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Abstract

One of the most important aspects of fuzzy systems is that they are easily un-
derstandable and interpretable. This property, however, does not come for free
but poses some essential constraints on the parameters of a fuzzy system (like the
linguistic terms), which are sometimes overlooked when learning fuzzy system au-
tomatically from data. In this paper, an objective function-based approach to learn
fuzzy systems is developed, taking these constraints explicitly into account. Start-
ing from fuzzy c-means clustering, several modifications of the basic algorithm
are proposed, affecting the shape of the membership functions, the partition of in-
dividual variables and the coupling of input space partitioning and local function
approximation.

1 Introduction

There is a number of techniques that can be used to model (univariate or multivariate)
input-output relationships, such as (linear) regression, fuzzy systems, neural networks,
support vector machines, etc. While most of these models have well-established or
even canonical methods to learn them from data, this is not the case for fuzzy systems.
Quite often they are even outperformed in terms of prediction accuracy by competitive
approaches. Thus, given a broad variety of high quality competitors, why should one
prefer fuzzy systems? In fuzzy systems of the Takagi-Sugeno type® [8] the input-space
is subdivided into subsets and each subset is linked to rather simple local models by
means of if-then-rules. By describing the subsets variable by variable, they are easily
understandable for a human who is not used to arguing in multidimensional spaces. The
knowledge of a human expert, which is usually more qualitative in nature, can be cross-
checked with a fuzzy model relatively simple, because the subsets are described almost
in natural language (via so-called linguistic terms like “high” or “low”), the subsets
tessellate the input space along the main axes, and quite simple local models are used to
express basic qualitative aspects holding in this subset. While initially the intention was

Iwe will only consider fuzzy systems of this type in this paper.



to let the expert provide the rules that make up a fuzzy system, difficulties in knowledge
acquisition and fusion made it more promising to let some algorithm “learn” the fuzzy
systems and use the human expertise to “verify” what has been learned before it is
applied in industrial applications. This is much more comfortable for the expert than
fixing the numerous parameters on her or his own. Thus, if one decides to use fuzzy
systems it will be for sake of simplicity, interpretability and verifiability of the resulting
model, not because of prediction accuracy.

The sketched approach is, of course, only possible if the understandability and inter-
pretability of the system is given. In a somewhat simplified view, a fuzzy system works
as follows:

e The domain X C R* of a (k-dimensional) input space is partitioned into ¢ re-
gions P;, U§:1 P; = X. Forthe moment it is sufficient to consider P; as ordinary
(rather than fuzzy) subsets of X.

o To each of the regions P;, a local model f; : P; — R is assigned. Given some
input data z € X, the system then identifies in which part of the input space
it falls (that is, which element R; of the partition is affected) and use the local
model f;(x) assigned to it to predict the output value f(z).

Already at this point we can outline two requirements that need to be fulfilled in order
to obtain an interpretable system:

(P) Concerning the partition: The partition must be simple such that the expert can
easily recall it. Two different kinds of partitions may be equally useful: Each
variable can be partitioned separately and the partition of the multivariate uni-
verse is obtained as the cross-product of the univariate partitions. This makes it
easier for a human to argue in multivariate spaces. Sometimes, however, vari-
ables might be that much related that a human is used to consider them in com-
bination, as it is the case with spatial variables (combination of longitude and
latitude to location or travel time and travel distance to travel speed). In both
cases, the elements of the partition should be contiguous and convex.

(M) Concerning the complexity of the local models: The local models provide an an-
swer to the question: Given the input variables lying within a limited range, what
is the behavior of the output value? In order to judge about the appropriateness
of such a model by a human expert, the local models should be flexible enough
to express the qualitative behavior expected by the expert, but should not over-
charge the expert. In many cases, a small set of simple models (such as linear or
quadratic models) should be sufficient.

In fuzzy models the partitions are not crisp — the input data belongs to multiple re-
gions R; at the same time but to different degrees — and this is modeled by means of
fuzzy membership functions. The introduction of fuzzy membership functions, how-
ever, turns the simple application of one local model to predict f(x) into a mixture of
models (multiple local models have to be aggregated to calculate a single prediction
f(z), in TS-type systems this is done by averaging the models f;(z), weighted by the



membership to the assigned partitions). This is useful near the borders of a region,
because it helps to smoothly blend rather than switch abruptly from one local model to
another. While the smoothness is obtained from any (continuous) set of membership
functions, from the interpretability point of view it is important to really understand the
membership functions as fuzzifications of a crisp partitioning of the input space. Only
in this case it is guaranteed that a comparatively small number of regions attains pos-
itive membership degrees and thus only a small number of models actually influence
f(z). If we consider a fuzzy model using amongst others a rule “if x is approximately
zero, then f(xz) = 2z + 17, we expect the resulting model to behave near zero as it
has been described. But if another rule with model y = —4x is also firing with sim-
ilar strength, the resulting local model may actually be inverted. The more rules fire,
the more difficult it is for the expert to cope with the mixture of local models. The
interpretability of a fuzzy system relies on the fact that, in principle, the input/output
behavior can be understood on a rule by rule-basis, which is no longer true, if arbi-
trary many rules fire at the same time. This poses a third requirement (specific to the
fuzzification):

(F) Concerning the shape of the membership functions: Given a partition P; (be it
univariate or multivariate), the fuzzy membership functions shall be understood
as fuzzifications of characteristic functions of the sets P;, that is, the membership
functions should have bounded support or decay rapidly. They should also be
simple in shape and unimodal. (It would be counterintuitive if the membership
of the linguistic term “fast”, which is high for “200 km/h”, would be higher for
230 km/h” than for “210 km/h™.)

A procedure that learns a fuzzy system automatically from data must respect these
requirements, otherwise the resulting system does not deserve the predicate “inter-
pretable” (and in this a case, one may sacrifice the most important (if not the only)
reason for choosing a fuzzy system). In the literature it is often argued that it is suffi-
cient to show functional equivalence between two approaches. Being able to transfer
a fuzzy system to, say, a neural network and vice versa, one could apply neural net-
work learning techniques and use the fuzzy system representation for better readability,
thereby combining the best of both worlds. This is, of course, not true, because the
back-transformed neural network (after training) does not necessarily take any of the
abovementioned requirements into account — and the resulting fuzzy system is there-
fore not interpretable (unless constraints similar to those mentioned above are explicitly
formulated as constraints, see for instance [7]).

In this paper, we propose to combine techniques from (fuzzy) clustering and (fuzzy)
regression to learn an interpretable fuzzy system directly from data. All of the above-
mentioned requirements will be addressed. The use of a clustering algorithm guaran-
tees that the obtained membership functions can indeed be interpreted as a partitioning
of the input space (P). We take care that both kinds of partitions (axis-parallel tessel-
lation and arbitrary partition) are possible, such that the dictionary of linguistic terms
can be tailored to the experts use of the variables. Using fuzzy clustering algorithms
(fuzzy c-means and derivatives) establishes the fuzzy membership functions that are
characteristic for fuzzy systems. We modify existing algorithms such that requirement



(F) is satisfied. Finally, we combine the clustering techniques with regression to inter-
weave the local model fitting with the partitioning process, such that the partition is no
longer determined by the distribution of the training data in input space, but actively
influenced by the approximation quality of the input/output relationship.

2 Objective Function-Based Fuzzy Clustering

In this section we briefly review the fuzzy c-means [1] and related algorithms, for a
thorough overview of objective function-based fuzzy clustering see [5], for instance.
The objective of clustering is to assign similar data objects into the same and dissimilar
data objects in different clusters. In objective function-based fuzzy clustering, every
cluster is represented by a prototype p;. Let us denote the membership degree of data
objectz; € X, j € {1,...,n}, to cluster p;, i € {1,...,c}, by u; ; € [0,1]. A value
u;,; = 1 means that data object x; is unambiguously assigned to cluster p;. Denoting
the distance of a data object z; to a cluster p; by d(x;, p;), the clustering process can
be understood as a minimization of the objective function

In(P,U; X) ZZu *(zj,pi) (1)

j=11i=1

If a data object has a low distance to a cluster, we can assign it to the cluster (u; ; =~ 1),
otherwise we achieve a low value of J by choosing a small membership degree (u; ; ~
0). The so-called “fuzzifier” m is chosen in advance and influences the fuzziness of
the final partition (crisp partition as m — 1 and totally fuzzy partition as m — oo;
common values for m are within 1.5 and 4, 2 is most frequently used)2. The objective
function is minimized iteratively subject to the constraints
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to avoid the trivial solution (all memberships are zero). In every iteration step, mini-
mization with respect to u; ; and p; is done separately. The necessary conditions for a
minimum of J yield update equations for both half-steps. Independent of the choice of
the distance function and the prototypes, the membership update equation is

1
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In the most popular fuzzy clustering algorithm, the fuzzy c-means (FCM) algorithm,
the prototypes are points in X and the distance function is the Euclidean distance.

Then, we obtain the optimized prototypes as the weighted mean of the data objects
assigned to the cluster:
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In this paper, we also utilize the fuzzy c-regression models (FCRM) algorithm [3],
which uses polynomials as cluster prototypes. With real functions R — R the cluster
models are characterized by the coefficients of the polynomial, that is, the prototypes
are elements of R?*+! where g depends on the degree of the polynomials and the dimen-
sionality of the input space. The Euclidean distance of FCM is replaced by the residual
error |y — h(z)| of a data object (x, y) (consisting of input value z and output value y)
to the polynomial k. For simplicity, we consider extended data objects & which have
an additional component Zo = 1. Then, the distance function can be written as

y N2
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For multiple inputs and polynomials of higher degree 2 ; has to be extended further, for
instance for z; = (a,b) we have £; = (1,a, b,ab, a*, b*) such that all coefficients of
the polynomial can be represented by an element of p;. The coefficients p; are obtained

in the same fashion as the cluster centers of FCM before, we only have to replace the
prototype update equation according to the modified distance function [3]:
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3 Transition from Crisp to Fuzzy Partitions

3.1 A *“crisp” fuzzy system

Let us revisit the “crisp notion” of a fuzzy system as it has been used in the in-
troduction. To obtain a simple partition of a variable, say “age”, it is appropriate
to find a small number of characteristic values, like “about 10” (child), “about 22”
(young), “about 40” (middle age) and “about 60” (old). The tuple of prototypical
values p = (p1,p2, 3, p4) = (10, 22,40, 60) shall be sufficient to define a crisp parti-
tioning of the variable “age”. Ignoring any other background information, the canon-
ical approach is to define the points half-way between the prototypes as the decision
boundaries for assigning a value, say 15, to its associated region, here p;. This leads to
a partition
{[0, 16[, [16, 31][,[31, 50], [50, o]}

If there is more than one input variable, we may have one partition for each variable
and the regions in the input space have to address multiple variables as in

if age is young and income is highthen ...

where the partition for income may be q = (10, 30,50, 100) [kilo EUR]. Only if the
age is young (p2) and the income is high (¢3) the model in the conclusion applies (and
here it does so exclusively, that is, there is no other model that applies at the same time).
Continuing our interpretation of the one-dimensional case, the two-dimensional points
(ps, g;) induce a Voronoi diagram onto the age-salary plane and the abovementioned
rule applies to all input data (x, y) that belong to the Voronoi cell of (ps, g3).



The advantage of this notion is that it holds also in case we do not have individual
partitions for each of the single variables but consider some of them in combina-
tion. Then, instead of having 4 x 4 = 16 regularly distributed points in the plane
we might have only a few irregularly distributed prototypes such as “starter” with
(age,salary)=(30, 30) and “experienced” with (age,salary)=(50, 50) and so forth. Al-
though the boundary between the concepts “starter” and “experienced” are no longer
parallel to the main axes age and salary, the principles of subdividing the input space
remain the same and correspond to the way a human would separate the concepts.
Whether a partitioning along the main axes is more appropriate or not depends on the
domain and the experts understanding and the fuzzy system should not force the expert
to use one view or the other. Therefore it is beneficial to be able to handle both views
under a unified notion.

To identify which local model applies, one has to find out in which region the input
data falls. Let ¢ points p; € X in a (multivariate) input space be given, which may
be obtained by regularly combining the prototypical points in each axis (e.g. (10,10),
(10,30), (10, 50), etc.) or may represent prototypical points for joint variables (e.g.
(30,40), (50,55), ...). Given a measure that yields the distance to the Voronoi cell of
a prototype p;, it can be used to identify the corresponding cell (such a measure will
be developed in section 4.2). At this point, we simply assume that such a measure is
given.

The prototypes p; thus subdivide the whole input space into ¢ Voronoi cells P; (forming
a partition of X). To each of the cells a local model f; assigned. We introduce n-ary
minimum functions

k
cmin; : R¥ — {0,1} with ) cmin;(z) =1 forany z € R
i=1

which yield 1 if and only if the it argument is the minimum of all arguments and 0
otherwise. Only one of the min; functions return a value of 1, if multiple arguments
are minimal, as in ming(2, 4, 6, 3, 2), ties are broken arbitrarily. Now, the input/output
relationship represented by the system can be summarized concisely as

Zcmini(dl(x),dz(w); ey de(2)) - fil)

where d;(x) represents the distance of z to the Voronoi cell of p;. Since cmin; is non-
zero only in case d; () is minimal (and thus = belongs to Voronoi cell p;), model f;(x)
is the only local model that contributes to the output.

If we choose, for instance, linear models f;, such a system is easily understandable and
therefore well-suited for interpretation and verification by a human expert. In the next
section, we will turn it into a fuzzy system.

3.2 The Fuzzification

The cmin; functions can be understood as characteristic functions of the elements P;
of the partition induced by the prototypes p;. We obtain a fuzzy system by generalizing



these characteristic functions into fuzzy ones. This can be achieved by simply replacing
the crisp cmin; functions by fuzzy counterparts fmin;:

k
fmin; : R¥ — [0, 1] with )~ fmin;(z) = 1 for any = € R¥
i=1

The fuzzified minimum function can be motivated as follows: In case of the four values
d = (1,100, 150, 99) we have no problems with clearly identifying the value 1 as the
minimum. But in case of d’ = (1,100, 150, 2) things are a little less certain. Still, 1
is the minimum, but given the other values, 2 is also very close to the minimal value
of 1. In a fuzzy fashion, we could say that 1 is the minimum value to some degree,
say 0.6, and 2 to some (smaller) degree, say 0.4. In consequence, when considering
(1+¢,100, 150, 2 — ¢) for any e we want to have a smooth transition of the minimality
degree fmin; from 1 to O (and fmins from 0 to 1) as € goes from —oo t0 oo, with
fmin; = fminy for ¢ = 0.5. Basically we want to turn the discontinuous cmin;
functions into continuous ones.

There are many possibilities to define such minimum functions, we propose to use the
following here:

Theorem 1 (Fuzzified Minimum Function) Let f : R>o — R>( be a strictly in-
creasing function with f(z) > z, let p € Rso. With d = (di,...,dx) € RF,
D, = (f(ds — min{dy, ..,dr}) + )%, ¢ > 1, we define

k -1

fmin,(d) = (Z %) (6)

i=1 !

Then, the following inequality holds:

k
> fminy(d) - dy — min{ds, ds, ..., dx }| <7 +n(k —r — 1) <k —1)
s=1

where 7 is the number of indices s for which d has at least a distance of 1 — n from
the minimum: r = |{s |1 < s <k, dy — min{dy,da,...,dr} > 1 —n}|

Figure 1 shows an example where we take the pointwise minimum of three functions.
The resulting fuzzified minimum is displayed for two different values of n = 0.1/0.2
(solid lines) using ¢ = 1.5. According to the theorem, the error is bounded by 0.06/0.18
if the minimum is clearly separated from the other values.

The fuzzy minimum functions have several desirable properties: Despite the occur-
rence of the minimum expression, they are differentiable if ¢ > 1 and f is differen-
tiable. The functions actually represent an approximation of the crisp minimum func-
tion (min{dy, da, ...,dr} = Zle cmin;(d)) and by variation of the parameter 7 the
approximation quality can be controlled.

Obviously, the effect of replacing the crisp with the fuzzy minimum function does not
destray any of the “partitional properties”, because the fuzzification represents only a
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Figure 1: Minimum of three functions.

smoothing operation. Therefore requirement (P) still holds. The membership functions
do not show clear local extrema (unimodality) and decay rapidly outside the Voronoi
cells. Therefore, requirement (F) is also fulfilled.

In the next sections, we investigate how to modify and extend existing clustering and
regression algorithms such that they provide a method to learn fuzzy system of this
kind automatically from data.

4 An Objective Function-based Fuzzy System

Obijective function-based fuzzy clustering algorithms, as they have been discussed
briefly in section 2, will provide the basis for the construction of an objective function,
whose minimum represents a fuzzy system that models the input/output-relationship
present in the data. Fuzzy clustering algorithms have been used before to learn fuzzy
systems from data, and it has been outlined several times that the membership functions
of the fuzzy c-means algorithm are not very well suited to be used in a fuzzy system.
Figure 2(b) shows the membership functions of FCM in case of the age partition from
the previous section (for m = 2). The leftmost (resp. rightmost) membership func-
tion should have constantly high values to the left (resp. right) and the local maxima
are also counterintuitive. Thus, the functions exhibit a number of undesired properties
which are in contrast to requirement (F). The problem of unimodality can be solved by
using possibilistic memberships [2], but the possibilistic c-means is not a partitional
but a mode-seeking algorithm.

In the following subsections, we will modify the objective function of the fuzzy c-
means algorithm such that (a) the notion of distance corresponds to the understanding
of fuzzy systems as described in section 3.1, (b) the membership functions satisfy
condition (F), (c) the expert can choose what kind of partitioning she or he want to
use for which variables (condition (P)), and (d) the local models and the partition are



(b) FCM membership functions (m = 2.0).

Figure 2: Different kinds of membership functions.
developed simultaneously.

4.1 Membership Functions as Fuzzified Minimum Functions

The membership functions (3) obtained from the fuzzy c-means algorithm are already
very similar to the fuzzified minimum function (6): if we setn = 0, f(z) = 2™,
g = 1/(m—1) the only difference is the additional occurrence of the minimum termin
(6). Since we want the FCM algorithm to provide (6) as membership functions, we have
to incorporate the minimum term somehow. Formally, this is quite difficult, because
the update equations evolve from differentiating an objective function and solving for
its parameters. Solving for the prototype parameters, for instance, becomes difficult
since they occur within a minimum expression. Therefore, we circumvent the problem
by introducing another set of parameters a;, one for each data object, and define a new
distance measure d' as the old distance d reduced by a; under the condition that a; is
the minimum of all distance values d. We then “optimize” the a; values in a third stage
of the alternating optimization:

1. calculate the membership degrees (assuming prototypes and a; as being con-
stant)

2. calculate the prototypes (assuming memberships and a; as being constant)



3. calculate the a; (assuming prototypes and memberships as being constant)

By doing so, we arrive at identical update equations for the membership and prototype
update (only the reduction by a; appears in the membership calculation due to the
usage of the distance d' instead of d).

At this point, we have membership degrees u; ; which can be interpreted as fuzzified
minimum degrees (6) if we set f(z) = 2™, ¢ = 1/(m—1) and require a; = min; d;—7
for some constant > 0.

4.2 Memberships Induced by Voronoi Distance

In the fuzzy c-means algorithm, the prototypes are points p; in the input space. In sec-
tion 3.1 we have discussed a system where the prototypical values p; induce Voronoi
cells and that the belongingness to these cells decides which local model has to be
applied. As already mentioned, the Euclidean distance of a data object z; to the hy-
perplane that separates the points p; and p; is given by |(z; — hs,;) "ns,i| Where hg ;
is a point on the hyperplane, e.g., hs; = (ps + pi)/2, and n, ; is the normal vector

Ns,i = Bs,i- (pi — ps) With 85 ; = m for s # 4. If we do not take absolute values,

we obtain directed distances (z; — hs.;) " ns,;, Which become positive if z; lies on the
same side as the cluster center and negative if z; lies on the opposite side. Taking the
absolute value of the minimum over all the directed distances yields the distance to the
border of the cell. If z; lies within the Voronoi cell of cluster 4, then the distance to the
cell is zero. We can formalize this special case easily by setting 3; = 1 and defining:
dy (zj,p;) = | min (z; — hy;)"

e s
1<s<c o

In Fig. 3(a), z; is closest to the separating line between p; and p,, therefore this dis-
tance serves as the distance to the Voronoi cell of p;. The graph of dy- for the 4 clusters
of Fig. 3(a) is shown in Fig. 3(b).

If we do not scale the normal vectors n, to unit length, but assume 8, = 1 for all s, we
preserve the shape of dy- (position of hyperplanes does not change), only the gradient
of the different hyperplanes varies. The following lemma establishes a link between
the Voronoi distance to the cell induced by p; and the fuzzified minimum functions (6)
via this scaled Vooronoi distance:

Lemma 1l Given a Voronoi diagram induced by a set of distinct points p;, 1 <14 < ¢,
and a pointz. Using 8, ; = 1 forall 1 < s,¢ < ¢, the (scaled) distance between z and
the Voronoi cell of point p; is given by

1 .
av(e.p) = 3 (e = pil? — min s — .l ) @

This gives a very nice interpretation of the fuzzy c-means algorithm using distance
values reduced by the minimum of all distances as described in the last section: Es-
tablishing the fuzzified minimum functions as membership functions is equivalent to

10
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Figure 3: Developing a distance between a point and a Voronoi cell.

providing the Voronoi distance to the cell of prototype p; instead of the Euclidean dis-
tance to p; (as in standard FCM). This corresponds well to our understanding of a fuzzy
system in section 3.1.

Note that with FCM squared Euclidean distances are used to determine the membership
degrees, but if we use the Voronoi distance we use Euclidean distances to the Voronoi
cell, which are not squared. Therefore, the modification may reduce the sensitivity for
noise and outliers.

4.3 Effect on the Membership Degrees

The proposed modifications of FCM yield different membership functions than the
original FCM algorithm. At the beginning of this section we have mentioned that the
membership functions of the original algorithm are not very well suited for usage in a
fuzzy system (constraint (F) violated). As an example, consider the one-dimensional
input space for the variable age(cf. figure 2(b)). The prototype with the biggest number
is ps = 60. When a data object is given by z = p4 + ¢, the membership degrees (of
original FCM) tend to approach % for all clusters as e — oo! We would expect, of
course, that us — 1 while u; — 0 for all other clusters. What is the reason for this
undesired behavior?

With FCM the relative distances (cf. (3)) define the degree of membership to a cluster,
e.g., if the distance between z; and p; is half the distance to p», the membership degree
u1,; is twice as large as up ;. If we consider crisp membership degrees things are
different, the membership degree does not depend on the ratio of distances, but the
distances serve as threshold values. If the distance to p; is smaller than to p» — no
matter how much smaller — we always have u;; = 1.

11



Let us now consider the case of fuzzified minimum functions (6) again and assume that
p; is closest to ;. No matter if z; is far away from p; (but all other p, are even further
away) or x; is very close to p;, the numerator of the distance ratio is always constant
7. Inside a region in which all data points are closest to p;, the distance to cluster ¢ is
considered to be constant . The membership degrees uy, ; are therefore determined
by the denominator, that is, mainly by d?(z;, px,). Therefore, the membership degrees
obtained by (6) are no longer defined by a ratio of distances, but it has the flavor of a
threshold value.

Surprisingly, besides the different shape of the membership functions, the resulting
algorithm performs very similar to conventional FCM in terms of resulting cluster cen-
ters. Concerning the membership functions, however, the modified FCM is much closer
to its crisp original, the ISODATA or k-means algorithm.

4.4 Regularly distributed prototypes

Quite often the variables in a fuzzy system are partitioned individually and the mul-
tidimensional region, for which a certain model holds, is specified by a conjunction
of conditions on the individual variables (as in “if age is young and income is high
..."). For reasons of consistency and interpretability, the membership function that is
referred to by the linguistic term young must be identical in all rules in which it oc-
curs. That is, the prototypical value for young is not chosen with respect to this single
rule (and its model), but to all rules in which this term is used. In our approach, the
linguistic terms are represented by prototypes p; in the multidimensional input space,
that is, a prototype represents multiple linguistic terms at the same time (one for each
variable). The prototypes (age1 , income;) for the rule “if age is young and income is
medium...” and (age2, incomes) for the rule “if age is young and income is high...”
must always share the same value for the age component, that is, age; = agez2. Simi-
larly, for the prototype (ages, incomes) of the rule “if age is old and income is high...”
we have incomes = incomes. That is, we have to respect the regular distribution of
the prototypes on a multidimensional grid.

Standard FCM distributes the prototypes irregularly in the input space. If the expert
wants to use one partition per variable, the fuzzy c-means algorithm must be modi-
fied to guarantee that all prototypes represent jointly a regular grid in the input space.
Given k input variables, suppose we want to divide the domain of variable v; into N;
linguistic terms, induced by points p; ;, i € {1,...,k}, j € {1, ..., N;}. Then, we have
a tessellation of X into Hle N; regions. We denote any region by the tuple of indices
(1:1, 12, ,Zk) el

I={(i1,i2,-..,0x) | 4 € {1,..,N;},5 € {1, .., k}}.

Each tuple addresses the subset of the input space for which a rule’s premise would
read like
if V1 is D1,iy and Vo is D2,is and ... and Vg is Dk iz, then ...

12



The prototype that represents the region addressed in the premise is
Py
YR
pk.,z'k
The set of ¢ prototypes, ¢ = Hle N;, is given by
P ={(p1,i1>P2,i25" s Phyia) | (i1, 02, sig) €1 }
Given these definitions, the objective function turns into:

T1 — Pi,iy
n
T2 — P2,is
J— m
T=3 > Ui : (8)
J=1 (i1 ,i2,...,ik) ET ’
Tk — Dk, iy,

Contrary to standard fuzzy c-means, where each prototype is determined separately,
now we have to determine the p; ; separately:

Lemma 2 The necessary conditions for a minimum of the objective function (8) under
constraints (2) are given by:

n m .
e = Zj:l Z(ihiz,...,ik)EI,iz:r Uiy igyeyin),j T
57‘ -

©)

n m
ZJ'=1 E(il sigyeensin) €L ir=r Y(inin..in)

Since the derivation of the necessary condition arrives at a unique solution, convergence
of the iterative alternating optimization scheme is guaranteed [4].

It is also possible to provide a “mixed mode” fuzzy c-means variant, where the user
specifies a partitioning of the variables together with the number of prototypes for each
element of the partition. For instance the input space (age, income, longitude, latitude)
could be partitioned into {{age}, {income}, {longitude,latitude}}. For the multi-
variable set {longitude, latitude} the equation (9) must then be interpreted as a vector
rather than as scalar equation.

4.5 Combining Clustering and Regression

For each cluster or region in the input space, a local model has to be identified that fits
the data within the region best. For each cluster, we may instantiate a polynomial of
low degree (1 or 2, for instance) to locally approximate the input-output relationship
in this cluster, as it is done with switching regression models (cf. section 2 and [3]).
Performing the clustering first, before we then fit the local models to the identified
clusters, is not a good solution, because then the output values have no influence on the
partitioning. Consider two data sets with regularly distributed data points in the input
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space. Both data sets are identical with respect to the input variables, however, the
output values may represent completely different functions. If we decouple clustering
and model fitting, we would come up with identical partitions for both functions. This
may not be a problem if the capabilities of the local model are universal in the sense
that they can represent any function. In our case of fuzzy systems, however, we have
decided to choose rather simple linear or quadratic functions. So, the modeling capa-
bilities are limited and the tessellation of the input space should be chosen in a way
that supports the approximation by simple local models.

Furthermore, in real world data it is likely that regions of high data density simply in-
dicate the operating points of the systems and not necessarily good centers for local
models. To achieve a better interaction between partitioning and model fitting we in-
terweave both steps and execute them simultaneously, such that bad regression fits can
have influence on the partitioning and therefore lead to a better fit next time. Since both
algorithms (fuzzy clustering and switching regression models) are objective function-
based, their combination is straightforward. We simply use the sum of both distance
functions (FCM and FCRM) in the modified clustering algorithm:

2
& (zj,95), i @) = llz; _pi”i +\(yj - qiij)l- (10)
FCM a?stance FCRM‘aistance

The FCM distances are taken with respect to the input value z; and cluster center p;,
while the FCRM distances are taken with respect to the given output value y; and the
value of the polynomial at «7; with coefficients g;.

Since there are no dependencies between the parameters of the modified clustering
and regression prototypes (p; and g;), the same prototype update equations hold for
the combined algorithm. Nevertheless, cluster centers and polynomials influence each
other indirectly by means of the membership degrees, which depend on the distance to
both models.

5 Examples

In this section we give a few examples for learning a one-dimensional function over a
two-dimensional input space. We use very simple linear local models and partition the
two input variables into 3 to 4 elements only. It is obvious that the mean square error
may become quite large locally. However, as mentioned in the introduction, our aim is
not to get a close quantitative approximation, but to capture the qualitative aspects of
the functions.

The figures 4-6 show the functions 5-exp(—5-(z —1)2) +exp(z/2), z-y-cos(x? -y /2)
and sin(z?) - cos(y?), resp. We sampled the input space uniformly and complemented
the points with the output values. The location of the data points in the input space
therefore give no hints about an appropriate partition of the input variables. The figures
show the resulting models with the original functions superimposed. One can easily
distinguish the local regions in which the local models apply. The partitions of the x
and y variable have been adjusted automatically (cf. table 1) to improve the fit of the
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Figure | partition x-axis partition y-axis

4 [0,0.6[, [0.6,1.2[, [1.2,2.5[, [2.5,4.0] [0,1.0[, [1.0,2.0[, [2.0,3.0]
5 [0,1.0[, [1.0,1.75[, [1.75,2.5] [0,1.25[, [1.25,2.25], [2.25,3.0]
6 | [0,0.85[,[0.85, 1.65[, [1.65,2.35[, [2.35,3.0]  [0,L.1[, [1.1,2.1], [2.1,3.0[

Table 1: Partitions obtained for figures 4-6.

local linear models, the major qualitative aspects of the functions have been captured.
For instance, in figure 4, the function does not depend on variable y, leading to a
uniform distribution of the prototypes in this variable. For the variable z, however,
the prototypes deviate from the uniform distribution in order to better approximate the
function with local linear models.

If we would have allowed for complex models (e.g. polynomials of high degree), the
approximation error would be smaller, but more difficult to understand by the expert —
and the partitioning of the input space would not be that meaningful in itself, because
the models are capable of approximating almost any part of the function equally well
and therefore would not provide substantial feedback for the partitioning of the input
space.

6 Conclusions

In knowledge discovery applications, one tries to discover understandable and poten-
tially useful models from historical data. Fuzzy systems can be useful in this case, if
one succeeds in learning them automatically while at the same preserving their inter-
pretability. In this paper, we have outlined some fundamental properties a fuzzy system
should have in order to be interpretable. We discussed a “non-fuzzy reference system”
with clear and simple semantics, which is then turned into a fuzzy system by simply
fuzzifying a minimum function used in the non-fuzzy counterpart. On the basis of
fuzzy clustering and regression techniques, we developed an objective function-based
algorithm which follows the clear semantic of the reference system and also optimizes
the partitions of the input variables to improve the overall fit of the local models.

A Proofs

Proof of Lemma 1: Some simple transformations yield the following chain of equali-
ties

dV(xapi)
-
_ ; _bstpi _
= | min, (m 5 ) (pi — ps)
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Figure 4: Example 3
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In equation (x) we have used the trivial fact that any ||z — p;]|| is greater than or equal
to miny <s<c || — ps||. [ |
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Figure 5: Example 2

Proof of Theorem 1: We have the following equality
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Figure 6: Example 1

Using the abbreviations M = min{d,, da, ..., d), } We estimate the approximation error

as follows

*

k k
Es:l ds Hi:l,z’;és D; _

k k M‘
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k k k k
(2321 ds Hi:L#S Di) -M (2321 Hz’:1,i;és Di)

k k
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k k
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k k
2 nq Zs:Z (ds B M) Hi:Z,i;ﬁs Dz
k k
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_ |y e )‘
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. u (ds — M)
* q £
< 7 2 (d, — M)(d, — M + 7)ot

k

1

= an—_

| (ds — M +n)a~t
s 1
< -1
= g nq
= nk-1)

Remarks:

x1 Without loss of generality we have assume that d; is the minimum and have
(dv — M)=0.

*x2 Fromd; = M we can conclude Dy = (f(d; — dy) +n)? < nq.

*3 We have dropped all summands in the denominator Zle Hle’i#s D; that con-
tain D;. All summands are positive.

x* We drop one 7 in the denominator D, = (ds — M +n)(ds — M +n)4~! which
makes the term smaller.

*® Here we assume the worst case that all d, are minimal and thus d;, — M = 0.
(However, if this would actually be the case, we can see from the equality x! that
the approximation error is zero.) We also obtain an equality if ¢ = 1.

If some ds, s € {2,3,...,k}, have reached a distance d; — M > 1 — 5 from the
minimum, the estimation can be improved. If we continue from the result after x> we
haved; — M < f(ds — M) +n < (f(ds — M) +n)? = D, and thus may substitute
(ds — M) by D,. This leads us to an error below n?(k — 1).

To summarize both estimations, if there are r values that have a distance of at least
ds > 1 —n+ M, we have an error smaller than n(k — r — 1) + n%r. ]
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Proof of Lemma 2: Equation (9) is easily obtained by setting £TJ = 0 and solving
for py. .. ’ n
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