
Clustering with Size Constraints

Frank Höppner1 and Frank Klawonn2

1 Department of Economics
University of Applied Sciences Braunschweig /Wolfenbüttel

Robert Koch Platz 10-14
38440 Wolfsburg, Germany

2 Department of Computer Science
University of Applied Sciences Braunschweig /Wolfenbüttel

Salzdahlumer Str. 46/48
38302 Wolfenbüttel, Germany

{f.hoeppner,f.klawonn}@fh-wolfenbuettel.de

Abstract. We consider the problem of partitioning a data set of n data
objects into c homogeneous subsets or clusters (that is, data objects in
the same subset should be similar to each other) with constraints on
the number of data per cluster. The proposed techniques can be used
for various purposes. If a set of items, jobs or customers has to be dis-
tributed among a limited number of resources and the workload for each
resource shall be balanced, clusters of approximately the same size would
be needed. If the resources have different capacities, then clusters of the
corresponding sizes need to be found. We also extend our approach to
avoid extremely small or large clusters in standard cluster analysis. An-
other extension offers a measure for comparing different prototype-based
clustring results.

1 Introduction

Cluster analysis is a widely used technique that seeks for groups in data. The
result of such an analysis is a set of groups or clusters where data in the same
group are similar (homogeneous) and data from distinct groups are different
(heterogeneous) [1]. In this paper, we consider variations of the clustering prob-
lem, namely the problem of subdividing a set X of n objects into c homogeneous
groups with constraints on some or all clusters concerning the number of data
they can contain. In contrast to the standard clustering problem, we abandon the
heterogeneity between groups partly and introduce constraints on the number
of data per cluster.

Applications of uniform clustering where all clusters should contain approx-
imately the same number of data include for instance: (a) The distribution of n
students into c groups of equal strength to obtain fair class sizes and with homo-
geneous abilities and skills to allow for teaching methods tailored to the specific
needs of each group. (b) The distribution of n jobs to c machines or workers such
that every machine has an identical workload and as similar jobs as possible to

2 Frank Höppner and Frank Klawonn

reduce the configuration time. (c) The placement of c sites such that goods from
n locations can be transported to the c sites, while the total covered distance is
minimized and queuing at the sites is avoided, that is, approximately the same
number of goods should arrive at each site.

More general applciations include problems where the resources, for instance
the lecturing halls in the above example (a), the machines in example (b) and
the size of the sites in example (c), differ in capacity, so that the clusters still
should have fixed size corresponding to the capcities, but not necessarily the
same size for all clusters.

Due to the similarity of our problem with traditional clustering problems,
we are going to modify an existing clustering algorithm, which will be reviewed
in section 2. This objective function-based clustering algorithm – a variant of
k-means – transforms the discrete, combinatorial problem into a continuous one,
such that numerical problem solving methods can be applied. As proposed in [5],
we modify the objective function such that the equi-sized clusters are considered
in section 3 and discuss the results in section 4. Section 5 extends the approach
to clusters with different size constraints. In section 6 our approach is exploited
to define a similarity measure to compare different clustering results.

2 The FCM Algorithm

The fuzzy c-means (FCM) clustering algorithm partitions a data set X :=
{x1, ..., xn} ⊂ Rd into c clusters. A cluster is represented by a prototype pi ∈ Rd,
1 ≤ i ≤ c. The data-prototype relation is not binary, but a membership degree
uij ∈ [0, 1] indicates the degree of belongingness of data object xj to proto-
type pi or cluster number i. All membership degrees form a membership matrix
U ∈ Rc×n. We can interpret the membership degrees as “probabilistic member-
ships”, since we require

∀1 ≤ j ≤ n :
c∑

i=1

uij = 1 . (1)

The clustering process is carried out by minimizing the objective function

Jm =
n∑

j=1

c∑
i=1

um
ij dij with dij = ‖xj − pi‖2 . (2)

under constraint (1). If the Euclidean distance between datum xj and prototype
pi is high, Jm is minimized by choosing a low membership degree near 0. If
the distance is small, the membership degree approaches 1. Jm is effectively
minimized by alternating optimisation, that is, we alternatingly minimize (2)
with respect to the prototypes (assuming memberships to be constant) and then
with respect to the membership degrees (assuming prototypes to be constant).
In both minimization steps, we obtain closed form solutions, for the prototypes:

∀1 ≤ i ≤ c : pi =

∑n
j=1 um

ij xj∑n
j=1 um

ij

(3)

Clustering with Size Constraints 3

and for the membership degrees:

uij =


1∑c

l=1

(
‖xj−pi‖2

‖xj−pl‖2

) 1
m−1

in case Ij = ∅

1
|Ij | in case Ij 6= ∅, i ∈ Ij

0 in case Ij 6= ∅, i 6∈ Ij

(4)

where Ij = {k ∈ N≤c |xj = pk}. The FCM algorithm is depicted in Fig. 1. For
a more detailed discussion of FCM and examples we refer to the literature, e.g.
[2, 3].

choose m > 1 (typically m = 2)
choose termination threshold ε > 0
initialize prototypes pi (randomly)
repeat

update memberships using (4)
update prototypes using (3)

until change in memberships drops below ε

Fig. 1. The FCM algorithm.

3 Equi-sized Clusters

It is often said that the k-means (as well as the FCM) algorithm seeks for clusters
of approximately the same size, but this is only true if the data density is uniform.
As soon as the data density varies, a single prototype may very well cover a
high-density cluster and thereby gains many more data objects than the other
clusters. This leads to large differences in the size of the clusters. Examples for
this phenomenon are shown in Fig. 2 for two data sets: On the left image, there is
a very high density cluster in the top left corner, on the right image, the density
decreases from left to right, so the rightmost cluster has only some data.

The idea of our modification is to include an additional constraint in the
objective function (2) that forces the clusters to cover the same number of data
objects. The size of cluster i (number of data objects) corresponds to the sum of
the membership values

∑n
j=1 uij . In fact, since we have continuous membership

degrees we may require
n∑

j=1

uij =
n

c
(5)

for all i ∈ {1, . . . , c} even if n is not a multitude of c. This additional constraint
(5) is – together with the constraint (1) – integrated into the objective function
(2) via Lagrange multipliers. We then solve for the cluster prototypes and La-
grange multipliers by setting the partial derivatives to zero. This turns out to be

4 Frank Höppner and Frank Klawonn

Fig. 2. Results of the FCM algorithm on two data sets.

a difficult problem for the general case of an arbitrary value of m, therefore we
restrict ourselves to the case of m = 2, which is the most frequently used value
of m in FCM. Given our Lagrange function

L =
c∑

i=1

n∑
j=1

u2
ijdij +

n∑
j=1

αj

(
1−

c∑
i=1

uij

)
+

c∑
i=1

βi

n

c
−

n∑
j=1

uij

 (6)

we obtain as partial derivatives

∂L

∂uij
= 2uijdij − αj − βi = 0 (7)

These equations, together with the constraints (1) and (5), lead to the fol-
lowing system of (c · n + c + n) linear equations for the variable uij , αi and
βj (i ∈ {1, . . . , c}, j ∈ {1, . . . , n}). Empty entries indicate the value zero, RHS
stands for the right hand side of the equation.

Clustering with Size Constraints 5

u1,1 . . . u1,n . . . uc,1 . . . uc,n α1 . . . αn β1 . . . βc RHS
∂L

∂u1,1
2d1,1 −1 −1

...
.

...
∂L

∂u1,n
2d1,n −1 −1

...
.

∂L
∂uc,1

2dc,1 −1 −1
...

.
...

∂L
∂uc,n

2dc,n −1 −1∑
ui,1 1 . . . 1 1
...

.
...∑

ui,n 1 1 1∑
u1,j 1 . . . 1 n/c
...

. . .
...∑

uc,j 1 . . . 1 n/c

In principle, this system of linear equations could be solved by a suitable
numerical algorithm. Even for small data sets with 200 data objects and 5 clus-
ters, this would mean that we have to solve a system of 1205 equations in each
iteration step of the clustering algorithm, which is not acceptable in terms of
computational costs. However, it is possible to solve this system of equations in
a more efficient way.

When multiplying the equations for uk1, . . . , ukn by 1
2dk1

, . . . , 1
2dkn

, respec-
tively, and then subtracting the resulting equations from the equation for

∑
j ukj ,

we obtain
n∑

j=1

αj

2dkj
+ βk

n∑
j=1

1
2dkj

=
n

c
. (8)

From equation (7), we obtain

uij =
αj + βi

2dij
. (9)

Taking constraint (1) into account, yields

1 =
c∑

i=1

uij =
αj

2

c∑
i=1

1
dij

+
1
2

c∑
i=1

βi

dij
,

leading to

αj =
2−

∑c
i=1

βi

dij∑c
i=1

1
dij

. (10)

6 Frank Höppner and Frank Klawonn

Inserting (10) into (8), we obtain

n∑
j=1

2−
∑c

i=1
βi

dij

2
∑c

i=1
dkj

dij

+ βk

n∑
j=1

1
2dkj

=
n

c

and thus

−
n∑

j=1

∑c
i=1

βi

dij

2
∑c

i=1
dkj

dij

+ βk

n∑
j=1

1
2dkj

=
n

c
−

n∑
j=1

1∑c
i=1

dkj

dij

. (11)

This induces a system of c linear equations for the βk with coefficients

ak` =


−
∑n

j=1

1
d`j

2
∑c

i=1

dkj
dij

if k 6= `

−
∑n

j=1

1
d`j

2
∑c

i=1

dkj
dij

+
∑n

j=1
1

2dkj
if k = `.

(12)

This system of linear equations can be solved by a suitable numerical al-
gorithm. The computation time is acceptable, since the number of equations is
equal to the number of clusters and therefore independent of the number of data.
Once the βi have been determined, we can compute the αj using equation (10)
and finally obtain the membership degrees based on equation (9). After all, we
arrive at the clustering algorithm depicted in Fig. 3.

choose termination threshold ε > 0
initialise prototypes pi

repeat
solve linear equation system (11) for β
using β, calculate α using (10), update memberships using (9)
update prototypes using (3)

until change in memberships drops below ε

Fig. 3. The proposed algorithm.

Note that the boundedness of the membership degrees uij ∈ [0, 1] represents
an additional constraint on the objective function of FCM as well as the objective
function of our new algorithm. In the original FCM, however, it was not necessary
to consider it explicitly, because one can easily see from the resulting membership
degrees (4) that this condition is satisfied. It is not possible to conclude this
boundedness for the new membership degrees (9). It is clear, however, that
the influence of negative memberships will be rather small: Since the objective
function (2) and (6) uses only positive weights u2

ij , large negative values cannot
help in the minimization. We will comment on this in the following section.

Clustering with Size Constraints 7

4 Examples for Uniform Clustering

To illustrate the impact of our modified objective function, we show the results
of the new algorithm for the data sets shown in Fig. 2, where the standard FCM
algorithm yielded a result with high variation in the cluster size. The results
are shown in the left images of Figs. 4 and 6. By comparison to Fig. 2 we see,
that the high-density cluster has been split into two clusters (Fig. 4) and that
the data on the left of Fig. 6 is now distributed among four rather than three
clusters, such that the rightmost cluster gains more data. As expected, the sum
of membership degrees for each individual cluster equals n

c .

Fig. 4. Results of the new algorithm.

Regarding the boundedness of the membership degrees uij it turned out that
they actually take negative values. This is, of course, an undesired effect, because
then the interpretation of

∑n
j=1 uij as the size or number of data objects is not

quite correct. As conjectured in the previous section, it turned out on closer
examination that the total sum of negative weights is rather small. In both data
sets, the sum of all negative membership degrees was below 0.5% of the total
data set size n.

Fig. 5. A ’difficult’ example data set.

We want to illustrate the kind of situation in which negative membership
degrees occur with the help of the data set shown in Fig. 5. Consider the data

8 Frank Höppner and Frank Klawonn

set is partitioned into three clusters. Since the leftmost cluster has an additional
data object x in the middle, it is not obvious how to distribute the data among
all clusters in equal shares.

Regarding the minimization of the sum of weighted distances, it would be
optimal to assign high membership degrees to all five data objects. This would,
however, violate the constraint that all clusters must share the same size. To get
membership degrees as high as possible, the membership of all other data objects
(middle and right cluster) to this cluster are chosen slightly negative. Since the
sum of all membership values is constrained to be one, negative values for the
middle and right data allow us to have slightly higher degrees for the leftmost
data. On the other hand, having a negative membership degrees for some data
object x on the right forces us to increase other membership degrees of x (to
guarantee a sum of 1). This is possible almost at no cost, if x is close to the centre
of another cluster, because then we have a small distance value and increasing
the membership degree to this cluster does no harm in the minimization of (2).
(For a detailed discussion of the general influence of the membership weight um

ij

see [4].)

To summarise: In a situation where an equi-sized partition is difficult to ob-
tain while minimizing at the same time the sum of weighted distances (2), the
cluster with too many data objects ’borrows’ some membership from data near
the centres of the other clusters. Figures 4 and 6 show this effect for the two
example data sets. The data for which negative membership values occur are
shown in a lighter shading. These data objects are all close to the respective
cluster prototype. And there is always one cluster without any negative mem-
bership degrees, which corresponds to the rightmost cluster in our example data
set in Fig. 5.

Fig. 6. Results of the new algorithm.

Clustering with Size Constraints 9

In all our experiments, the side effects of this trade off between minimizing (2)
and satisfying (5) were quite small, so we do not consider this as a major draw-
back of our approach. We can even make use of this information: By analysing
which cluster has no negative membership degrees at all, we can find out which
cluster tends to be ’too big’. When breaking ties in the final assignment of data
to clusters, it should be this cluster that gets more data objects than the other.

5 Limiting the Size of Single Clusters only

Instead of forcing all clusters to have the same size of n
c , it is also possible

to have different requirements for each cluster individually. We introduce size
parameters si and replace (5) by

n∑
j=1

uij = si (13)

The derivation of the linear equation systems still holds, we just have to
replace the fraction n

c in (11) by si.
For some of the clusters, we may have no constraint on their size. In such

a case the condition (13) needs not to be guaranteed by means of a Lagrange
multiplier as in equation (6). So we consider a linear equation system with a
reduced number of Lagrange multipliers (or force the respective βi to be zero,
such that it has no influence on the remaining equations).

Two examples are given to illustrate the performance of the algorithm on
two low-dimensional data sets. Figure 7 shows a set consisting of basically two
clusters (50 data points each) and three outliers in the lower left corner. When
clustered with c = 3 clusters, FCM assigns the three outliers to a single cluster
(cf. figure 7, left). Then, we force two clusters to have a size of si = 34. This
forces the outlier cluster to move closer to one of the larger clusters (cf. figure
7, right).

Fig. 7. Example 1. Left: Result of FCM. Right: Result of Size-Constrained FCM.

The second example in figure 8 shows the case of two long-stretched clusters of
100 data points each. Using 4 clusters FCM covers each of the two long-stretched

10 Frank Höppner and Frank Klawonn

clusters by 2 prototypes (figure 8, left). Now we force one of the bottom clusters
to have exactly a size of 100 data points. To achieve this, the other prototype
(supported by 50 data points) has to be repelled completely from the clusters and
the data from the second cluster must now be shared among three prototypes.
This is exactly the case in figure 8 (right). The figure also shows how the position
of the prototypes evolves over the iterations.

Fig. 8. Example 2: Left: Result of FCM. Right: Result of Size-Constrained FCM. (top:
resulting partition, bottom: trace of prototypes to their final location)

It is also possible to apply our technique to avoid extremely small or large
clusters in a cluster analysis. We simply formulate a fuzzy clustering algorithm
with upper and lower bounds on the size of a cluster as shown in figure 9. We
first run the original FCM and then impose constraints on cluster sizes in case
a cluster’s size is below the lower or above the upper bound on cluster sizes.

It should be mentioned, that the size si of a cluster has been interpreted in a
fuzzy sense: It may happen that a prototype achieves quite a large size

∑n
j=1 ui,j

although only in very few cases this prototype receives the highest membership
degree. From our experiences such situations are more likely to occur, if the
partition is very stable and the number of clusters is chosen wrongly.

6 A Distance Measure for Sets of Prototypes

In this section we consider the problem of defining a distance measure between
two sets of prototypes. Figure 10 illustrates the problem by an example: Proto-

Clustering with Size Constraints 11

choose minimal and maximal cluster size smin and smax.
initialize size constraint vector si = (0, .., 0) (no size constraint for any cluster)
run traditional Fuzzy c-Means (cf. figure 1)
while (at least one cluster sizes ai does not satisfy smin ≤ ai ≤ smax.

for all clusters i with si = 0
if ai < smin, set si = smin

if ai > smax, set si = smax

end
run algorithm in figure 3 using current constraints si (with si 6= 0)

end

Fig. 9. Clustering with constraints on cluster size.

type set A consists of three prototypes {a, b, c}, set B consists of four prototypes
{d, e, f, g}. We need a measure of divergence between the two sets. Intuitively we
have to match each of the prototypes in set A to one (or more) prototype(s) in set
B and then account for the distances between the associated pairs of prototypes.
An intuitive matching is illustrated by dotted lines in figure 10.

a

b

c

prototype set A prototype set B

e

y

xx

y

d

g

f

Fig. 10. Constraints on the membership matrix.

This problem is quite similar to clustering a small data set with c ≈ n. If we
interpret the membership degree ui,j as the strength of the relationship between
prototype i (set A) and prototype j (set B), cf. dotted lines in figure 10, the sum
of weighted distances (2) becomes a good indicator for the distance between the
sets.

The membership constraints (1) and (5) assure that every data object /
prototype has the same overall weight in the assignment, that is, every data
object (or prototype, resp.) must be assigned to a prototype (or data objects,
resp.) with equal shares. This is illustrated on the left side of figure 11. Since
clusters may have different sizes, forcing each cluster to share the same number
of data objects is a quite unrealistic requirement, therefore we have introduced
cluster size si in the previous section. Since we want to measure the distance
between two sets of clusters, we also replace the data objects in our membership

12 Frank Höppner and Frank Klawonn

matrix by cluster prototypes. Again, while it was reasonable to assign a constant
weight of 1 to each of the data points, now that we have clusters of different
sizes it makes more sense to consider their size as a constraint for the sum of
membership degrees.

Ui,j

a

b

c

d e f g

1

1

1

n/c n/c n/c n/c
cluster size (column sum)

da
ta

 w
ei

gh
t (

ro
w

su
m

)

Ui,j

a

b

c

d e f g

cluster size (column sum)

clu
st

er
 s

ize
 (r

ow
 s

um
)

r

r

s s s s

a

rb

c

d e f g

cluster − data assignment cluster − cluster assignment

Fig. 11. Constraints on the membership matrix. Left: case of uniform clusters. Right:
case of individual weights for data and prototypes.

We consider the membership matrix U as a data distribution matrix, where
ui,j denotes how many data objects of cluster i of partition A shall be assigned
to cluster j in partition B. Denoting the cluster size of set A by rj , the cluster
sizes rj and si provide us with marginal distributions of the matrix. We are
interested in deriving the joint distribution from the marginal distribution given
that the total assignment costs are minimized. (Note that due to the possibility
of negative entries for ui,j as discussed in section 4, the interpretation as a
frequency distribution is not fully justified.)

Since we want to interpret the cluster sizes si and rj as marginal distributions
of the same matrix, we apparently require S :=

∑
i si =

∑
j rj =: R. If the

prototypes are derived from data sets of different size such that R 6= S, we
proportionally adjust the sizes of one data set, e.g. scale si by a factor of R

S .
To find the (unique) solution, we only have to replace constraint (1) by new

constraints

c∑
i=1

ui,j = rj (14)

and we obtain a slightly modified linear system Aβ = b′ with identical ak`

coefficients but new left hand side

b′k = sk −
n∑

j=1

rj∑c
i=1

dkj

dij

(15)

Clustering with Size Constraints 13

Determining the (minimal) distance between two sets of prototypes, con-
sisting of their position and size, therefore involves solving this linear equation
system and calculating the weighted sum of distances via the membership de-
grees (9) using

αj =
2rj −

∑c
i=1

βi

dij∑c
i=1

1
dij

. (16)

We illustrate the performance of this distance measure using an example
given in figure 12. One set of clusters consists of 4, the other of 3 prototypes.
We examine the influence of the position of cluster a, which will move along the
indicated line. All cluster sizes were 20, except the three clusters in the lower
left corner. In experiment 1 the moving cluster has size 40 (and the two adjacent
clusters of the other partition have size 20), in experiment 2 the moving cluster
has size 10 (and the other two have size 5).

1 2 3 4 5

4

3

2

1

x

5
y

a

b

c

g

d

e

f

Fig. 12. Example data set. The prototype on the lower left will be moving along the
dotted line towards the upper right corner.

Figure 13 shows the distance values depending on the x-coordinate of the
moving cluster a. For experiment 1 (size 40) the best match is obtained if the
prototype is close to the two smaller clusters f and g (cf. figure 13, right). If
the size of clusters f and g is rather small (experiment 2), a good match for f
and g is less valuable than a good match of cluster e: at x ≈ 3.5 prototype a
is very close to prototype e and the distance becomes minimal. This example
shows that the consideration of the cluster sizes adds valuable information in
the comparison.

7 Conclusions

In this paper, we have considered the problem of subdividing a data set into
homogeneous groups with constraints on the number of data per group. Finding
homogeneous groups is a typical task for clustering algorithms, however, if the

14 Frank Höppner and Frank Klawonn

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 0
 1

 2
 3

 4
 5

 6

ex
p

1
ex

p
2

 0 5 1
0

 1
5

 2
0

 2
5 0

 1
 2

 3
 4

 5
 6

a
vs

 d
a

vs
 e

a
vs

 f
a

vs
 g

Fig. 13. Left: Distance values for both experiments. Right: distribution of the large
cluster a (experiment 1) to clusters in partition {d, e, f, g} (ua,∗).

data density is not uniform, such algorithms usually tend to deliver clusters of
varying size, which is inappropriate for some applications. We have proposed
an algorithm that outperforms a popular variant of k-means in that respect.
We have discussed the case of equi-sized clusters as well as clusters of different
sizes. Another interesting aspect of the proposed approach is the extension to
the comparison of clustering results in general.

References

1. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall (1988)
2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.

Plenum Press, New York (1981)
3. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.A.: Fuzzy Cluster Analysis. John

Wiley & Sons, Chichester, England (1999)
4. Klawonn, F., Höppner, F.: What is fuzzy about fuzzy clustering? – Understanding

and improving the concept of the fuzzifier. In: Berthold, M.R., Lenz, H.-J., Bradley,
E., Kruse, R., Borgelt, C. (eds.): Advances in Intelligent Data Analysis, Springer,
Berlin (2003) 254–264

5. Klawonn, F., Höppner, F.: Equi-sized, homogeneous partitioning. In: Gabrys, B.,
Howlett, R.J., Jain, L.C.: Knowledge-Based Intelligent Information and Engineering
Systems, Part II. Springer, Berlin (2006) 70–77

