem 10 by considering the two cases
e Case 1: ||z; — ps|| < ||lz; — pil|. Then we have usw <us <L

e Case 2: ||z; — ps|| > ||lz; — pil|. From (14) we obtain

1 2
Di _ <d2> e <||$j —Pi||> m
R Y =y [ g
D, ds ||5UJ — psl|
leading us to

2
izl (ool el _u,<||x,-—pz-||>q
1 - k3
g = pill llz; — psll llz; — pill llz; — psll
Withq———l——m From 1 < m < 3 we can conclude ¢ > 0 and

m—1"
therefore (w) <1
[lz;—psl|

Usg = Uj

Thus in both cases we have usw <1 and we can continue

losjll < 2 ) wil+u)=2014u) > u (44)
i=1,i#s i=1,i#s

B 21+ ug) (1 —ug) = 2(1 — u?)
So we have found finally

om Yy uf t(1-ud)  2m (Z?w?l—u?*l)

m—1 >y ul S om -1

H 0%(p)s
¢

Since p is an attractive fixed point, if || = 3<1>(p || < 1, the statement (31) has been
proven. |

Proof of Observation 1: We require |as| < \[ or (32) in order to satisfy (31).
A maximal saving is obtained for data vectors with membership degree u = 1
with g(u) = % Next we calculate the greatest loss a membership degree may
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cause. The necessary condition for a maximal loss of a certain membership w is
: dg(u) _ .
given by =0 (u#0):

Ou
i) 2 2
B = TR e n = D =0
& 0 = w40 : u— "= .
- 2y/c(m +1) m+1
= u = (m_1)2+160(m2—])_ m—1
- 16¢(m + 1)? 4y/e(m +1)

V(m =1)2 +16¢(m2 — 1) — (m — 1)
4yfe(m + 1)

Therefore the maximal loss is g(4). To compensate a maximal loss g(a)

(caused by a fuzzy assignment) we need n = —+/c - g(4) unambiguous data
objects with maximal gain % [ ]

B Proofs concerning AGK

In this section we consider the axis-parallel variant [12, 11] of the algorithm
by Gustafson and Kessel (GK) [9], which will be called AGK algorithm in the
following. A cluster prototype p; in AGK consists of the cluster centre ¢; € X
and a diagonal norm matrix 4; € RP™>P™M with det(A4;) = 1. The algorithm
uses the distance d;(z,p) = (z; — ¢;) T Ai(z; — ¢;). In the prototype update
step, the centres are adjusted just like the FCM centres (8), and the diagonal
elements a;; (denoting A;[l,1]) according to

1/p
DIM

( bt g1 Ui (T g — Ci,k)2)
;1

T Dy ul (g = cig)?

A necessary condition for AGK (and GK) to yield valid results is that the data
set X has non-zero variance in each component.

(45)

Observation 2 The AGK algorithm can be interpreted as a grouped-variable
steepest descent algorithm (where the centres and each diagonal element are
updated successively).

Proof of Observation 2: The constraint det(A4;) = 1 on prototype p; =

(ci, A;) can be eliminated by considering only DIM — 1 independent diagonal
elements a;; and defining a; pim = 1/ HP:I;VI_I a;;. The fact that the centre
update can be interpreted as a steepest descent has already been discussed in

the text for FCM and remains true for AGK.
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Let us now consider the diagonal elements of A;. To calculate the gradient
VJ we use (25) and therefore need Vd; with respect to the diagonal elements

8dl 2 1 2
zj,P) = (ZTj1 — ¢i1)” — —pmi—7— (#;,DIM — Ci,DIM
aai,l ( J ) ( J 7 ) H?:H;/I 1 a,a ( J K )

Then, according to (24), we have

n 2
(t+1) _ (1) m ‘ y2_ (@jpM — ¢ipiv)
iy~ =0 — 72“@',1 (@0 = it)” = —Hmig ® )
j=1 a; .a

[1=: i,5%4,1

-1
Choosing the step size v = (agtl) S (g — ci’l)Q) we get

n m 2
N R ) B 1 > =1 uiy(@; DM — ¢, p1M)
1,1 - 8,1 2,1 DIM—1 (¢ n M (. _ )2
| az(.’s >t uly (e — i)
(t) n 2
a; Div 2oj—1 Uiy (T5,DIM — €;,.DIM)

Yoy ufl(zi — cig)?
If we use (45) to replace az('t])le in the last equation, we obtain (45) for the
considered diagonal element agtl) . Thus, the a;; update can be interpreted as a
steepest descent. [ |

Proof of Theorem 7: We use the notation from the proof of observation
2, in particular the diagonal matrices of the prototypes are characterized by
DIM — 1 elements due to the constraint det(A4;) = 1. Let p € Y not be a fixed
point of ®agk. Let U(p) denote the probabilistic membership matrix of p. By
definition, J(p) = Jm(p,U(p)) holds.

Now, the application of ® gk (p) yields new prototypes p’ and we show that
I (P, U(P)) > Jm(p’,U(p)) holds. Note that the membership matrix is fixed
to U(p). Choose & € YV with [|£]] = 1. By p; we denote p + t£. Let H be
the convex hull of the data set. As t increases at least one prototype element
or diagonal matrix element approaches infinity. Thus, there is always a T' such
that for all ¢ > T we leave H (p; € X\H).

e Case 1: With p; a prototype centre is shifted to infinity. From the def-
inition of d;(x,p) = (x — ¢;) T Ai(x — ¢;) then the distance of this pro-
totype to each of the data objects approaches infinity and thus we have
lim¢ 00 Jm (P, U (P)) = o0.

e Case 2: With p; a diagonal matrix element a;; is shifted to infinity. Due
to the non-zero variance in each component of the data set we then find
a data object x; € X such that the distance z;; — ¢;; is not zero. While
the increase of a;,; causes a; prv to decrease the sum of distances cannot
become smaller than 0. But with ¢t — oo, we have d;(z;,p;) = oo, and
therefore still lim;_ o0 Jp (Pe, U (P)) = 00.

26



From the continuity of .J,, we thus conclude that .J,,, must have at least one
(global) minimum (and may have other zeros of the first derivatives indicating
other local minima/maxima or saddle points). But from the fact that there is a
unique solution for (21) we know that there is only a single extremum or saddle
point of J, which therefore must be a strict local minimum. Since p is not a
fixed point (p # p') we have J(p') < J(p).

Secondly, we use Bezdek’s results to get J,,(p',U(p)) > Jn(p,U{P')) =
J(p'). For the case of probabilistic memberships Bezdek has shown [2] that
I (P, U) < Jm(P".U(P')) and Jn(p".U) = Jn(p', U(P')) & U = U(p'). His
proof is independent of the chosen distances, which appear as constants in his
calculations. Here, we have U = U(p) # U(p'), otherwise p would be a fixed
point of ® zqk. [ |
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